

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation
(39)
I

$$
x_{1}
$$

THE GEOLOGIST;

A POPULAR ILLUSTRATED

MONTHLY MAGAZINE
OF
\section*{GEOLOGY.}

EDITED BY S. J. MACKIE, F.G.S., F.S.A.

LONDON:
"GEOLOGIST" OFFICE, 25, GOLDEN SQUARE, W.

PRINTID AT THB "GEOLOGIST" OFFICE, 25, GOLDEN SQIAEE, L.ONDON.

PREFACE.

There is one pleasure this leaf of my volume yearly affords me which to me is more grateful than any other reward I can reap from my many labours of the year gone by-the right to express my own heartfelt good wishes to my own many good friends. I wish them all happiness again, as I hope to do for many a long year to come, -even when my faltering pen shall be nerveless to express it.

For myself, I write somewhat sadly mindful of many short-comings. Goaded by my own impetuous wishes, I have sometimes promised more than time and physical strength would permit me to perform. This is my regret. But these short-comings are my own. The rolume whieh this number closes is not less rich in valuable and novel articles than any that have preecded it. Its pages and its plates and illustrations are far more numerous-and last, not least, my list of friends and contributors is larger and more numerous too. To Professor Owen, Mr. Salter, Mr. Davidson, Mr. Prestwich, Mr. Pengelly, Mr. Woodward, Mr. Hull, Mr. Wynne, Mr. Drake, the Rev. Mr. Symonds, the Rev. Mr. Fisher, Mr. Whitaker, Dr. Hector, Mr. Roberts, Mr. Powrie, Mr. Marston, Mr. Markham, the Rev. Dr. Auderson, Mr. Macalister, Mr. Charles Moore, Mr. Salmon, Mr. C. Pratt, Lt. Hutton, Col. Nelson, Admiral Wauchope, Mr. Whiteaves, Mr. G. W. Stow, Dr. Rubidge, Mr. James Wyatt, Mr. C. C. Blake, Mr. J. Yates, Mr. Seeley, Mr. Plant, Mr. Sorby, Mr. T. Rupert Jones, Professor Ramsay, and Mrs. Acworth, my special thanks are
due, and to many others I would wish to make personal acknowledgment if space allowed.

The space devoted to correspondence gives a means of freely discussing any important topic without rendering the Editor, or the Magazine, responsible for the opinions expressed. The beneficial influences of the free seope thus given to the expression of opinion must already have become evident to all, and the adrantages of some of the other changes made in the arrangement of the Magazine must likewise be apparent.

Notwithstanding the necessity of increasing the price in order to ensure the permanent commercial stability of the journal, our circulation has materially increased-a satisfactory and convineing proof of the increased usefulness of the work, and the friendship of the geological public towards it.

From Sir Roderick Murehison, Sir Charles Iyell, and other eminent geologists, I have received flattering encouragement; and it is much to be able to say that inen of such eminence regard with interest the success of this publication as a valuable medium of communication, and as an important means for the accumulation of new facts.

The arrangements made for the fortheoming year, while they in no way diminish my personal interest in the Magazine, will provide againat thone unaroidable impediments which ill-health and ever-increasing professional engarements put in the way of my individual attention to the details of publication.

For the future, howner, we will make no promises at all; but we hope ever to be judered by results attained.
s. J. MACKIE.

Lomlon, 1st Decrubler, 1461.

THE GEOLOGIST.

JANUARY, 1861.

HIGHAND LOW LIFE
By George E. Roberts.

Otr knowledge of the limits of animal life have been notably extended during the jear which has just departed. Air, blown npon an adhesive surface by the aeroscope on the summit of Etna, twelve thousand feet above the sea level, has been found to contain large quantities of Diatomaceæ; and thus the presence of a zone of life las been discovered to ns, soaring not only above the limits hitherto fixed, but above the range of physical phenomena in the mountain itself.

And now the ocean-depths have given up a secret as marvellous. We are taught that at a depth below the surface nearly as great as the height of the infusorial zone above it, animals as high in the seale of being as starfishes are enjoying life. The one discovery is a fitting pendant to the other, and yet, how great is their difference! In the one case the extreme rarification of the atmosphere seemed to our notions to render life impossible; in the other, the enormous pressure of the opposite element, which in the homes of these starfishes mnst amount to at least a ton and a-half on the square inch, is so greatly at variance with our belief, that we are confounded at the very outset of the inquiry. The capability in an animal so well accustomed to air as the starfish-whose ordinary domain is the sea-beach-to exist without it, and its inherent power of withstanding a
pressure that would upon the surface grind a rock to powder, aro studies replete with instruction and value-studies which can be thmed to a trond grological accomit. and made to bear reference to a pact fanma as well as to a living one. I will attempt, therefore, to give an ahstract of the valuable contribution to our knowledge of animal life in deep sea-zones, which contains the important discovery I :clluce to :* for :ts the pamplet is printed "for private circulation," it is only attamable ly the few. In it the anthor not only gives us in one vew a maymi of our present data upon the sulject, hut a series of notes which point, with no uncertain finger, to a great extension of them.

Dr. Wallicle's zoologieal laboms white on cluty entitle him to rank as no menn associate of the great naturalists to whom he gracefully dedicates his notes; and the modest way in which he introduess a stronge fonudation for a most important inquiry, prores that he looks upon scientilic experience

> "As an areh wherethro'
> Cileams that mutravellil world, whose margin fides Four ever aud for ever when 1 move."

In sombling mot ruite millway between Cape Farewell and Rockall, at a proint cant of Technel, and in one thonsand two lmodred and sixty fothoms of water, the sounding apparatus brought up an ample slweimen of corasce gritty-looking ooze, containing about nincty-five per cent. of ciluhiyberinm-shells (an important genus of the Foraminif(ra); while atherent to the lowest filty fathoms of the line, a number of atarfishes, helonging to the gemms (p,hiocomu, came up. They hat attaclued thematres while this pate of the line, which hat been paid out in exees of the ildeth, wested upon the bottom, not at all calculating what an upward journey their investigations would cost thom, and whe a grouting they womld mesive. 'They continued to move fredy alom for a gunter of an hour affer their introduction into human society, amb from the maturalist and his wondering

[^0]friends the illustrions strangers received every courtesy and attention. But, as may be supposed, they were too precious to be returned to the deep-sea home they had left, even supposing they could hare got there; so were put in spirits, and consigned to an immortality they little expected. One fine fellow, who clung conrulsively to the rope, was secured in situ, and is now a "lion" of scientific London.
" Here, then," says our author, "is a fresh starting-point in the natural history of the sea. At a depth of nearly two miles below the surface, where it is difficult to beliere the most attenuated ray of light cau penetrate, we find a highly organized species of radiate animal living, and evidently flourishing; its red and light-pinkcoloured tints as clear and brilliant as those seen in its congeners who live where the sun's rays can penetrate freely. Differing in no respect of internal anatomy from the species of Ophiocome inhabiting shallow water, and evidencing, by their freedom of life and action, that circulation of sea-water, digestion, assimilation, and reproduction were carried on in their frames, unrestricted by the obstacles enumerated, in addition to the simpler but no less essential operations of locomotion and capture of food." In the alimentary carity numerous Gilo-Zigerind-shells were found, more or less freed from their soft sareodal contents.

Now the Ophiuridæ, to which division of star-fishes Opliocoma belongs, differ from what are usually called true star-fishes of the wellknown stellate or angular forms, by the absence of protrusile suckers as organs for effecting motion; the want being in them supplied by spine-covered arms, from which they derive the name of "spinigrada." They have no power whatever of raising themselves from the bottom, or of travelling in other fashion than as creeping, crawling animals. Moreover, Professor E. Forbes has told us in his "Monograph on the British Starfishes," that the Ophiuridæ is a more local family than starfishes proper, and more affected by climatal causes. So that, though the discovery of any starfish under the circumstances is wonderful enough, the marrel is increased tenfold by its being a Spinigrade form; for as the point of capture was five hundred miles from Greenland, and two liundred and fifty from Iceland-Cape Farewell in the former, and the "Blinde Skier"
roeks in the latter being respectively the nearest land-it is impossible they conld have been a chance drift, borne alung by a current from cither country. "Therefore," says Dr. Wallich, "all former opinion as to the limit of life in the deep sea must give place to such a starthing fact. Ant where one form so lighly organised has been met with, it is only reasonable to assume that other correlated forms may also exist: and we may look forward to the discovery, at no very dishant period, of a new submarine fana, frepuenting the deeper fintnesses of the ocean, which, while furnishing a new field of Jusearch for those who are content to seek after living novelties, shall also throw a gleam of light on the geology and palæontology of the globe."

Respecting the Glulnitrina, those minnte Foraminifera whose shells constitute so large a proportion of the "cozy" deposits brought up, by mil- Athantie sombings, one interesting smbẹet of debate has hoen set at rest byy Dr. Wallich's discoveries. They do exist in a livinger state at great ileptlos, though the signs of life apparent in them when examined after an hom's mpward travel from the seabottom tor the surface, wore feebler than in those taken from beneath shallow water. Indeed, irrespective of the experiments by which the anthor arrived at this ronchnsion, the ciremmstances of their having heen detecterl in the digestive cavity of one of the starfishes mates it highly probable that they form their chief source of food.

In serseral samples of riluliggrimu ooze. the minute cell-like bodies provisionally called " ('oceoliths" by Prof. Huxley were detected, looking at tirat sight fery like the cells of the algal plant Protococens (now shawn to be an abmormal development of liclen-gonidia) ; than Hr. Wallich comsiders may probably be the larve of the dilubi!f ri, ow. They appearel in two states, as elobules atherent to the surtace of cellular myoclia, and as tree moving bodies, showing in sume instanees the commeneement of cell-division. Their discovery in at liviug state in this oose is of high genlogieal importance ; for micromempeal inwestigation, undertaken by Mr. Sorby, proves their wistemer in chalk-rocks, associated there, as they are in this North Athatic cicestm, with ritaliggrinae. Indeed, chatk itself is seen to be littee else than a compacted mass of Foraminifura shells, whole and frastuentary, and may be best described by using the very words by
which Dr. Wallich introduces to science the recent deposit. Light from discoveries of to-day is thus thrown backward, and thms finds reflection in aualogrous conditions of deep-sea deposits and buried animal-life at a remote geological period, which in turn aids us in investigating present life, and proves that conditions favourable to Foraminifera-life could support Radiata, Echinodermata, and Mollusca, which, conld we dredge as well as sound in the deep Atlantic, would doubtless reward our search.

As yet, no companions to the Ophiocome and Glubigerince have been taken from the enormous depth at which these forms of life exist, but a living Serpula was obtained from a sounding of six hundred and eighty fathoms, in coujunction with a living Spirorlis. Other free Annelids, and two amphipod Crustaceans, were also taken alive at four hundred and forty-five fathoms ; depths, be it remembered, far beyond any previously-known habitat.

Some remarkable phenomena connected with atmospheric infinences are noticed by Dr. Wallich during his cruise, such as the aimost entire absence of those varied forms of animal life which usually present themselves upon the surface, such as Pteropods. This he attributes to the severity of the past season, which appeared to have exercised such an influence upon surface-water life, that eren Diatomaceæ were scantily represented. And another matter worthy of note was the scarcity of drift-timber, in ordinary years borne along by the deflection of the Gulf-stream, and cast upon the coast of Greenland. This our learned author advisedly regards as a proof of a variation in the course of the Gulf-stream proper, before it was caught up and deflected by the Aretic current; or, what is still more probable, that this year has been marked by au extension of the Aretic current, sufficiently great to overpower and deflect the Gulfstream, bear down its floating burden to other lands, and materially lower the temperature of Northern Europe.

Some sensible hints as to the surreying of the sea-bottom beneath deep water are given by our author ; and he suggests, with a kindly feeling towards further investigators, a sensible method of procuring Diatomaceæ, Polycystinex, fe., from sea-water, which being quite new, and likely to turn many good things into the hands of those who study these tiny but most important organisms, I am glad to in-
chute in my abstract. When the boilers of steam-ships are being clesued. prome portions of the caleareons deposits sealed off the interior: and by treating them in the usual way with nitro-muriatic acid. Hietomucum-forms and Polycystinu-shells may be detected in enusiderable quantity.

By obtaining these deposits from ships plying within known limits, a series of free floating Diutomacere might be secured which would aflord grod data for the asecrtainment of their range, distribution, and limits. And so, heartily thanking Dr. Wallich for this crmmb of friendly fueling, I close his pamphlet. The year that has just dreparten has thrown no light of equal importance on geolorgical history; thonerh it has been a very notable year in geological sciencenotable in the importance of its discoreries, thoughtfully made, and c"refully introlluced; and beyond measure notable in its crop of theories, and in the agitations produced by them. But of these latter "helphs to knowledge" we have surely had enough. Dr. Wallich has sent the ball rolling in amother direction; and his labours are more clearly reflected in the mirror of Truth than is any attempt to claim ereative power for the working of secondary principles.

A CIIRISTMAS LECTURE ON "COAL"

> Tir J. Wr. Shutir, F.G.S.

Not a great many years acgo the "bigwigs" in England were assembled in conclave, and the ilite of science was ratled hetore them. "There were a preat many lumps of a blackish-brown sulstanee on the table. and a great leal of :mblliner, and homingr, and poking of the some black lumpse by the same "hiorwigs" and learned men. It was the great " Torbane Hill C'oal" "ase.

> "Thim pint was in qum ion, ns all the world knows, To what the shal Eub tancess onglat to belong."

Was it purn carhon: Was it carhmacomes shale? Was it shale without much rartom: Was it carlon withont much shate? Was it hitmmimms blale: Wras it conl-shale: Was it cannel? Was it coal?

Wo are afmal to say low many knimas were spent, or how many misroneopes were busy in Loudon and bidinburgh. Put after all
the question was simply this, "What is coal?" We are not going to try to give a definition: but if we can show our young readers (ard there are, we hope, a good many of them) a few of the facts conneeted with the strueture, contents, mode of formation. \&e., of a coal-field, perhaps we mar be able to answer the formidable query, "What is coal?" without calling in the aid of counsel, and our fee is-one shilling. As this is a Christmas lecture for our young friends, we hope our senior readers will not take it amiss if elementary phrases are introducel. and a few woodents given to illustrate what they know very well.* And perhaps we may he allowed to speak in the first person singular ; it is more conversational.

First, then, where is coal found, and how? Of course we all know it is a mineral substance, bedded deep in the bowels of Old Mother Earth. And I need not tell most of you that Old England has more of it than anr other European nation; that she is much dependent on it for all her industry ; that it has helped to make her peaceful conquests over half the world. And some of you may perhaps know that she is now so tired of using it in this way, that she is going to make a present of one-half of it to her dear friend France-for purposes of war!

A glance at some of the places celebrated for coal will perhaps be the best way to learn the mode of its occurrence. Let us take for instance a place where they send our best coals from, but where it is no use to send coals to. The Neweastle distriet is perhaps, all things considered, the richest in England. The river Tyne, rising, as many decent rivers do, in the pure air of the Cheviots, waters all the central parts of Northumberland, and cnters the sea at Tynemouth, with far less nnsullied purity than it left the mountains with. It is saying much for the traffic on its banks, that the Tyne is nearly as black as the Thames before it reaches the sea. This traffic is wholly in coal.

The Tyne cuts its way through the very heart of the coal-field; the flourishing towns of Hexham, Gateshead, and Newcastle being some of those which dot its banks, while Tynemouth and Shields are the grand ports for its black produce. Get out your map of lingland if you please, as we shall have further occasion to refer to it. And now I think of it, the little map, coloured by Sir Roderiek Mrurchison, and published by the Society for the Diffusion of Useful Knowledge, is the best we ean hare, for it has both map and geology all in one. \dagger

Well, we are on the banks of Tyne, looking at the never-ending chimneys and coal-engines. The river is full of collier-brigs; and at the ports there are the long high jetties for embarking coal, and the blazing coke-heaps on the wharres, for the black diamond is not only life but light to Neweastle.

* And it must be understood that we are not going over again the same ground which Prof. Buckman took in the first volume of this work. He was showing us how to search for coal, this is for those who know very little about it.
+ Stanford's, Charing Cross. Price ôs.

Last, not least. there are the iron furmaces; for in England, happy England, coal is always found in company with iron-the objecets of industry with the means of employing industry; the material, and wherewith to work it inp two of the great civilizers of mankind hand in hand. Coal cannot live without iron, and assmedly irom canuot get on without coal.

I will now just sketel the ontlines of this coal-field, and you can follow me on the map. Yon see it is of a long shape, skirting the seathart from a point a little soutl of Alnwiek, and, passing by Morpeth, it swells ont to its greatest width on the Tyme ; then erosses the Derwentwater, runs past Durham and Bishops Auckland, till it reaches the Tees, not so rery far from Barnard Castle and Rokeby. Hhere it sweeps round to the east, and gives that classic region a wide herth. Sicott would never have thonght of laying the scene of Rokeby anong barges and chimneys ; and I doubt whether Bertram wonld have proposed to swim the Tees, had it been choked with coaldust. The loves of Retmond and Matikda, too-well, let that pass.

From shiclds sonthwarl you will perceive that the coal-field does not actually reach the sea. There is a narrow strip of Magnesian Limestone rms all alomg the sea border, and the most familiar coalports. Monkwearmouth, sunderkand, Hartlepool. are not on the coal. However. Wialls End, from which in our simplicity we think all our conls come, is actaally on the coal. I have been told, however, that there is sometimes more Wialls End (that is, brick-bats) in my coalcellan than I had ever smpposed.

I do not know if the number of conl-pits in this magnificent feld is aroburately estimaterl. They employed ower forty thomsand men some vand back. The decenest pits are where you might expect thern abont the mikdle of the coal-hasin, north of Darham. Some of these are of great depuls indeed; one thonsamd six hundred or one thomsame cight hundred feect does not look very much on paper, but if we try to mensure it ly means of the higlest bildings we are aseruatinted with, we shall muderstamd its emormons depth better. In Hae nowth part of the fiedd, thase hamdred to five handred feet is nearer the math.

I shall here remomend to anome who wants to know more abont conal amb cond-pits than we ean tell them in this short lectme to byy a little work lyy the lier. K". Leifehila, adled" Our Coals ame Coal l'ita." I sulpuse there are very few peranos whon might not prolit ly it, and fow founc omes who wonld not be merry orer it. It may have some rymors: what work has mot: but it is full of nsefal and pleasantly eald information.

Aml now, that we may momerstand clearly what a coal-fichl is, we monst give as ketch of al cond-hain, such as is usmally fomm in Britain. You may turn back to rol. i.. p. Iss, to sce another section by Prof: Sinckman: his will mot, howerer, do for our purpose, and we shall relir to the one on the opposite prate now and agam.

If we were to walk aloner the banks ol the Tyne, howerer, we should only see ahout half the basin, as far as g for instance; the
remainder is hid beneath the sea. But even that half will show the beds in the same order or succession. The Mountain Limestone is a fine rock, and forms most of the high moory ground on the west. Many a border skirmish has been fought upon the heather that

Fig. 1.-Ideal Section of a Coal Basin, to show the usual arrangement of the Beds, and the Dislocations caused by Faults.
a, Old Red Sandstone ; b, Carboniferons or Mountain Limestone ; c, Millstone Grit ; d, Farewell Rock, sandstone chiefly : e, f, g, h, coal seams, or beds, the layers of coal from one foot to ten feet thick, and with shafts piercing two, three, or more of the beds, as the case may be ; i, Magnesian Limestone and Red Sandstone, unconformable on the Coal-heds.
covers its surface; and many a bold moss-trooper has ridden for dear life across the bogs that ornament this formation,* and the one succeeding, viz., Millstone Grit.

It should be noticed that the "Millstone Grit" is all or nearly all sandstone-sometimes clayey, but more often hard; and the lower part of the coal-formation itself is nearly all sandstone, with a few bands of clay or shale. But as we rise higher in the beds, the clay grows more and more, the sandstone still being present in large quantity, till shale, as it is called, often makes up the chief part of the beds. Under every seam of coal, with scarcely an exception, lies a bed of what is called fire-clay, a rather lard clay, which makes excellent linings for stoves and furnaces, and which besides is nsed for crucibles and other parposes. Of this clay more by-and-bye, when we come to speak of how coal is formed.

Fig. 2.-Ideal Scction showing Granite and Killas (soft slate), with Metalliferous Vcins. *, granite ; a, killas ; c, c, c, metal veins.

And now it will be seen from our diagram, and from what has

> * "He rode a small but hardy nag, That o'er a bog--from hag to hagCould bound like any Bilhope stag."

FOL. IV .
heon said，that coal is always found in layers and beds，not in reins， a－metals are．If you conpare the following sketch of a mining emanty with the coal－fied above given，yon will see the difference at oner．＇This dilterenee is of the greatest importance in mining for conal，ats we shall sce by－and－bye，but we must not wander lion our point at present．

I have only run orer one of the coal－fields of Britain yet，and not fuite the largest．There is the Whitehaven cond－field，which sup－ plies all Lameashire，and which has galleries far beneath the sea． ＇The erreat Yorkshire coal－field is one of our busiest mamfacturing districts．Wre may well say that，when we remember that Bradford， Lexds，and Halifax are the very heart of the eloth tade．This im－ portant tich mans down in a long strip to Nottinghamshire，passing lyy Doncaster and Mansfield．It includes nearly one thousime square miles，and it is really larger than this，for they hawe been trying of late fo find eual beneath the Magnesian limestone to the east of it． ＇The Duke of Neweastle has lately smok shafts，and protitahly too， thromgh the limestone and the red rock beneath，and then piereed the coal，aml gent plenty of it．

N゙ow the Yorkshire coal－fichd rms down（see the map）all the castern side of Deftrshire，ontside the Monntain Limestone of that beatifinl tract．On its west sile runs the Lancasbire coal before－ mentioned．＇Thas both sweep round the linestone like a mourning＇ cloak thrown ower the shouldars；and here again we see the elose connection of Mommain Limestone，Millstome Grit，and Coal．

The little tract called the south staflordshire coal－field is a rich， may．los the size the richest of all one coal－fickls．Except one in Novar sontia，this little enal－fichd eontains the very thickest seam of the jnvaluable mineral known in the whole word，for the＂Thiek
 h．$\%$ than in ony other distriet of the same area．The Dadley and

 that live million fons are mased per ammon in this distriet－worth it million amb a pluator pomeds sterling．

 all litale patches．which ome no donbt were joined together．But the restlows sata swort over them，and sime they lave heen mased into dry land．Whe breakers have heaten anganat their eoasts till they
 cral－fiell in mid limerand．

Then theme is the Filint enal－field，whiels keeps the North Welsh－ ment wirm．It raneres from the sas menr Chester to（swestry，on the borders of shmplhire and，in rongunetion with the lead－works in the limesome（ Xomontain Limestone action yon pereejes）which， rmos all the way aloner it matere kerps a large pepmation lonsy．It dus enees leant grom，when going into Wales for aholiday（and jou
are always kept waiting at the Llangollen Road Station), to turn for a while and look over this busy coal-field perched high on its limestone terrace. Don't give all your attention to the monntains, but think of the labour that is going on around you, amid those lundred chimneys and in that dingy atmosphere ; and reflect, too that the picturesque scenery on your left is, like much else that is beantiful, only for holiday wear, while the hard work on your right is the true condition of our life if we would attain the useful.

Then if we take the train to Bristol, we shall find another small but productive coal-fiekd, thoroughly well worked, and for its area very rich. It has been computed to contain six thousand millions of tons. If they could only get it all! It supplies one and it-quarter millions amnually. Across the Severn is the Forest of Dean, an oval mass of high ground, rich in coal and iron. It was one of the earliest places where iron was workel: and the old rude furnaces are still occasionally discovered. There are twenty to thirty seams of coal lere; and if you want to see what a coal-field really is. on a small scale. look at the model by Sopwith of this district. It is in the Museum of Practical Geology, Jermyn-street; and you may know more about a coal-field in an hour by consulting it than by reading this lecture for double the time.

Now we are near the great Sonth Wales coal-field, or coal-basin, as it is better called ; a mighty mountain mass that runs for seventy miles from Monmouth to Pembroke. Across its width, from Swansea to Merthyr, it measures full twenty-five miles. Its area is compnte I at one thousand nine hundred and forts-fire square miles, and its production is enormons. Nearly all our steam-coals come from thence ; and there it is that those wonderful furnace-coals, called anthracite, are found. If you draw a line across the field from north to south-from Swansea to Merthyr-you will find that all on the west side is anthracite, or stone-coal, and all on the east bituminons, or caking coal*-rery nearly so. There are, of course, some exceptions to this remarbable rule, for which I really can give you no good reason. It is supposed that deep-seated voleanic matter has acted on the western half; but we see no trace on the surface of this. The fact is certain, nevertheless, and a very curious fact it is. Those who have had occasion to travel along the network of railways which run among these hills will know that the coal crops out, as it is termed (that is, shows itself), along the sides of the hill in seams. It does not hide itself here in deep underground workings, but is sometimes even wronght out in the face of day as a quarry, more often obtained by levels into the heart of the mountain, in the way they work for metals And they have such abundance of water-power, that when compelled to raise coal from greater depths, they can often employ what are called lifts, or balances (cisterns which are alternately filled with water or coal), and so make the water itself lift the coal out.

[^1]Ahle to all these natmral advantages a very large supply of coal important for (iow crmment mee, some very intelligent masters and oversuers, cheap lahour, and cany access along the valleys* to the ports, and you will mot womer that south Wales should be prosperous. 'There is an Institute for Engineers specially for this coal-fiche; and lee mast he a secoml-rate man who camot realize his $\mathfrak{E S O O}$ or $\mathfrak{E} 1.000$ a-year at least hy the charge of a set of works. Many of the owners ure extremely wealthy, and hospitable too. And somewhere on the northerm eropl I visited a friend, who is at once magistrate of his district, lientemant of a rifle corps, surgeon of a large work, organist, lecturer, a grod geologist, and a kind man.

The worth and south borders are called respectively the north and south cropss. Along the northern edge the strata lie pretty flat, or gently inclined. 'They rest upon the terrace of Millstone (irit and the Domntain limestone precipices owerhanging the red samdstone comentry of Crickhowel and Ahergavenny.

On the southern erop the beds of rock lie at a steep angle, and again from lemeath them come out the Xillstone Cirit and Momain Limestone ut' Oxwich and the Mmmbles: or, further west, the great limestone cliffs of Teuby, which of all places is the place to study Momatain limestone, Odd Red Sandstone, and contorted coal-strata.
'There is one move coal-fied in Britain, but a poor one, the cmhnmensmes of Dewon, only worked for local use : and it is more than poobahle that these enlms are conl-heds in the Millstome Grit series. Fore in Scotland. of which we have not yet sais anything, and where the richest seams are found, not only in their proper beds, "f,ner the Mill-tone (irit. but in it and all through it. Niy, it does not stop here. for in the Lothians and Fifeshire, as indeed is the case in Nomhmmberland, there are coals and coal-slate among the beds of Nomntain Limestone, thin layers of this black find lying under momatain mases of the limentome rock; and here and there are eoral sambisones, rippled and wom-marked, showing the action of large lakses. wr. much mome probably. of the tides on the surface only just before ocerppied ly a a ral forest.

Now is this all, for deeper still, ame far below the Monntain Time-
 cedebmated limelie Llomse beds of coal and limestone are among these.
 "liek the ir fine buiding stones have been grarred. lie far below the lowert lewe) of the Domatain Limestone 'There is a charming little work the. .. story of a Bomliter," told ly Arohihald Geikie, that gives n clear notion of the Šattish comb-field. in most pleasant and readable stye.

Amd then for foeland. We might almost write a chapter on the coal of Trelamlas shom as Swammerlamis lamons chapter "On the Rats of drica" - "There are no mats in Africa," sald the maturalist; sand it is all hum the -amm in lre lame. 'Trame, there is a patele or two

[^2]at Dungannon, and in Clare and Kilkenny ; but the beds are so poor in coal, and the produce altogether is so very small. It would almost seem as if Providence had made amends for the scanty supply, and indicated the direction Ireland's industry should take, by covering her fertile limestone plains with the exhaustless peat. Peat is the Irishman's friend, and like the seal to the Greenlander, supplies him with light, warmth, and even building-materials; and now they are manufacturing peat, it will be meat and drink to the Irish peasant.

We have seen hor coal is found, and where in Britain; how it lies there in beds or basins, not in reins or bunches; how it occurs mainly in the great Palæozoic formation, above or about the geologic place of the Mountain Limestone. And this is true for nearly all of Europe, and of the mighty coal-fields of America. But it is not the case over the whole world. Even in our own country there are coal-beds in our oolite rocks, above even the New Red Sandstone; and in Yorkshire these rocks are neither few nor barren.

This "oolitic" coal is the common coal of Virginia. in the United States. A similar coal forms our staple supply in the East Indies. We hare oolitic coal at Natal and along a great part of southern Africa. Anstralia is supplied with oolitic coal. Wherever Englishmen found a colony, there is coal ; bat it is not all of the same age. Borneo is not yet ours, but there is coal.

And there is tertiary coal. Our own little coal-field at Borey Tracey, Devonshire, is a miniature representative of much larger brown-coal fields in Germany. The Miocene coal of the Rhine is little better than a fossil peat;--sticks, and leaves, and frnits, and here and there an insect. a fish. a firg, are found in this freshwater coal. If a fox got drowned in these old swamps, he, too, turns up as coal for German firesides. Nothing comes amiss. Some varieties of this tertiary coal are little else than pond confervæ matted close together, and layers of such like peaty matter form the dysoile, or "paper coal."

So there is every transition in mineral composition from the peat bog to the coal-bed ; and it is not anticipating our next lecture to say that all coal, of whatever kind or value, is regetable produce. It would be out of place to doubt that our roungest readers know this fact; what we propose to do next time is to give a short account of the methods of extracting these precions black diamonds : to show what kinds of vegetables produced our great coal-fields; and to discnss briefly the valuable services we receive from "Coal."

RESEARCHES ON PSEUDOMORPHS.

> By M. Delesse.

Translated from the "Ammales des Mines"* by H. C. Shunon, F.G.S.
(Comtinuel from page 4.5:, col. iii.)

Pielemorphism.

When a mineral presents itself under a form which does not belong to it. there is then what I shall cell prepulomomhesm.

The substance from which the mineral borrows its form may be of any kind-inorganic or even organie. It is called original or pendum whensel, while the mineral which replaces it is called fesemomomphic.

Psendomenthism ly atterutime is that in which the psendomorphic mineral still contains the clements of the original substance. P'sendomorphism by displucrment is that in which this is not the case. In onder to molerstand the diflerence whirh exists between these two kinds of pendomophisms, it suffices to mention as examples ironpyrites. which changes into limonite, still preserving its erystalline firm ; wh lhor. which atter being completely destroyed, is replaced lyy guatr. The name of purmmerphism has been given to the kime of peendomonphism which is produced withont motification of Chemical composition. Arragonite changed into calcite, and pyrite chamget into mareasite are examples.

At first sight it seems that these metamomphoses of minerals mast he very exceptional, but whervation teaches us, on the eontrary, that they are met with in a momber of localities; they are moreorer, extremely varich. In fact, they include all the alterations to which minerals are sulject in their stracture and in their chemical composition. 'They include also, as a parienlar case, the deempresition of minerals: and kanlin, for example, results from a truc psedudmorphism of felspar.

When organic borlies, whether animal or vegetable, are psentomorphosert, there is produed what MI. Namman has called zonmorphes and phytomorphet The psembomerphism of organic bodies may likewise lne entablistued as casily as that of the hest crystallized mineral ; for, although the form of these bodies may not íe simple and geonetrical, it is. howerer, quit, characteristic, and moreover it compeamente to a known composition. Besides, the study of this pembmorphism is not less interesting tham that of minerals, and it takes place by the same procents. 'The comparison of the original

[^3]substance, organic or inorganic, with the mineral which has replaced it, permits us imnediately to recognize and understand its metamorphism ; moreover, as the minerals and organic bodies have a generally constant form and composition, their metamorphism may be much more accurately defined than that of rocks.
The principal rescarches in pscudomorphism are due to Werner, Haiiy, Mohs, Langrebe, Freieslcben, Blum, Breithaupt, Haidinger, Mitscherlisch, Sillem, C. F. Nammann, G. Bishof, G. Rose, Hansmann, Dana, Phillips, Kenngott, Scheerer, Rammelsberg, Plattner, Renss, Hermann and Antoine Mïller, Léonhard, Zippe, Quenstedt, Glöcker, Von Dechen, Suckow, Nöggerath, W. Stein, Fœotterle, Scacchi, Delafosse, Descloizeaux, Roth, Wiser, Von Zepharovich, Nauck, Tamnaw, De Carnall, C. Von Haüer, Foster, Whitney, Jackson, Fowler, Websky, G. Brush, Smith, Shepard, Bronn, Vinkler, Volger, Hessel. Oppe, Fr. Sandberger, Dieffenbach, Schïler, Credner, Gutberlet, Dauber, Beck, Carins, Greg, W. G. Lettsom, Fox, Söchting. Veibye, Forchhammer, Von Rath, Kjernlf, Von Richthofen, Gergens, Richter, Girard, Jensch, Heffter.*

Difficulties of distinguishing between Envelopment und Pseuto-morphism.-Before summing up the observed facts, it seems to me necessary to call special attention to certain deceptive appearances in pseudomorphism.

In the first place, when two minerals envelope each other, if the enveloped mineral is completely destroyed and has disappeared, the enveloping mineral may easily retain its form ; there is then produced a special metamorphism which arises from an incrnstation, and which is visibly connected, in the most intimate manner, with envelopment. Now it sometimes happens that one mineral is surrounded by another which results from its alteration, which is especially what we observe in anhydrite and gypsum. Certain mineralogists have conversely presmed from this, that when two minerals envelope each other, the one results from the pseudomorphism of the other. This may certainly be the case sometimes, but we may soon easily discover that it is not what occurs most usually.

Moreover, when a mineral is crystallized, it frequently envelopes a rery notable proportion of another mineral. The dominant mineral is not even that which gives to the mineral its crystalline form ; and generally it has been considered as pseudomorphic. Is there here, then. an envelopment; or, on the contrary. pseudomorphism? The solution of this question presents, as we shall see, very great difficul-

[^4]ties: and in order to solve them we must, in the first place, seek to ascertain low envelopment is produced.

When a mineral erystallizes, the substance which it envelopes remains sometimes amorphons. This, for example, is what takes place in the sand which is fomud in the rhombohedrons of caleite from Fontaincblenn. It is the same with mâcle, (andahsite.) which, aceorling to M. Durocher, has retained a part of the schist in the midst of which it formed. But the mineral enveloped in another which is crystallized, has most frequently been crystallised itself. If we consider two minerals in those conditions, we nust distinguish the ease in which their crystals are independent, and that in which they are symmetrically arranged.

1,t, Encolnpment withurt Symmetricul Amongmmont. -The first carse is the simplest and also the most frequent. (ienerally, when two erystallized minerals envelope cach other, their crystals have any direction with regard to one another, and are independent.

Thus magnetite in hormblende, chlorite in calcite, mica in augite, in bermblende, in orthoclase, and in the felspars, are most frequently in crpstals compledely independent of the minerals in which they have formed themselves.

As longr as the enveloped mineral is fomed in erystals elearly isolated and not numerous, no confusion is possible between envelopment and psendomorphism. On the contrary, we find oursclves in the presence of the ereatest diffeulties as soon as the enveloped mineral becomes sulficiently abmelant to diswuise, as it were, the enveloping mineral ; or when it is associated with it so intimately that the one passes insensibly into the other. For example, garnet has been considered psendomorphie after idocrase becanse it is observed sometimes in its interior ; and this is, indeed. what I had the opportunity of verilying in the colle etion of M. Wizer, at Kurich. But it is neeessary to remark that the idocrase is, in its turn, enveloped by the gamet. Although it is very easy to conceive the metamorphism of these two minerals, since they have nearly the same chemieal composition. I think we should only admit it if it were elearly established that the garnet ean substitute itsclf entirely in the place of the idocrase.

We shonld also observe the same reserve with regird to iolite. (dichroit. cordierite,) and mica; for iolite, whenever it bears no trace of alteration, often covers itself with very mmerons seales of mica, nuder which it so disappears, that it is necessary, in order to reeognize it, Io examine its fracture in a plane perpendicular to the seales. In the variety of Amity (Aaine) which has heen designated under the name of whorophyllite it is easy to establish that the large seales of green mica are very close together, and that they alternate with the hbish white.

Is it ruite erertain that miea psendomorphoses kyanite (disthene)? I do not think so ; it has merely seemed to me that kyanite frequently enveloped a geater or less proportion of mica. which was mixed with it, suld into which it might even pass. But there is nothing in this
ciremmstance which should surprise us, for kyanite is found especially in roeks which are very rich in mica: moreover, the mica which penetrates it is completely identical with that of the mica-sehist in which it is formed. It is, therefore, very plain that the mica and the kyanite were crystallized simultaneously, and at the same time as the roek which incloses them.
The same remark applies to andalusite, to chiastolite, to staurolite, to hormblende, to augite, id.., which are often more or less penetrated by the micas. In the very numerous specimens I have examined, the various minerals were not pseudomorphosed; they simply enveloped the micas, which were identical with those of the rocks in which they were formed.

The largely lamellar chlorite, which in chlorite-schist envelopes and penetrates, often in the most intimate manner, erystals of magnetite, and which does not differ from that which constitates the chloritic schist itself, does not seem to me to resnlt any the more from a pseudomorphism.

I am inclined to believe that it will be necessary to make pretty numerous suppressions among the minerals which are regarded as pseudomorphic, and particularly among the silicates. The only pseudomorphic which should be retained are those which take the form of another, and which are, besides, susceptible of replacing it completely. It is, moreorer, easy to understand that when minerals lave crystallized simultaneonsly, they were in a position to associate and envelope themselves in easy proportion; which, indeed, before long will become still more evident.

2ud, Envelopment with Symmetrical Arrangement.-Envelopment is sometimes accompanied by symmetrical arrangement, and then it is necessary again to distinguish many cases.

Symmetrical arrangement is observed, in its rudimentary state, whenever the two minerals are grouped in respect to each other with a certain symmetry. This, for example, is what seems to occur in the galena of Nendorf, in the Harz, which forms a thick and more or less regular crust around ealeite. According to Messrs. Scheerer and Blum, this galena is in very brilliant crystals, which attain the size of a nut, and present combinations of the oetoledron, the cube, and the rhomboidal dodecahedron. It envelopes the ealcite, and is also enveloped by it. Its thickness is often reduced to that of a sheet of paper.

Garnet offers the same peculiarities at Arendal, at La Bergstrasse, and at Le Canigou: for its crystals envelope calcite which is likewise crystallized, and the thickness of their sides may become microscopic. Sometimes also a crystal of garnet envelopes pistacio-green epidote (pistazite), which in its turn envelopes the calcite. Moreover, garnet may similarly envelope felspar, quartz, hornblende, diallage, gypsum, \&c.

The idocrase of Christiansand, which has formed in the saccarhoid limestone, is in large crystals, which have only a few lines of thickness, and which also envelope the calcite.

I'hlogophite miea ocenrs in reddish-hrown lamine, which invests in a very remarkable manner the augite of Monroe, and which are alisposed almost perpendicularly to its faces.
'The miea which is formed in hormblende, angite, iolite, pinite, rhlorophyllite, presents sometimes a determined direction, and its lamine are paralled.

The felspar of the syenite of Norway, as we have seen, envelopes natrolite, which in its turn envelopes a kemel of this same felspar. Fluor convelopes proite concentrically.

Symmetrical relations may anain be well observed in macle* (an(lalusite), which has symmetrically gromped the sehist which it envelopes. It appears also in certain crystals of hyalin quartz, which contain small grains of quartz, which are erystalline and very distinet; these latter are grouped parallel to the finces, either of the regular hexagonal prism, or of the pramid which sumounts if. This, for example, D[. Des Cloizeaux has olserved in the (fuartz of Brazil. He has also shown that Iceland spar contains isolated grains of calcite. which are generally grouped parallel to the faces of the metastatic or to those of the primitive rhombohedron. When pyrite is disseminated in microscopic grains in spathic carbonate of lime, it also groups itself, following the same plane; and it is the same with the chlorite (ripidolite) which is enveloped by the dolomite of Traverselle.

But the symmetrical arrangement may be still better characterized than in the prececting examples; and then it oceurs at once in the two minerals, cither by relation to a centue, or by relation to axes, aceording as one or the other case ocems; it is hence central or axial.

Contoul Symmetrical Amangement. - Mctalliferous lodes sometimes slonw a well marked central symmetrical armangement. Thus at La Chevette, in Danphince, spathic iron emelopes quartz, and both presont erystals symmetrically armanged towards a centre. from which rewnlt aradiaterl structure. Aecordinge to M. Burat, it is the same with towanite, blente, and salena whieh are enveloped by the fibrons and madiated angite of tho mines of Tuscauy.
liocks which have a globulons structure also especially afford us partionlarly elear cxamples of envelopment with a centrol symmetri('al amangement. In the Rapakivit of Finland and in certan porphyries, the obigoclase envelopes the orthoclase, aromul which it fioms at recrular ameole. Ta the pyromeride + of Comsioa, the grobules are connumed of felspar erystallized in needles, which start form the cimmonfreme or the centre, aml which follow the direction of the madii. In orthenlar diorito the felspar envelopes the homblende, and the lamine of the two mincrals are symmetrically arranged towards

[^5]the centre, at the same time that they are grouped in concentric zones.*
Central symmetrical arrangement may visibly occur in minerals of very diverse compesition. When it is tolerably regular, as in the case of the globular minerals, it gives a radial structure.
(To be Continued.)

THE EVIDENCES OF THE GEOLOGICAL AGE AND HUMAN MANUFACTURE OF THE FOSSIL FLINT IMPLEMENTS. \dagger

By the Editor.
(Continued from rol. iii., page 40S.)

Ahiess and Abbeville do not, howerer, enjoy a monopoly in these flint implements; they are found, apparently, all over the carth. At any rate, we can boast in our land of such treasures, and we can prondly record that the first diseovered specimens belong to England. Let Amiens and Abbeville by all means be commemorated as the scenes of . M. Boucher de l'erthes' persevering iuvestigations, which have furnished the incitement to the present remarkable inquirylet the names of Boncher de Perthes, Prestwich, Falconer, Flower, and Erans,

Fig. 5.-Flint Implement found in Gray's Inn Lane, before 1750 . In Sloane Collection, British Musenm. Size 7 inches by 4 inches. be duly honoured as the pioneers of the investigation; but let us also think of Hosne, Grays, Ilford, Maidstone, Stanway, and the scores of other places where mammalian boues have been found in our own landand, let us hope that our young geologists will set to work, and reap a rich harvest in the jet ungarnered fields. Does not this first recorded implement-this earliest discorered relic-(fig. 5) treasured and preserred in the Sloane collcetion, the nucleus of the British Mruscum, and entered in that old catalogue, two hundred jears ago-encourage them. Does it not say in unmistakable language "Under your feet these relies may be found ?"'
There is another of these spear-shaped flints, which has obtained a great deal of notoriety in the late discussions. It was found at Hoxne, in Suffolk-a place memorable in the history of the good king Edmund, the saint and martyr-and was described, and figured in the "Archæologia," (see cut $9, p .20$), by Mr. F'rere, have fully comprehended the ralue and true bearing of his discorery. His paper is, even now, an excellent epitome of the subject ; and we give it at length, just as it was read in 1 197 , before the Society of Antiquaries of London.

[^6]"An account of flint weapons discovered at Hoxne, in Suffolk, by John Free, Esq., R.R.S., and K.A.S., in a letter to the Rev. John Brand, Sceretary ; read June $2 \underset{2}{2}, 1797$.

Sur, - I take the liberty to request you to lay before the Society some flints found in the parish of Hoxne, in the county of sultolk, which, if not particularly objects of curiosity in themselves, must, I think, be considered in that light, from the situation in which they were found. See pl. xiv. xv.

From pi, xiv., "Archmolocia," Fol. xiii. Size \mid From pl. xv.. "Archmonemin," vol. xiii. Size, گ̈ inches by 3 inches.
Reduced Outlines (scale one-fourth), of the Flint Implements found by Mr. Free, at Horne, Suffolk. A.D., 1797.

They are, I think, evidently weapons of war, fabricated and used by people who had not the use of metals. They lay in great numbers at the depth of about twelve feet, in a stratified soil, which was dug for the purpose of raising clay for bricks.

The strata are as follows:-
]. Vegetable earth, one and a half feet.
2. Argill, seven and a hall feet.
3. Sand, mixed with shells and other marine substances, one foot.
4. A gravelly soil, in which the flints are foment, generally at the rate of five or six in a square yard, two feer.

In the same station are frequently formed small fragments of wood, very perfect when first dug up, but which som decomposes on being exposed to the air: and, in the stathmof sand, (No. 3, were found sone extraordinary bones, particularly a jaw hone of commons size, of some motown animal, with the teeth remained in it. I was very cager to obtain at sight of this; and finding is had bern carried to a neighlommg gentleman, I inquired of him, but learned that he had presented it, together with a large thigh bone, found in the same placer, to Sir Ashton Lever, and it, therefore, is probably now in larkinsom's mus닌.

The situation in which these weapons are found may tempt us to refer them In a very remote period indeed; cone beyond that of the present world ; but whatever our compertures on that head math he, it will be difficult to account for the stratum in which they lie being covered by another stratum, which, on this supposition, may be conjectured to have been once the bottom of the scat. 'The
manner in which they lie would lead to the persuasion that it was a place of their manufacture, and not of their aceidental deposit; and the number of them was so great that the man who carried on the briek-work told me that before he was aware of their being objects ol' curiosity he had emptied baskets full of them into the ruts of the adjoining road. It may be conjectured that the different strata were formed by inundations happening at different periods and bringing down in succession the different materials of which they consist, to which I can only say, that the ground in question does not lie at the foot of any higher ground, but does itself overhang a tract of boggy earth, which extends under the fourth stratum: so that it should rather seem that torrents had washed away the ineumbent strata, and left the bog-earth bare, than that the bog-earth was eovered by them, especially as the strata appear to be disposed horizontally and present their edges to the abrupt termination of the high gromd.

If you think the above worthy of the notice of the Society, you will please lay it bctore them.

I am, Sir, with great respect, your faithful humble servant,
John Frere."
In the cases of both the abore meationed flint-implements we have distinet records of their having been associated with mammalian bones.

Having gone briefly but suecinetly through some of the principal eridenees that these rorked-flints have been extracted from true geological formations, in fact that they are really fossil, we will briefly allude to the general misnomer of "celt," as applied to these relies.

The polar bear who stopped in his pursuit of the aretic vogager to turn inside out with his fumbling paws the worsted glove which the sailor had dropped to attract the beast's attention and facilitate his own eseape might not have had a more puzzling article for his mental capacity than geologists and anti-

Figs. 10-13.-Stone Implements from Guernsey. In the collection of Professor Tennant.
quaries hare had in these implements. "Celts" they certainly are not, whatever their former use may have been, as anyone may see who will compare
them with figs. $10,11,12,13$, or any other representation of a true "celt," which is in fact a chisel, aud wrousht to a cutting edge at the broad end; while these fossil instruments are nearly or totatly muwrought at the broad end, but are worked up to a more or less sharp point, which is evidently the part that was used.

Of the fossil flint-knives, arrow-heads, and jarelin-points, such as we shall hereafter refer to, no doubt as to their uses can arise in the minds of my who will take the trouble to compare then with instruments adapted to the same purposes in hunting-the favourite pursnit and man sounce of existence of all savage tribes-which are still in use by the aborigines of varions countries, or rather ure known to have been so in recent times, for Emropean tools of iron have rapidly :und wery generally supplanted stone-implements, eren in the remotest regions. But the same definiteness of purpose or applicability is not erident in the larger and pear-shaped instrments to which we first drew attention. These, if they were used by the hand, must have been nsed at the point ; celts, laving the broad end ground or rubbed to a cutting-edge, were used as chisels, or mounted in frigments of hom or wood, as axes or hatchets.

F.g. 14.-Stunc C'elt set in portion of Stag's-horn, with Transverse Hole for Wooden Handle. In the British Minscum.

The pointed fossil implements might possibly have been used as wedges for spliting trees, and other like purposes ; or bound in split sticks as battle-axes, and formidable weapons they wonld have made. lint the most reasonable
 strong and active buen they wombld har been heavy and formidable weapons againat the ereat deer and oxen of that age of gigantic mammalia mon the herts of which primitive mom- if he lived in the diys of the mammoth as the ashoriation of the homes of that huge heast with these relies of the first human workmanship seems nt least io prone-would have oerasion and necessity to make constant omshanght for his sulsistonce, his clothing, and his articles and materials of daty unc: A mainst the ereat efephents, tigers, and care-bears of that age we think they erould only lave heenoused if at all-meder the pressure of the inneration mesestity of persomal defence, and mever for the purpose of oflemsive attack. Hence if we are on find an! traers of their uses in the shape of indentations, eara or wombed upen the bemes of the extinet quadrupeds, it should be om those of the erent herbisora, and not those of the carnivora that we shomld expet to find them.

I'rofessor Owen in his "British l'ossil Mammalia," has noticed the injury
done to a rib of a Megaceros hibernicus, and attributed it to the point of the antler of another deer; but now there seems more probability that the injury in question might hare been effeeted by one of these so-ealled "eelts." M. Lartet has also given us aecounts of fossil mammalian bones bearine incisions aud marks made by apparently blunt weapons, such as would have been produced by these flint-implements.

Fig. 15.-Stonc Hatchet, with Handle, from Niew Caledonia, South Pacific Occan. Sizc: Iongth with handle, 19 inches; head of hatchet, 10 inches.

We have figured (fig. 15) a stone adze from New Caledonia, to show by a comparison with its form that the fossil implements could not have been similarly lashed on and used for the purposes for which such instruments are adapted, and which thus affords a negative eridence in farour of the idea of their being ride spear-heads.

Besides the larger spear-shaped and pear-shaped weapons, there were smaller and flatter flints, of an oral shape, which it is thought were used as sline-stones or as axes. The first of our examples of this kind (fig. 16) was found in the

Fig. 16. - Smail Flint Instrument from the Gravel of Amiens. Size, 4 inches by $2 \frac{3}{2}$ inches.

Fig. 17.-Small Flint Instrument from Gravel at Hoxne, Suffolk. Size, 4 inches by by $2 \frac{1}{2}$ inches.
drift-grarel of Amiens, by M. Boucher de Perthes; the second (fig. 17) at Hoxne, in 1797, by Mr. Frere; the latter is preserred in the colleetion of the Society of Antiquaries.

Fig. 15 is another and very remarkable dint-instrument, probably a lance- or jaselin-heark, from the superticial grasel

Fir. TR.- Flint Javelin or Spear-head (?), fomm in the superfieial tiravel above the London Clay, at ILomsey, Mibdlesex. above the London Clay, at Llornsey, in Middlesex, and now in the collection of Mr. N. 'T. Wetherell, of Highgate, to whom it was brought a short time sinee by one of the quarrymen as a fossil fish; the workman mistaking the white chalky spot at one end for the cye, and the memerous fine chippings for seales. It is about six inches long by two inches broad, and but little more than a quarter of an inch in its central thichest part.

In Mr. Mackie's Diagran No. VI, there is figured from the collection of the Socicty of Antiquaries (fig. 12 of diagram) it very long, narrow, and remarkable thint-instrment, apparently either a lance-head or a dagger, although it may have been used for the more pacific purposes of a knife. From its

Fig. 19.-Flint Implement in the Collection of the Society of Antiguarics. Size: 10 inches by I ${ }_{1}^{1}$ inches.
sencral appearance one would suspect it to have come from some sandy or gravelly deposit, and to be of veritable geological age; but there is no entry in

Fim. 20. Flint Saw ? (brilish). In the Collection of the Suspety of Anticumaries of London, Size: 6 inches lig 1_{2}^{1} inelues. the sueicty's catalogue of either the time or place of its discovery, and it may after all be only of Celtic date. We give also another worked instrument fig. 20 (tis. 19 of diagram) eontained in the same colle etion, luat of which also 110 record of the circumstances of discovery are preserved. It may be a gravel specianen.
We now thrn to another class of fossil implements, formed of mere flakes of flints, which are more likely to escape detection than the larger instruments we hawe been deseribing, not only from their smaller size, hut also from their I ability to hreakuen, and the cemserment resemblane of their broken pieces to mere hatural chippings and fragments of tlints. The flake-instruments are

F : 21.-Funt-flake Fnifu for the Turhary of the somme, nt Ablevilic. Natural slze.
well known from C'eltie graves, and are commonly met with amongst the relies of all s.vasere tribes, in the form of arrow-heads, kiniver, dart-and jarelin-points, and saws ; and flakernives and thake narow-heads lave also bern met with in csiferoms cave-, and gravel-deposits, and as well as in peat-bogs, turbarics, and
other similar deposits of the like intermediate age. Figs. 23 and 21 are two portions of fossil dlake-knives from Kent's Hole, a large eavern rendered

Fig. 22.-Broken Fragments of a Flint-flake Knife.
memorable by the researehes of the late Dr. Buekland. These were presented to the nationil collection in the British Muscum, by Mr. Godwin-Austen, and

Figs. 23, 2t. Flint-flake Knives, from tho Ossiferons Cavern, Kent's Hole. Scale, one-fourth. Presented to the British Museum by R. A. Godwin-Austen, Eisis.,F.G.S.

Fig. 25. - Flint-flake Knives from the Turbary of the Somme, at Albeville. Nat, size $4 \frac{1}{2}$ inches by $1 \frac{1}{2}$ inches. Collected by M. Boucher de Perthes.
where they may be seen in the eases of the British antiquities room. Figs. 21 and 25 are portions of flint flake-kwives from the 'Turbary of the

Figs. 26-31.-Flint Arrow-Heads from Redhill. Nat. size. In the Collection of the Society of Anticuaries.
ralley of the Somme, at Abbeville, and were colleeted by M. Boncher de Perthes. Firs. 26 to 31 represent various forms of flint arrow-heads, from YOL. IV.
specimens collectod at Redhill, in Surres, and presented by Mr. C. Roach Smith to the suciely of Antiquarres of London. These give suflicient illnstration of this class of artieles, whet her of fossil, Celtie, or mondern date. Flakesalw : are met with in graves ; but we are not aware that any of these have been form ins any rally grological formation.

The arrow-heads (firs. 32 to 36) can searecly be said to belong to the class of take instruments, ationgh formed of framents of Hints, as they have been ahays more or less, and sometimes elaborately, chipped and trimued into the

Figs. 32-36.-Flint Arrow-heads from Canada. In the collection of Dr. G. D. Gibb, F.G.S., of London. scalle one-fourth.
recquired shapes. The specimens figured are from specimens brought from (imadi, hy l)r. (i. D). Gilbb, P.(i.S., of London, and a notice by him of this class of oljects is printed in the "Notes and Queries," page +2 ? of vol. iii.

Fig. 37 is a specimen of this class of oljeets made

Fig. 37. - Arrow-head of Smoky Qusutz, from Pern. Nat. size, "! inches ly 13 incel es. In the collection of C Hackman, Esiry. of smoky quartz, from l'ern. Such chipped arrowheads are found in Ludia also, and somet imes thene are of "blood-stone." In other parts they are made of" obsidian and other roleanic and hard rooks, and their distribution is very gencral. There is nothing, however, positively known as to their being of geological asce, although it seems probable that many of them are; especially the American and Canadian specimens, which may bolong to the very remote agre of the ereat mammalia. 'Their dates' of manufacture are, howerer, very sarious, and some of them are undoubtedly of comparatively modern workmaship.
Whe now turn to another subject-the indications we have of the humun worknamship of the veritable fossil implements which hase been fonnel with the bomes of extinet mammals. First, then, there are two or there leading ficts which sem to attribute these implements to a same and primitive people, namely, the extensive ereerraphical area over which they are found ; their gemerat resmblanec to each other, whether of the large or smatl kinds ; or from whatore eometry, whether England, liraner, Sicily, 1) mmark, the French Afrionn ponsessions, Lithmania, Poland, and, as far as we know also, Canada and Imerien. There is also the apparent indentity of the methods rmployed in working them to their reguired forms, ame which is so remarkible as ahnest to consunce ns of, at least, the identily of oricin and eommonity of the probably wamberine tribes by whels they were made and nsed. The first and most prowerful argument of their hrman manufacture is the numintakeable evidenee of elfogn. Thes are cridently a first clanee satisfles us of this-instruments ailap tal in sperifie jurpraces. No living being drsigns on makes anything as a reents to aceonplish an end or purprose but mun. No other being exhibits foretlomeht in manufacture: mone whateser. No otler being uses a eutting or piereing instrument : none. They scize, tear, gore, with their claws, beaks,
tnsks, or lorns, but they use no auxillary instrument. A monkey may tear down a brauch of a tree, or east a stome, but it makes not a club of the one, nor trims the other for a sling, an arrow, or a spear. The second, but still a most material eridence is afforded by the manner or method of the workmanship employed in producing certain definite forms of implements. Let us first take the larger pear-shaped ind spear-shaped instruments. A large flint has been here taken from the chalk itself, sometimes from a gravel-heap, and by a series of chippings from the outer part or sides the desired pointed, spear- or pear-shape is attaned. If we see these chippings in a stone barbed arrowhead from a Celtic grave or a tumulus, no one disputes its human workmamship any more than anyone disputes that

Figs. 38, 39.-Forgeries of Flint Impleinents. of one of the well-knomm lorkshire forgeries. But becanse it is asserted these fossil implements come from stratified deposits of geological age, there spring up direetly voiees which in loud language ignore the efforts of the hand of man and attribute -too commonly without the slightest knowledge of the implements themselves, the natural fracturage of flint, or the nature of the circumstanees under which the geological formations were deposited-their regular and definite forms to the attrition of the flints with each other be the influence of waves or currents of water. Anyone who will take the trouble to ehip off a llake from an ordinary flint nodule will seo that the fracture gives a series of concentrie ares one beyond the other, the convexity of which always points in the direction in which the blow was struck. Anyone looking at one of these fossil implements will sce the fracture of the separate flakes plainly marked out by these lines of concentric ares and undulations, and
Fig. th.-Concentric Lines of Fracture in Flints. will as plainly see that these flakings have all been made by blows given at the sides, and are broken ont, becanse the lines of fracture all point from the outer edges or sides towards the central ridge (sec fig. 1, p. 405, vol. iii., or figs. $5-9,16,17$, vol. iv.) just as they would do if wrought by the hand of man into a designed and given shape, but as they never would be from casual and chanee blows, which would necessarily strike in all directions just as aecidentally might happen. The chippings of the flints, if by design, would be regular and systematic, which they aie; if by natural ciuscs, irregutar and unsystematic, which they are not.

Moreover, the flints of which these instruments are made have been selected those of a firm unfractured substance have heen chosen. Everyone aequainted with chalk distriets or pebble-beaches knows how few flints are firm and selid compared with those which present more or less numerous fine divisional planes of fissure, and how readily these latter fall to pieces at a slight blow of the hammer. We find none of these fossil instruments formed of the shatterable flints, whieh, if aeeident formed these instruments, should not have been excluded from the formative chipping processes; on the other hand, we find these fossil instruments formed of remarkably hard aud compact nodules, such as were likely at most only to have been battered and pitted by the waves, but which could only have been flukied by definite and appropriate blows struek by the hand of man.

We need not again speak of the design exhibited in the fossil flint knives, arrowheads and javelin-points, about whieh no doubt could arise in the minds of those

Fig. 11.

IHE 4.
who would look at those articles. But the same ceriaint yot their hement origin is not to the inceperienced so evident when these flake instrmments are broken, as they are extremely likely to be. They are then, apparently, only so many ordinary chips; but the impress of design clings to the smallest frigment, and from a chip a quarter of an inch in length one coulil almost speak with celtainty. 'The method of mannfacture of obsidian instruments by the Peruvians and South Sea Ishanders erives the casiost possible solution of the process, which is comparatively casy of accomplishment in that mineral, but ratlier more dithicult in thint, although the method is nevertheless the same in both. We will suppose, howeror, that the satrage las grot a block of obsidian -he first trims it $t o$ an angrilar form, six-sided. vight, ten, or any mumber of sides will do-thus, (fior. 10.) He then byaseries of smart b) lows siruck at each of the corncre, a, u, a, (fige . 11,) splits off rach of the augles, as lon! narrow flakes, broad at the top, and tapering away more or less to a point, and having a sharp cutting celge on cither side, (as marked out by the doted lines, and characterised by a rilgo fermed by the angle of the bleck, passing down the front; the lanch being flat or very slightly convex.

From the ehippinge off of the angles the bherk will assume the slape: now imdieated, (fire. 12,) its secomb stage, becing still an octarem with the angles if corners all truncated, and presemting a tlat ribhon-like hand Which will characterize the sremed set of flakerkises formed by the chippine of there trumeated angles. It will be seen that the secound oferation rechuece the blork to its primitive form with sharp eomers or angles; a third operation will restore aqain the trumeated stare, and ald rately mach stremsure thaking will brine about the alternate con(litions, su) that all the flake haves whtained hy the process will show

the origin and the method of flaking by the presence of a sharp ridge, or a flat band passing down the front side only, the back being alike in both cases, flat or nearly so. In this then we have a palpable and ummistakable brand, applicable alike to the modern or fossil flint instrunents, and by which we ean satisfy ourselves by the smallest fragment (sce fig. 22 , page 25) of a broken specimen, becanse it inust be bome in mind that such is not to be produced by any natural breakase, but can onlr be effected by the design which brings the block at first into the required shape, and then causes the fracturing blows to be given in a peculiar and dexigned maner. Try your hand at breaking out these flakes. At first you will fail miserably, Persciere and you will acquire the linack with precision and certainty. Ind this hack being peculiar, the character of the flakings are peculiar also, and mot such as would result from natural pulverizing or breakage by collision with each other.

And now I approach another topic in this interesting investigation, on whieh I wish to speak with the utmost caution and guardeduess, and with courtesy and consideration to the feelings and sentiments of erery one of my readers. I wish to offend no prejndices or belief - to interfere with no doctrines, theory, or faith-but one important reflection will arise at this stage in my mind, and therefore, probably, also in the minds of others. What were these tirst men like? Did they stand erect and noble? Were they high intellectual beings, the fit progenitors of a lofty-minded and world-conquering race? The roice of Science is dumb.

Darmin has latcly given powerful arguments in favour of the development doctrines, and the natural production of higher and higher forms of animal and regetable life, by the amelioration and inprovement of species. We look from the apes and monkeys to the ourangs and chimpanzees, and we pause before the wonderful semi-human expressive face of the gorilla-a stahwart active brutethrough whose unearthly eyes something not unlike humau intelligence seems to beam. We look at its thick lips and flattened nose, and our thoughts turn involuntarily to the bandied legs, thick lips, low foreliead, and black tavny skin of the wool-headed negro, and for one moment we may think "Good hearens, cain there be a nearer link of meu and brutes:" In dars gone by-days gone by ages ag() -in those dars when the mammoth and lish elk, the eare-bear and hippopotamus dwelt in our land, was there then a nearer closer link of man and beast? I know not-I speak not-but such a thought will arise when we look at the great four-handed beasts of our orrn day ou the one hand, and on the other regard the primitive rudeness of workmanship of these fossil instruments. The whole race, tribe, commonality, or nation-be it what it nay - of primitive men seems possessed of but two or three ideas in the manufacture of these flint-implements. From Demmark to our own Island-over regions now the seats of many uations - they chipped their flints and formed their weapons on the same primitive plans, by the same primitive means. There is no effort whaterer at ornamcutation: nor eren of polishing or smoothing. The makers of them do not seem to hare attained to the idea of rubbing down to a point or an edge, and never to have gone beyond the first rough effurts of chipping out. Lor as we are accustomed to regard the Celtic race in the scale of cirilization, these first men must hare been much lower and ret one would not be willing to believe them unendowed with unperishing souls like ourselres.

Curious low fronted skulls have been found in caves, in fields near ossiferous or bone-bearing fissures-have been found under circumstances of suspicious proximity to boue-deposits ; but no real evidence is yet obtained. Men's minds hare not yet been directed to this point, or meu have shirked this topic in their investigations. I do not attempt to draw a conclusion in these remarks: I direct attention merely to a point of necessary investigation, as oue on which cridenee must sooner or later be accumulated; and the more workers there are
in the felet. the greater and more powerful will be the testimony to the truth.
'This leads, of course, to the consideration of the mere direct question whether haman brmes hane ever been fomm in the ossiferons caves and fissures, and ordinary mamaliferous deposits? Undoubtedly they hawe; Buckland, Schermerling, and many other writers have recorded hman skectons in care-and other doposits contaning mammalian remains; but such has been the constant pratice of imumgen any true association of such remains with those of mammalia in the same deposit-in fact am utter relusal to admit any evidenees of a greater antiquity than some 8,000 or 6,000 years for the ereation of the hman face-so that authors neglected such cridence when they found it, or wrote obecaroly and timidly about it, even when it was forend in an undeniable mamer upon their notice. UEnee the reason why we have lew or no illustrative cases. If may be worth while here to allude to another class of existing antiquitiesthe erreat monoliths and other stone monuments-found alike in our own and the renofest ant most distant and widely separated lands, whether as the supposed " Druid's circles," "sacrificial altarse" and rock-basins of our own country, the raised stones of India, or the rock inserijutions of Aralial. Are these ancicit momments to be associated with the progress of the prinitive race to whom we attribute these chipped implements of Ifint? I gain, I amswer mot, I merely sugrest. In this imporiant investigation no man is yet, perhaps, prepared to answer. We know not, in fact. Where we are-we are as it were in a strange land which wo hare not yed explored, amongst a strange people whose languare we have not yet learnt. Soon, perhaps, we may master the task-or it may be foner before we mmavel the mrsteries. "Labour conquers all things." says the Latin proverb, and we must labour on perseseringly to make ont the first history of our race.

I nill now turn to another phase of the great seotngical question we are invertigating. Of what age-what relative meolugical age, that is-are the mammaliferous deposits in which these thint implements are found? The great ase of the drift grasels and uther superficiat mammaliferons deposits has never ben rieftly detemined. We know that they belong to, or preceded, or were fonmed jusi after the memomble Glacial era-when glaciers extended from the montans of Wales ino the valleys now filled with their debris, as they now do in switzerland: when the great bwiss glaciers themselves were miles larger in extent: when jeeberers dropped as they melted into the sea, under wheh a great part of our island was then submerged, the great stomes and rorks uplifted from distant masts, and strewed our island and a great part of similary sumken Furope with grigan ie boulders and num, forming those deposits knewn ats the Bomblededrift and Till. The nesessity of investigatiner rixoronsly the origin of these superfiemal deposits, has, sinee the guestion of the first appeatance of man, beeome imperatise; although the progeres mate must be meesssurily bow, and the work wfon maife from the dittienlty of always detecting the inteminerling of modern matter, 10 which these nearly -uperticial heds from the ir proximity to the atual surface, hawe beed of neeresity suljeet. But
 Pairls erapplad with; and in this meseel Jreatwich, Fitcomer and uther grologists are doug their dury. We must no lomger be eontent to believe that one kind of mamonoth was asonciated with one kind of rhemereos, and another species of matmonth with amother specees of rhineerens; but we menst know whether
 liefl in this istand at leasi, both before and after the (ilacial eporh. If sus, we but lonk th the oreillation of our band and the formerly sulnereged trate of Dimene forthee erphamtion. Porhaps we may pomsider that as the sumerernce of this area took phece in ther glacial iran, the great paedeyderms were of neecessity driven bark in hacir tereatial range lye the sea as it eneroacled; and as
the submerged area towards the elose of the glacial epoch began to be re-elerated and to rise again out of the waters, the Elephas primigemiuss and some of its associates which were able to ontstand the inelemeney of that severe period, wandered back oree their ancient territory, and mingled with the newer forms which similarly had wandered from other regions during the changes of land and sea: and thus the northern and the perhaps southern forms met together in the same temperate zone. We know from Ell. Korbes' studies that the mollusca of our district migrated thus during the erlacial age into Italy, and that some have since returned to our slores, while others have not jet reached again their ancient habitats, but are steadily working on towards it. We know also that in the deep holes and pits of the ocean there still are colonies of the old northern forms which spreading over the snbmerged area of those cold times have not been able to extricate themselves from such cavities, from which their dwarfed deseendants are now to be dragged up. This is a speenlation which I throw out for young and active geolgists to take up. My time is too fully occupied with the business and cares of life to allow me to derote much time now to field-studies, but there are many who are glad of holidays, and who will be glad to know what is useful work to do in their pleasure-takings; for them it is I throw out these ideas, not being seltish enough to wish to retain them when I cannot myself work them out.

In some of the Glamorganshire eaves Colonel Wood and Dr. Falconer have found a deposit containing Littorina (perriwinkle) shells, and which deposit is comparable with the deposit often associated with the raised beaches of our eoasts knomn to grologists under the name of "head," and which is equivalent to parts of the so-termed sub-aërial deposits of Mr. Godwin-Austen. Both abore and below the care-deposits, containing recent species of marine shells, the bones and grinders of Elephas primigenius are found, as they are also in other places, commingled with the remains of the hitherto supposed younger and older races of the ancient mammalia.

IIth respect to the ancient mammoth, we know that it was clothed with a coating of long hair, by which and its thick skin it was well prorided against the inclemencies of the glacial age; but how is it with the hippopotamus-so like, so undistinguishable from the existing 71 . major, the inhabitant of torrid climes. I confess this creature's remains are a puzzle to me; for granted that it could withstand the cold of that period, our knowledge of the present habits of the species does not permit us to beliere that it could subsist without water.

But I will proceed no further with the discussion of the habits of the great mammalia. I wished to exhibit in its true state the knowledge we possess of the first relics of the human race, and to point out the marks and character which indieate on the worked flints the evidences of human handling.

PROCEEDINGS OF GEOLOGICAL SOCIETIES.

Geological Society of London.-Norember 21, 1 S60.

"Ou the Gcologr of Bolivia and Southem Peru." By D. Forbes, Esq., F.R.S., F.G.S. With Notes on the Fossils by Prof. Huxley, F.R.S., Sce. G.S., and J. IV. Salter, Esq., F.G.S.

The author described the Post-Tertiary formations of the maritime district. These beds, containing existing species of shells, oceur at various heights up to forty feet abore the sea-lerel. Gnano deposits are frequent along the coast, and deposits of salt also in raised beaches a little above the sea. The author
could not rerift Licut. Freyer's statement of Batani and Millepore beng attached high up the side of the Morro de Arica, a perpendicular clifil at the water's edge; inderd, from the state of old Indian trmuli along the beach, and other circumstances, the anthor believes that no perecputible clevation has here taken phace simee the spamish Conquest, although such an alteration of level has ocemred in Chile. The sand-dimes of the const, and their great mobility during the hot season, were noticed. From Mexillones 10 Ariea the eoast is steep and rugged, formed of a chain of mountains, three thousand feet high, comsisting of rocks of the Upper Oolitie age. At Ariea the hight land recedes, leavine a wide phain formed of the debris of the neighbouring mountains; and in the middle of this area was observed stratified voleanic tufi contemporancous with the formation of the gravel.

The saline formations were treated of as three groups, according to their height above the sea-level, and were shown to be much more extensive than gencrally supposed, extending over the rainless regions of this coast for more tham fire hundred and filty miles. They are mostly developed, however, between latitudes nineteen degrees and twenty-five degrees sonth. These salines are supposed to have originated in the evaporation of sea-water confined in them as lagoons by the original rauges of hills separatiug them from the ocean. 'Il:e nitrate of soda had, in the anthor's opinion, resulted from the chemical reactions of sea-salt, carbonate of lime, and decomposed regetable matter (both terestrial and marine). The borate of lime, occurring with the nitrate, is eomected with the voleanic conditions of the distriet, and was produced by fumaroles contaning boracie acid. Where the highest range of salines extend bevond the ramess region, ther are much modified in the rany season, and generally take the form of sali plains eneireling salt lakes or swamps.

The great Bolivian platean, having an average elevation of thirteen thousand or fourtem thonsand fer above the sca. consists of great gravel phains formed hy :he spaces between the longitudinal ranges of momatains being filled up by the debris of these momatans. 'The most western of these consists of Oulitic debris with voleanie tull and seorise; it bears the salmes above-mentioned, and is nearly deslitute of water. The rentral range of plains, formed from the disintegration of red sandstones and marls, with some voleanic seorix, is well watered. The third range consists of phams made up of the debris of Silurian and granitic rocks, and is anriferons. The thickness of this acemmation of rlays, gravel, shmele, and boulders is immense at places. At hat las it is more than one thensand six hundred feet. Contempmancous trachytie tulf was fomed also in theor deprosits. In fresh-water ponds on this patean, at a lueight of fourtecm thomsand feet, (lat. difteen degrees south), Mr. Forbes foumd : bmadance of C'yclise Chilensis, fomerdy monsidered to be peceuliar to the most sontherm and roldest part of Chile at the level of the soa (lat. forty-five degrees to lifty dererees somth).

The whemie formations were next noticed. Toleanie action has continued ecertainty from the pheistoeene age to the present. 'The line wf voleanie phenomena is nearly continuous north and south. Cones are frequent, some of them twent y-t whonsand feet high and upwards; hot craters are rare. Volmomic matior, both in ameicont times and at present, has in a great part been
 lavas from such orition have erowed in some cases mone than one handred miles of emontry. laz-iles trachyte, there are ereat tracts of trachydeleritic amb foltapathie lasas. On the whole, in these somth Ameriean lavas silex abomel, and it has heon the first element in the rock to erystallize; whereas afparentls in eramite cum ri\% is the list to crystallize and fonm the state of socll. 1 "surfinim." Diorite (including the so-called "Andesite") orcur in
force along two parallel north and sonth lines of eruption in this region, reach ing through Chile, Boliria, and Peru, for more than forts degrees of latitudc. These diorites, and more especially the rocks which they trarerse, are metalliferous; and the author looks upon the greater part of the copper, silver, iron, and other metallic reins of the countries as directly occasioned by the appearance of this rock.

Shales and argillaceous limestones, with clay-stoues, porphyrr-tuffs, and porphyries form the mass of the Upper Oolite formation of Bolivia, equivalent to Darwin's Cretaceo-Oolitic Series of Chile. At Cobija they are traversed in all directions by metallic reins, chiefly copper, and which, as before mentioned, appear to emanate from the diorite.

Red and rariegated marls and sandstones, with gypsum, and cupriferous and rellow sandstones, and conglomerates, come next in order; they hare a thickness of six thousand feet, and are much folded and dislocated. These are considered by the author to resemble closely the Permian rocks of Russia. Fossil rood is not uncommon in some of these strata, which extend for at least five hundred miles north and south.

Carboniferons strata occur chiefly as a small, contorted, basin-shaped series of limestones, sandstones, and shales, with abundant characteristic fossils.

The quartzites mhich are generally supposed to represent the Derouian formation in Boliria, but which the author is rather disposed to group as Upper Silurian, are really not of very great thickness; but are rery much folded, and perhaps are about five thousand feet thick.

The Silurian rocks (perhaps fifteen thousand feet thick) are well dereloped orer an area of from eighty thousand to one hundred thousand miles of mountain-country, including the highest mountains of South America, and giring rise to the great rivers, Arnazou, \&e. These slates, shales, grauwackes, and quartzites rield abundant fossils eren up to the highest point reached, twenty thousand feet. The problematical fossils known as Cruziana or Bilobites occur not only in the lower beds, but (with many other fossils) in the higher part of the series.

Lastly, the differences between the sections made by M. D'Orbiguy, M. Pissis, and the author were pointed out, though for the most part difficult of explanation. D'Orbigny makes the mountain Illemani to be granite; it is slate according to the author. M. Pissis describes as carboniferous the beds in which Mr. Forbes found Silurian fossils,-and so nn.
"On a New Species of Macrauchenia (M. Boliviensis)." By Prof. T. H. Huxlev, F.R.S., Sec. G.S., \&c.

Some bones, fully impregnated with metallic copper, which had been brought up from the mines in Corocoro in Bolivia were submitted to Prof. Huxler for examination. The mines referred to are situated on a great fault, and the bones were probably part of a carcass that had fallen in from the surface, -the copper-bearing water of the mines having mineralized them. A cervical and a lumbar rertebra, an astragalus, a scapula, and a tibia show complete correspondence in essential characters with those bones of the great IFacrauchenia Patuchonica described by Prof. Owen in the Appendix to the "Torage of the Beagle," but the relative size and proportions of the rertebra, the tibia, and the astragalus indicate a distinct species, much smaller and more slender ; and in some points of structure this new form (M. Boliviensis) approaches more nearly to the recent Auchenide than to the larger and fossil species. The fragments of the cranium show some peculiarities of form; but, on the whole, it has many resemblances to that of the Vicugna.

Prof. Huxley pointed out that this slender and small-headed Macrauchenia may have been the highland-contemporary of the larger M. Patachonica; just
as nowadays the Viengna prefers the mountains, while its larger congener the Guanaen roams over the Patagonian plains.

Latly it was remarked that, as Macrourhenia was an animal combining, to a much more marked degree than any other known recent or fossil mammal, the preculiarities of ecertain artiodactyles and perissodactyles, and yet was ecertainly but of post-pleistocene age, it presents a striking exeeption to the eommonly asserted doctrine that "more generalized" organisms were contined to the ancient perjods of the earth's history. For similar reasons the strueture of the Merermellemin is inmeal to the idea that an extinet aninal can always be reconstructed from a single tooth or a single bone.
"()n the Paleozoic Fossils brought by Mr. D. Forbes from Bolivia." By J. II. Salter, Esq., F.G.S.

The fossils of Carboniferous age brought home by Mr. Forbes are the wellknown species deacribed by D'orbigny. Several are identical with Enropean forms (as Prorlucfus Martini, \&ee.), and are cosmopolitan; others are peculiar to the distriet (Spirifer Cundor, Oithis Audii, \&ec.).

Mr. Forbes has bronght a "Devonian" trilohite (Phueops lutifrons or Ph. Luf(i), in a rolled pebble, from ()ruro: it is a midely-spread species. Anoiher allied form was fomd by M.r. Pantland, many rears back, at Mygatelii. In other respects the " 1 eronian" evidence is semity.

In Mr. Forbes' fine collection of Silurian fossils none of D'Orbigny's ten Silntian species oceur; nearly all are such as are met with in Lower Devonian and in Lpper Silurian rocks-Tenturulites, Oithis, Ctmodontu, Pileopsis (?) Siruphomerice, Biellerophon. South Afriea aud the Falkliand Isles yield a similar fossil fama. The Bilotites in this rolleetion differ, some of then probably generically, from D'Orhigus's figured species. A little Beyrichia from the upper part of the Silurian series in Bolivia appears to be like a North American form figured by Emmons as Silurtan.

Werember s, 1480 .
"On the structure of the Northewest Highlands, and the Relations of the Ginciss, led sandstone, and Quartzite of Sutherland and Ross-shire." By Profinsor James Nicol, F.G.S.

Gicomogists' Assochation. - This Society re-assembled for the winter Session on the 5th November, at 5, Cavendish Spuare, when the Rev. Walter Mitchell gave a leeture "On the Application of Crystalography to MEncralogy and lioology."

Crystalography, it was stated, was capable not mevely of explaining many farto comected with mineralogy, but aleo of throwing light on varions phenomena belonging to geologry. Tlus, with respeet to the latter seienes, the cleavate of erystals illustrated the great eleavage plames of the stratifed metamorphice rocks, and theirenoditied form assisted in determining the temperature at which strata had been produeced. The views and researches of Mr. ("lifton Sorly were dwelt upon, and the geometrical laws of Crystalograply treated at sumil length
1).e. 3. 1 ヶ

Mr. Witchener read a paper on a New Red Samdotone charry at Stourton, in ('lochire. Thi guarry is remarkable for the abmandance of reptilim footprints whirh it romtains.

Mr. Bichering presented to the Association a rery fine collection of land-and fro-h-water foush shells from the I perer Tertiary deposits at Copford, in Bissex, aceomptanaine lis warrations by an interesting paper deseriptive of the lomentien where they were obtained; and referring tuso to other bricktields and deprosits at Jisherton, W'est Hachney. Reculvers, and Kiemet Valley,

Liverfool Geological Society.-Oct. 23rd, 1560.

The following papers were read:-
"On Fulverites from the Red Crag of Suffolk." By Hemry Duckworth, Esq., F.R.G.S. and F.G.S.
"On the Geologr of the Neighbourhood of Shelve, Shropshire." By George H. Morton, Esq., F.G.S.

This paper was illustrated by seetions; also by a large and interesting eollection of both upper and lower Silurian fossils collected in the district by the author of the paper and several other members of the society. The longitudinal range of hills present very high land to the east of Shelve. Reposing thereon are the Stiper Stones, rugged hills of siliceous sandstone, dipping west-north-west, the summits being about one thousand six hundred feet above the level of the sea. These are considered to represent the Lingula flags of North Wales. Small carities are common in the hard sandstonc, some of which Mr. Salter considers to shom traces of Lingulæ. Annelide-burrows have also been obscrred. Abore these rocks, which are some three thousand feet thick, is a series of dark slaty strata, containing the following fossils:-Didymograpsus geminus, Ogygia Portlockii, Eglina linodosa, Theca simplex, Cucullela anglica, Redonia complanata, Lingula plumbea; also one or two speeies of Orthoceras, and sevcral indistinet forms. These hare been found in the lowest aecessible strata, and may be considered the earliest fossils in the district. The Llandeilo roeks, abore the Stiper Stones, are about fourteen thousand feet thick. The strata dip sixty degrees and seventy degrees, and at smaller angles. Excepting in particular beds, iossils are rarely to be found; but in several places they occur in profusion, such as Dictyonema sociale, Ogygia Buichii, Bellerophon perturbatus, all of common oeenrrence in the upper Llandeilo. Glyptocrinus basalis, (McCoy,) has also been found associated with Trimucleus Lloydii, and Orthis striutula, \&c., high in the series at Meadon Town. Many of the Shelve fossils are figured in the seeond edition of Siluria.

The "Corndon," the highest isolated hill in the loeality, is a great outburst of trap rock. Beds of roleanie ashes several feet thick, are interspersed with strata several feet thick, containiug organic remains, at Marrington Dingle. At Hope quarry, two miles from Shelse elureh, the upper (Silurian) Llandorery roek is seen, reposing uneonformably upon rounded bosses of trap and Llandeilo rock. Near that place are high eliffs of eontorted strata. The distriet is of extreme interest to geologists; for within a eireular spaee of country some seven miles across, so many geologieal phenomena are to be studied under great adrantages.

Dee. 11, 1 S60.
Thomas Urquhart, Esq., presented to the "Liverpool Free Museum," through the medium of the soeiety, a beantiful series of Devonshire fossils, under the name of the "Pengelly Collection," many of the specimens having been eut and polished in order to show their internal structure, Mr. Morton made some remarks upon them, and on the geographical distribution of Deronian fossils in Europe.

The following paper was then read.-
"On the Oolite beds of Yorkshire as compared with their equivalent deposits in Wilts and Gloucestershire. By W. S. Horton, Esq.

This communication was illnstrated by a rertical section taken from Swindon to Birdlip, and eompared with one of the lorkshire eoast from Filey to Whitbr. also a horizontal one from Oxford to Shortorer Hill. After a short deserption of each bed, down to the cornbrash, reference was made to the extreme variation exhibited by the succeeding strata, which were eo-ordinated as follows:-
Torkshire.
Comblrasla
lipere Shale and sandstone
Bath Oolite
Lower shale and Sandstone
Inferier (olite

Hills and Glourestershire. Corubrash.
Forest Marble, Bradford Clay.
Bath Nolite.
Fuller's Earth.
Inferior Oolite.

Both the upper and lower shales and sandstone are of fresh-water or estuary origin, and contain mmerons phants, with Equisetum columnare, sometimes retaining its erect position, and necasional thin seams of imperfect coal. The upper series may be observel to the sonth of searboro', in Gristhorpe Bay. It stainton Dale and Peak Hill. which forms the somth side of Robin Hood's Bay, the lower series attain their greatest develoment, and are upwards of four lumdred feet in thiekness. It this spot the whole of the strata, from the Bath Oulite to the U'pper Lias inclusive, may be observed in one grand section, which attains an eleration of nearly six hundred feet above the beach. The Epper Tias forms an undereliff, froin which the superineumbent Lower Oolite strata rise almost perpendicularly, and are all but inaceessible.

NOTES AND QUERIES.

Ax" Erbly Exensh" mew of Admema's Theory:- We are justilied in designating many geolugical notions, introduced lifty vears ago, is "Early Einglish;" for the like simple ferm of a tirst-puinted window they have sered the francwork for an after-filling of theught-traetery, and have not sulfered an cobecuration from subserperen aldditions. This is particularily notiecable in theoretical erendeng; no theory, cither relating to physieal or palaomologieal geologey hats appeared upon the stage in its full dimensions, but like other great results of thought, has been built up slowly and added to in after times. As an exauple of this, I wish to bring before the notice of your readers, an carly serm of the "Protodiey of Delures," theory of M. Adhemar. I find it as ant artiele in an old magazine, beaniur date "Fobrnary $\mathrm{t}, 1 \mathrm{~h} 12$. ." 'Tlo artiele is a lone ome, but the followiug intelligible resume concludes it :-
"The following are the general deductions, which the preeeding facts and reasminge serm to estahlish.

1. 'That the changes upon the earth's surface, and the consequent phenomema of the 4 rata and the fosil remains, are refferable to certain hown motions of the carth as a planet.
2. That thone motions are the revolution of the perilection point, (a line of apsider, in twenty flomsand nine humdred years, producing (opposite effrets in hosh hemishberes erery ten thonsand fomi hondred and tifty years, and the diminishine ohlignity of the eclintic at the present rate of a degree in six thentand nine hmulted yrars.
3. That the pertherliwinferees, in varying their declination, gradually aceumulate the seas in that hemisphere to wheth hey are perperentienlar; and that the gradual acenmulation takes place in rither hemisphare, while the peint of the maxima advanese throurl iwenty degrees of deelination in a period of about wiree thonsand four hundred and wighty right years.
4. That the aremmulation of the seis in that lemisphere, in whieh lies the direetion of the periheli,n parallel is a eonserquene of the necumulated eentripetal forece, whimh produces or requires a correspending increase in the ecurifugal forec, or oseillating momentum of the waters.
5. That the increments of quantity and momentum of the seas act by slow degrees on the land of the affected hemisphere, so as to produce sufficient space for their own accumulations, till in sufficient time the space occupied by the land is reduced in proportion to the accumulating spaces occupied by the seas.

6 . That as the seas encroach on the land in one hemisphere they retire from the other, on the known principle of their equilibrium ; but, during the operation of the perikelion maxima, they are also accumulated in volume sufficient to make new encroachments in the land, adding more and more to their momenta in cach following year.
7. That (in 1512,) the perihelion forces operate in maxima on the 31st of December, over the parallel of twenty three degrees seven minntes sonth; that these forces are now moring northward, at such a rate as that in the year 4,719 they will arrise at a middle southern declination; in 6,463 will act over the equator; in 8,207 will adrance to a middle northern declination, producing sensible effects on that hemisphere; and, between the rear $\varsigma, 207$ and 15, 184 will probably be the means of covering the northern hemisphere with sea, nearly as the southern hemisphere is corered at present.
S. That in tracing the progression of these forces through former periods, it appears that they passed the equator to the sonth about the year 4,002 before Christ, producing probably such terrestrial phenomena as those described in the first chapter of Genesis; and that they reached a middle southern declination about the rear 2,255 , producing probably such sensible effects in that hemisphere, as are described in the Mosaic and other accounts of the deluge.
9. That this motion of the perihelion forces over different parallels of terrestrial latitude, by producing an alternate prepondence of seas in both hemispheres, sufficiently accounts for the marinc strata, and for all the marine phenomena obserred upon or under the surface of the land, the gradual operation of chemical agencies being sufficient to account for the substantial changes in the bodies themselves.
10. That, if the freqnent discorery of tropical remains in the latitude of Britain, be considered as eridence that these remains were natives of these latitudes, the change of climate mar be referred to the diminished augle formed by the planes of the equator and ecliptic, which takes place at the rate of fiftr-tiro seconds in a century, and of a degree in abore six thousand nine hundred years; and which wonld have been equal to forty-five degrees at seren revolutions of the perihelion point, or one hundred and forty-nine years ago."

This paper is signed "Common Seuse." It certainly may take rank as an honoured curiosity of geological literature.-George E. Roberts.

Flist Implements in the Drift. - The recent finding of some Flint Implements, evidently the work of man, in a stratum which geologists hare bcen accustomed to consider of a date long anterior to the human era, has given rise to much discussion and conjecture; some appearing ready to admit, (though no human remains were found with them) that this discovery carries back the creation of man to an almost incalculably remote period; though so many existing facts tend to demonstrate his comparatively recent origin facts that are quite independent of scripture-chronologry, or the testimony of tradition.

By what means these manufactured flints become imbedded in the formation referred to is a question that, perhaps, can never have a perfectly satisfactory solution ; but an idea that seems to have some possibly explanatory bearing on the point, was suggested to me in reading the other day an account of the construction of the Thames Tunnel.

In the course of making the excavations for this work, the difficulties that arose from the nature of the soil in some parts induced the contractors to procure a diving bell, for the purpose of examining the bottom of the river. On
the fire inspection that took place by means of this machine, a shovel and hammer were left on the spot by the divers; but these fools were, contrary to then expectations, mowhere to be found on their next visit. In the progress of the examatim, fowerer, while adrameing the protecting wooden framework, hhis missine shovel and hammer were fomd in the way of it, having desended at leat cightem leet into the gromad, and probably resting on, or mixed up with some ancient deposit. Supposing these attieles had not been recovered by the excanafors: and that the soft shatmon through which they sumk so deeply hied, hy some geolugieal changes in the ineality, become solidified, and enerusted with sereral layers of frests suil, and that some future geologist had found the lost hammer and shosel in the position deseribed, if would, doubtless, have furnisbed as strong an argument in that day for the rast antiquity of the human race, as the diseos ery of these said flint imptements in the drift has done in our own.

I am not aware of what material the superincmubent stratum above the drift in that phace is composed: lut, howerer eompact, nour, it may possibly in a farmer age have becu sulticiently liquified by some argeons irruption or submersion in canse substances of the specifle gravity of flint to smk through it ; as the silex has evidently done through the chalk in a thuid state, or as our shoved and hamer did through the soil in he river.

Whaterer ditlienties may at tend this liypothesis, they cerfamly are nol greater than are involsed in the starting, and wholly umbperted assmuption that the late flint diseovery prows man to have existed before the straits of Dover were firmud, wr the momoth and other fossil amimals had beeme extinet.

Atter atl, it mas pertaps be a reuestion whether smmises and speculations of this kind are at all nerdrinl in the present case-whether geolugists themselves have not necesioned all the donbt and mystry reepecting these flim-instrments, hy assening and amiquity to the Drilt formation wheh does not beloug to it; aksuming a lact which is only theory based on some erroneous data. Ludeed, between the arlvocates for the remote and those for the resent creation of man, is is volely a yuetion as to the anthenticity of the respectiyely aseribed dates, or which of thene wielely varving periods has the greatest weight of probability or widenee to surpurt it ; and here, apat from the Mosaic account of this event, Stl the past history and present state of man upon earth tends to prove (in
 ia well as the most perlect of all the grest and marvellons works of (iod.

If, therefine, there are valid reasons for concheding that man has mot been in evinome nome than somewhere abont six thonsand years, the theory that would give him a date of forty or difty thousam, especeally if founded only on the disemerry of wromght thints in an irpuivocal a formation as the Drift, mimot he a maderat to be of anflecem autherity to shate the genceally entertamed belief (10) the sulyject- - (at.are.

 the wheke lenesth of the eity from the denses in barton Fiedds, beyond the Lon-
 lind=:

The contaig is from ten fos fifteen feed derpe. ln none part of the line the woth on eqner to a stratum of hers carth, leiner at abont nine feet below the patement. "ha each side of the hiack carth, and at the satue depth, remains of lionan pintres, and, apparently, loman fombations of buidings were fonmd.
 Ame of the corth I lave suljeceted to the process of begiting in aceit, and upon exam ining with the niceroserpee the residuc, I fonnd varions Dialumarede, Cosciandiei hartelir, Ae.

It is wonderful how widely these minnte organisms are disseminated! At first I thought the black earth might be the accumulation of a large cesspool; but I think the discovery of these fresh-water organisms will make it apparent that the bog was the bed of an ancient strean ruming into the liver Stour in the time of the Romans.- I am, yours, \&c., Johs Brest.

Red and $W_{\text {hite Chalk of Yorkshire.-Dcar Sir,-In the Geologist for }}$ the month of Norember, 1560, I perccive some notes by Major-Gen. Emmett, R.E., F.G.S., on the above-named formations, which, if not corrected might be the cause of some disappointment to those of your readers, who, during the summer months may visit this neighbourhood, and gather fossils from the red chalk at Speeton; and the white chalk at Sowerby, Manton. Flamborongh, Buckton, Bempton, Speeton, \&c. What I wish to say on the above subject is, that the red chalk is not found any where nearer Flamborough than at Speeton. This fact is fully stated in the Rer. Thos. Wiltshire's Monograph on the "Red Chilk of England," published at your oftice, as also in the Geologist, vol. ii., p. 261 .

I would further observe, that, although much of the red chalk at Speeton is hard, yet there is, also, much of this chalk which is quite soft-so much so that it can be crushed with ease between the finger and thumb. I have never ret washed this soft chalk for the sake of its foraminifera; but I lave not the least doubt that those who wish to do so would find it equally prolific in fossils, if not more so than the harder chalk.

The white chalk at Sowerby, near Flamborough, is much softer than any part of the same formation at Flamborough, Bucton, Bempton, or Speeton. All the chalk in the latter places are remarkably indurate; and, in fact, from Flamborough Dyke on the sonth of Flamborough, around the Head, and as far as the cretaceous formation extends on the north side of it, we find all the chalk vers hard indeed, ret we have many softer portions of white chalk, both at Sowerby and in the pits in and around Bridlington, so that any person who wishes to procure soft chalk, either red or white, out of which they want foraminifera, may procure any quantity they may think proper ; and I should like to exchange a quantity of these soft rocks for a mounted specimen of each variety of foraminifera found therein.-E. Tindall, Bridlington.

Insect-Remains in the Paludina Beds at Peckham.-Dear Sir,-Mr. Rickman, in lis paper read before the Geological Societr on the 7th Norember, stated that he had not found any insect-remains in the Paludina bed at Peckham. This has caused me to regard with renewed interest a fossil which I obtained on breaking open a mass of this deposit last spring. From a comparison with the figure and description given by Mr. Westrood, in his paper on fossil insects, (Geol. dourn., vol. 11, 1. 3S1,) of a specimen from the Corfe Clay, it appears to me that my fossil is an elytrou of a small Beetle. As Mr. Rickman expressed doubt, in a letter which you published a few months ago, as to the correctness of the opinion which a friend of mine had formed with regard to a specimen in his possession, I wished, before I annonnced the presence of insect-remains in the Peckham beds, to obtain the opinion of some competent authority. I therefore enclose a sketch, and shall be pleased to know if you consider

Insect Remains from the Paludina Bed at Peckham. the subject worthy of your attention. I have another specimen rery similax to this, but not so perfect. I have also another one, smaller and rather different in shape, but similarily marked with striæ.

I enclose also some specimens belonging to a friend, one of which is differeut from any of those in my possession.-Yours, \&c., C. E. Etasts, Hampstead.

These specimens have heen forwarded to us; and through the kindness of Mr. II. Wnedward have been submitted to the examination of Mr. F. Smith, of the British Mnsemm, whose opinion is expressed in Mr. Woodward's Eetter.

Drar Sur, Mr. liredk. Smith has looked at the Peckham speemens withme, and the result arrived at is as follows:-Thre specimens are not determinable; two other pertajs are not insect at all; one is the elytron of a species of Curoulimida, penus Strophosoms? of Cucorhims? and another an clytron of a speries of Elater.- Lours truly, Henry Woodward.
 geolugical readings, I do not gather much knowledge regarding the prevalent direction of Drift in the sonthern hemisphere, If you could kindly give me any information respecting it, through the medinm of that interesting department, the "Notes and Pueries" of the (ieologist Magazine, you would much oblige, your very obedient servant.-J. Curry, lohtshmm, Lastgate.

New Species of Rada from Muste Bolcs- From Count Marsehall, we learn that Professor Molin has hately diseovered three new species of the gemus Revioramong the fossil fishes of Monte Bolea; and that this 'Tertiary tish-fama, generally supposed to be analogens with that of the Mediteramean, exhibits on close examination a somewhat tropical character.

REVIEWS.

 14tit.
Muray's handbooks are koown everyuhere. Wherever the traveller or fomrist intends risitines a distriet or a comotry, he is sure in the first place to seck for one of Muraty's Cinides. It is formate for south Wales that, possosing so much ereological interest, the authorship of Murray's handhook for that region has fallen into the hands of so grood a geonogist as ome friend and romeregondent. Dr. Bevan, who from his long residence theme possesses also peentian advantage for the task. The momons deseloment during the last twouty years of mining enterprise and the operning of new milways hare mate such inaterial alterations in these parts that mo one but a resident conld never latere aceomplished a surecessul entide for the wanderer in seareh of the eom-

In the first there ehapters on the physieal features, trenoger, amt manufacfuren, the student of onr seioner has an admimbly suceine ancome of all the principal mattors of interest to him; white at page 2! all the " pmints of finferent fur the ereologiat" are specially pieked out-like plums from the puddine - of the work, and handed to him in one luxurious dish.

Fwh perpetnal and indefatiguble ramblers as geobergists invarially arewhemer they ran he iudued to look heyond their own dear dusty gaarries at the surial seenes and ant iquarian relies ihat are exerywhere to be met on the
 the" "rizhl mon" fon" tourisis" gutdes ; and Dr. lievan, whon has umdoultadly kept his eym dopen of all worth sermes, serems as much at home in the rest of his
 phenisal deseriptions of his distriet.

THE GEOLOGIST.

FEBRUARY, 1861.

ON BRITISH CARBONIFEROUS BRACHIOPODA

Be Thomas Davidson, Esq., F.R.S., F.G.S., etc

Four years have elapsed since I first commenced my researches among the Carboniferous Brachiopoda of Great Britain; and I should certainly by this time have completed my task, had not the unfortnnate delay in the publication of the last two or three volumes of the Palaontographical Society induced me to undertake other work which would not require to lie printed and unpublished for upwards of one year and a half. My mouograph cannot, consequently, be completed or entirely published for some time to come. perhaps a year or more ; but as my researches in connection with the subject are almost enderd, since the whole series of species at present known have been as carefully examined as my means and materials would permit, it may, perhaps, be as well that I should at once expose the results of my laborions enquiry, in the hope that by so doing some further assistance and advice may be proffered; which might enable me to make the monograph still more complete, and at the same time admit of my correcting in the concluding pages those unaroidable mistakes which have been commited during the interval which has elapsed since the commencement of its publication.

It may be thought by some while perusing the accompanying catalogue that the work to be gone through was but small in comparison with the time employed, but such would be an erroneous assumption, and a sad return to the numerous friends in England, Scotland, and Ireland, who have so zealously afforded their valuable and valued assistance, by incessantly ransacking the country in order to obtain every possible specimen that might assist and tend to complete the history of British Carboniferons species. Thousands and thousands of specimens have been assembled and transmitted to me by rail and post; and if I refrain from mentioning names it is because my full
acknowledgements are recorded in my larger work, which, when enmplete, will compese a quarto volume, illnstrated by some fifty or nowe futce. I may likewise mention that, with very few execptions. 1 have hat the ereat adrantage of obtaining the loan of the origenal specemens from which each species had been first described. so that my eomparisons have generally commencel with the type.

As a great many so-termed species have been rejected, it will be desimble to enter upon some few explanatory details.

At the time when I commeneed my researches among the British Carboniferms Brachiopoda. some two hundred and fifty so-termed species had been recorded; but after a most searching investigation.] could not conscientionsly make out more than abont one hundred and eight; and even of this number some few should be located among the rarieties, so that the determined species would nont, at the present time, in all probability exceed alont a hondred. In the second and improved edition of Prof. Morris's "Cataloguc," published in 14.5. one lmandred and minety three species are recorded, but of these about cighty-one only are retained in our lists.

It would he imposible in this short paper to enter into many statistical details; lont we may mention that in 1836 Prof. Phillipss commerated about ome hondred species, as hasing heen fonnd in Fingland, and of which fifty-two are by us refained. Since the period of the pullication of the "Genlngy of Yorkshire." many more species have heen discovered, on that athent ninety-seven are provisimally eatalogued. The species from Sentland have been carefully examined, athl from forty-nine in fifty retained. The Irish speries have not. perhaps, heen so completely studied as we might wish: and it is sery possible and poobable that the rocks of that ishand have afforded some fow more than the seventy-three here admitter.

In 1sif. Prof. It Coy deseribed two hundred and twenty-nine speries, statect ly him to have been found in Ireland, hat figured only alkmitsixty: and to this number several others were subserpuently added hy other naturalists, so that Mr. Kelly's Catalogne* eomprices no less than two hundrest and thirly-seven! If we compare Mr. Kedly's lists with the one here given a very great differene will be ferefived: for motwithstanding all my good will and the liberal :usistame of many Trish geolocrists. who assemblerl for my use every pussible specics. i have not heen able, as abready stated, in identify more than ahomt seventy-three. Mr. Kidly's Catalngue enmprises a Great number of Silurian and Devomian species not known to me to orent in any 'artonift rons meks hitherto examineel; and 1 may withent hesitation sasert that the larger mmoner aree at any rate. The to incorvect idmification ; fur the examination of many of the -riginal specimensinsir Richard Griflith's collections have conrincerd l'rof de Koninet. Mr, Sialtor, and myself of this important fact.

[^7]Many of Mr'Coy's so-termed Devonian species were not, howerer, to be found in any of the Irish collections, and their existence as Carboniferous fossils must, consequently, remain as " not proven," for the author of the "Synopsis," does not furnish us with any evidence as to the correctness of his determinations in the shape of illnstrations.

Mr. Kelly, whose knowledge of Irish geology appears to equal, or even exceed that of any other man, expresses himself very averse to my rejecting so many Devonian species, said to have been found in his Carboniferous strata and localities, and considers I am not justified in passing judgment on the contents of between seventeen and eighteen thousand square miles of Carboniferous limestone said to exist in the sister island ; but I do not presume to pass sentence upon any but those I am certain to be due to incorrect identification, and which have been so stamped by Prof. de Koninck, Mr. Salter, and myself, and at present existing in Sir R. Griffith's collection. All I wish to say with reference to the others is that, never having been able to procure the sight of a specimen, I am bound to state and believe that their existence is " not proven ;" but I shall be delighted to admit and catalogue hereafter any of which a specimen or correct figure can be produced, and which on comparison will be fonnd to agree with Silurian or Deronian types. In my monograph I have described those species only of which I have seen a specimen, or of whose existence I felt certain, and of which I was able to give a figure; for it appeared to me preferable to limit myself to what was certain. than to swell out my work by the introduction of a large amount of very doubtful matter. Arr. Kelly has informed me by letter that a large portion of the doubtful fossils were got in localities of the Calciferous slate, a band which lies next under the limestone; that out of some seventy not proven to me. because I have not seen specimens, twenty-two were obtained at Lisnapaste and Donegal; that in these localities there is a great variety; and that they occur in black soft shale, as soft and as easily decomposed by exposure to the atmosphere as any that occurs in the coal-measures; that a lump of this black shale exposed to sun and rain fur one summer, would slake or fall to pieces; and he therefore suppuses that by far the larger number of Lisuapaste specimens that were originally in Sir R. Griffith's collection were lost by their removal to the Great Exhibition held in Dublin, in 1852. as those teuder shales would not bear the agitation of carriage, and consequently mouldered away into very small fragments. That there are six or eight other localities in the Calciferons slate in which similar shales occur with fossils, and that he finds upon looking over his lists that most of the Devonian species I object to were obtained in those localities. Along with Lisnapaste there is Larganmore, Bruckless, Kildress, (the red shales near Cookstown in the Old Red series), Bundoran, Malahide, Curragh, ctc.
Having premised so much, we will now give a catalogure of all the species at present known to us from England, Scotland, and Ireland.

Teirlüutulu speculus，Martin，Petrif．Derb．，tah，xlvi．，figs．1， 2 1 s（14）D Div．Mon．，＊）f．i．，figs． $23,21,27,29,30$ ，etc． －Tustutu，Suw．Min．Con．，tab．ccecxlvi．，figs． $\because-3,1$ 上丨？- ；Dar．Mon．，pl．i．，figs．1－12；var．virgoides， M＇Coy，var．ficus，M Coy．
＊——— Millingensis，Dar．Mon．，pl．i．，figs．1S－20；pl．iii．， fig．i．， 1817.
－Vesirutaris，De Koninek，An．Foss．de la Bel－ grique，snp．，pl．lvi．，hig．10，1．55l；Dav．Mon．，pl．xxf．， firs．1－7，＝Seminula scminutu，M＇Coy．
Ithymis Royssii，L＇Eveillé，Mémoires de la Soc．（ieul．de France，vol．ii．，1l．ii．，figs．18－20，18：35；Dav．Mon．， 13．xviii．，figs．1－11，＝T．fimbriuta，Phil．，$=$ T．glubr： istria，Phil．，$=$ T．tepressi， H Coy．
＂1pansa，Plhil．，Gcol．York，vol．ii．，pl．x．，fig．18， 1436 ；Dav．Mon．，pl．xvi．，figs．1－16 and 18 ；pl．xvii．， figs．1－ј．
－lamellosu，IJ＇Eveillé，Mem．de la Soc．Geol．de France，vol．ii．，！1．，ligs．21－23， 1855 ；Dav．，ן．1．xvi．， fig．1，and pl．xvii．，fig．ti，$=T$ ．squamnse，Phillips．
－plumo－sulcati，Phillips＇Geol．York，vol．ii．，pl．x．： ficr．15， 1836 ；and Daw．Monn．，pl．xvi．，ligs．․－13， 15 ，
 1．ny＂，Kow．
－glolneturis，Phillip＇s Gcol．of Tork．，vol．ii．，pl．x．， fig．․․2， 1436 ；and Dav．Mon．，pl．xvii，figs．15－14．
 Das．Mon．，pl．xy．，tigs． $15233=$ T．sublobuta，P＇ort－ lock，＝T．puturdra，Phillips．
－－sulitilitr，Hall．Howard stanshury＇s Exploration of the Valley of the Great Salt Lake of Utal，，pl．iv．，figs．
 s． 10.
squamitho，De Kon．，Desc．An．Foss，de la Bel－ sique，sup．，pl．lvi．，fig．9， 1851 ；and Dav．Mon．，pl． x viii．，figs．12丷， 13.
li，tzi，moli，lis，Phillips＇Geol．of York．，vol．ii．，pl．xii．，figs． 10，11，Iヶ3l；；Lav．Non．，pl．xrii．，ligs．19－21．
－uldri，De Kom．，Dese．des Animanx Foss．de la Belpique，fll xix．，fig．it， 1813 ；and Dav．Man．Carb．， 11．xviii．，figes．11， 15.
 Mom．，pll ii．，tigs．｜ご－21，and pl．iii．，tigss．$\ddot{2}-6,=$ T．spin－ rif．in，Lamk．，Sp．attemuata，Sow：，$=$ S．princeps，
 S．tiri，liontus，Hall，Lugheni，Hall．
－Mas monses，Fischer，I＇rogrammo sur la Choris－
 orle amd h7mmi，Fischer，s．choristites，V．Buch， －Ancin，Coblluts，－İ prisers，Eichwald．

$+$
$+$
$+$
$+$

[^8]

$+$
$+$
$+$

[^9]
 Mon., pl. xii., figs. 13, 1 t, and Dav. Sc. Mon., pl. i.*, fig. $30,=$ unguiculus, Phil., $=$ clannyana, Kon.
$*$

* \qquad Carlukiensis, Dav. Mon., pl. xiii., fig. 14, 1857. ĻOQ ; Dav. Mon., pl. xiii., figs. I-13, Sc. Mon., pl. i.* firs. 31 , =M. strigocephaloiles, $\mathrm{IP}^{\prime} \mathrm{Coy},=$ S. reticulata, $=S$. mesolubu, Phil., =S. imbricut, Sow.
clliptica, Phil. Gcol. York., pl. x., fig. 16, 1836 ; Dav. Mon., pl xiii., figs. 1-3.
Spiriferina laminosa, M'Coy, Synopsis, pl. xxi., fig. 4, 1811; and Dar. Mon., pl. vii., figs. $17,22,=$ S. tricomis, De Kon.

*

\qquad cristata, var. octoplicata, Sow., Min. Con., pl. dlxii., figs. $2-1,1827$; and Dav. Mon., pl. vii., figs. $37-17,60,61,=S_{p} \cdot$ partite, Portlock.

- _minima, Sow., Min. Con., tab. ceclxxvii., fig. 1, 1822; Dav. Mon., pl. vii., figs. 56-59. A very doubtful species.
- inscull,ta, Phil., Gool. York., pl. ix., figs. 2, 3 1936 ; Dav., pl. vii., ligs. 48, 55, $=$ S. quinquclubre. M'Coy.
$*$
Cyrtina septosa, Phillips' Geol. York., vol. ii., pl. ix., fig. 7. 1836 ; Dar. Mon., pl. xiv., figs. 1-10, pl. xv., figs. $1, \ldots$.
unsatil, M'Coy, Synopsis, pl. xxii., fig. 11 , 18 H ; Dav. Mon., pl. xr., figs. 3, 4 .
\qquad carlonaria, M'Coy, Br. Pal. Fossils, pl. iii.d, figs. 12-18, 1855°; Dav. Mon., pl. xv., figs. 5-1.4.
Rhamshonella renifnmis, Sow., Min. Con., pl. cccexcvi., figs. 1-1, 1425 ; and Dav. Mon., pl. 19., figs. 1-7.
$*$ - corelifurmis, Sow., Min. Con., tab. cecexce.. fig. 2,1825 ; and Dav. Carb. Mon., pl. xix., figs. 8-10. A doubtful species. Lire 7 acuminata, Martin, Petrif. Derl)., pl. xxxii.. lifs. 7, 8, and ple xxxiii., figs. 5, f, 1809; and Dav. Mon., pl. xx., figs. 1-13, pl. xxi., figs. $1-2(1)=$ T. plutyl.ba, Sow., = Tr. mesngonia, Phil.
- M, urollon, Phillips' (ieol. of York., vol. ii... p1. xii., fyes. $25-30,183 f$; and Dav. Mon., pl. xxiii.. figes. 1-20, = T. Mantio, Sow., = T. rentilabrum, I'hillipm, =T. 子untatomn, De Kon., $=$ T. triplex, $\mathrm{AlCoy}^{\prime},=$ lurreuciana, De Kon.
flecistriu, Phillips' Geol. York., pl, xii., figs. 33, 31, 1536 ; and Dav. Mon., pl. xxiv., figs. 1-K, $=T$. tumbu, Mhillips, = H. hetermilyohe, ar'Coy.
f.i, lsug; mad Nav, Mon l'etrif. Derb, tab, xxii., figs. sulerm tris, Phil., - A. Detticliv, M'Cuy.
1-can Mequluht, Limmeens, Syst. Nat., p. 1151. 1767 ; and Dav. Mon., pl xix., fige 11-16. migue tributera, De Kom., Animaux Fioss de la Bedgique, , mix. xig. 7, 1813 ; and Dav. Mon., pl. xxiv. fige 23.26.
Catalogue of British Carboniferous Braehiopoda.
Rhymchonella? gregaria, M'Coy, Synopsis, pl. xxii., fig. 1s, 1841; and Dav. Carb. Mon., pl. xv., figs. 27, 2S. Not sufficiently studied.
(Rh. nana, M'Coy, Synopsis, pl. xxii., fig. 19, 1841; Ireland.
\{ R. semisulcata, MrCoy, Synopsis, pl. xxii., fig. 15 ; Ireland: doubtful species?.
* Camarophoria crimena, Martin, Petrif. Derb., pl. xxxvi., fig. 4, 1809; and Dav. Mon., pl. xxr., figs. 3, $9,=C$. Schlotheimi, V. Buch.
Var. ? T. proara, Phil,, Geol. of York., vol. ii., pl. xii., fig. 37, 1836; and Dar. Mon., pl. xxr., fig. 10 ; England. fig. $3,1 \mathrm{~s} 31$; Dar. Mon., pl. xxir., figs. $9-22$: Ther rhomfig. 3, 18, Phil., $=$ T. seminula, Phil., $=H$. longa, M'Coy ?
isorhyncha, M'Coy, Synopsis, pl. xviii., fig. 8, 18.4; and Dav. Mon., pl. xxy., figs. 1, 2. Not sufficiently studied, from want of material.
? laticliva, MrCoy, Br. Pal. Foss., pl. iii.d, figs. 20, 21, 1855.; Dav. Mon., pl. xxv., figs. 11, 12. Not sufficiently studied, from want of material.
Strophomena (rhomboidalis) var. anatoga, Phillips' Geol. of York., pl. rii., fig. 10, 1836; Dav. Mon., pl. xxriii., figs. $1,13,=P$. depressu, Sow., $=P$. rujose, His., $=C$. qualrangularis, Steininger, $=$ L. tenuistriata, Sow., $=L$. distorta, Sow., $=$ L. nodulosa, Phil., $=$ L. multirugata, $\mathrm{M}^{+} \mathrm{Coy}$.
Streptor'hynchus crenistria, Phillips' Geol. York., pl. ix., fig. 6, 1836; and Dav. Mon., pl. xxvi., fig. l, pl. xxvii., figs. $1-5$, and 10 ?, pl. xxx., figs. $14-16,=$ S. senilis, Phil., $=$ Lept. anomala, J. de C. Sow., Min. Con., tab. desv., fig. $1 \mathrm{~b},=0$. umbraculum, rar. Portlock, $=0$. Bechei, $\mathrm{M}^{\prime} \mathrm{Cos},=0$. comata, $\mathrm{M}^{\prime} \mathrm{Cog},=0$. caduca, $\mathrm{N}^{\prime} \mathrm{Cor}$, $=0$. keokuck and 0 . robusta, Hall.
* Var. A. T. arachnoidea, Phillins' Geol. of York., vol. ï., pl. xi., fig. 4, 1836 ; Dav. Mon., pl. xxr., figs. 19-21, pl. xxri., figs. 2-4 (lower fig.) 5,6, $=$ U. Portlockiana, Semenow ; England, Scotland, Ireland.
Var. B. S. hellii, ar'Coy, Synopsis, pl. xxii., fig. 4, 1S44; Dav. Mon., pl. xxvii., fig. 8; England, Scotland, Ireland. Far. C. S. cylindrica, M'Coy, Synopsis, pl. xxii., fig. 1, 1814; and Dav., pl. xxvii., fig. 9; Ireland.
* Yar. D. S. radialis, Phillips' Geol. York., pl. xi., fig. 5, 1836 ; Dav. Mon., pl. xxv., figs. 16-18; England, Scotland, Ireland.
* Mrthis resupinata, Martin, Petrif. Derb., pl. xlix., figs. 13, 14, 1809; Dav. Mon., pl. xxix., figs. 1-6, and pl. xxx., figs. 1-5, $=0$. comnicens, Phil., $=0$ gibbera, Portlock, $=0$. latissima, M'Coy.
* --- Michelini, Li'Eveillé, Mem. Soc. Geol. France, vol. ii., figs. 14-17, 1835; Dav. Mon., pl. xxx., figs. 6-12, $=\mathrm{S}$.

filmair, Phil., $=1$ I. circultrie, $\mathrm{Ml}^{\prime} \mathrm{Coy}^{2}=\mathrm{O}$. dicuricatu, ${ }^{1} \mathrm{Coy}$.
* (Withis Kigserlingiana, De Kion., An. Foss. de la Belgique, pl. xiii., fig. 12, 1 s 13 ; Dav. Mon., pl. xxriii., fig. 14.
-? untiquertio, Phil., Gcol. Yoיk, tall, xi., lig so, 1836 ; and Daw. Mon., pl. xxviii., fig. 15. Not sufficiently studied from want of material.
Pionlurtus gigentous, Martin, l'etrif. Derb., pl. xro., fig. I, 1su9; and Dav. Mon., ple xxxvii, xxxviii., xxxix., and xl., - A. cresesr, Martin, = l'. curitn, Phiil., P. Edeclumetensis, l'hil., P. maxima, $\mathrm{Nl}^{\prime} \mathrm{Cor},=l^{\prime}$. hemisphoricus, part Sow.
lutissimus, Sow., Min. Con., tal. cecxxx., 1822 : and Dar. Mon. Scottish Brach., pl. ii., figs. 8, 9; and Mon., pl. xxxr., ligs 1-t.
('or", D'Orli, P'aldent. du Yoyage dans l'Ancrigne Neridionale, p. 58, pl. v., figs. 8.10 , $18.12:$ De Korinck, Mon. du Geme lroductus, pl. iv., fig. A, pl. \because., fig. $2,=I^{\prime}$. combunta, M'Coy; Dav. Mom., pl. xxxyi., lig. 1.
\qquad semiveticulutus, Martin, Petrif. Derlo, plas. xaxii., figs 1, ", pl. xxxiii., figr. A, 1sut; Hav. Mon. Scottish Brach., pl. iv., figs. 1-12; and Mom., pl. xhiie, tiows. 1-6, and pl. xliv., figs. $1-3,=$ A. antiquente, Martin, $=$ I^{\prime}. comrimu, Low., $=I$. I ngilis, Phil., $=I^{\prime}$. seotica, Sow., $=I^{\prime}$. sulcatu, Sow., $=I^{\prime}$. fleciatrin, M'Coy (according to Prof. De Koninek), A. poulucte, l'arkinson.
Virr, Mutini, Sow. Min. Com., pl. ccexvii, figs. 2-4; Daw. Mon., pl xliii, figs. 7-11 ; England, Sontlmul, Ireland.
- lumgnspious, Sow., Mlin. Con., tal. Ixwiii., fị. 1. 1411: Dav. Scottish ('arb. Mon., pl. ii., firs. 10-1!, and Mon., pl. xxx., figs. $5-17=I^{\prime}$. Flomingii, I'. Toleate,

 Dity. Mome, pl, xxxvi., fig. 1-3. (1) xix., lig. 1, 1830 and 1837 ; Dav. Mon., pl. xxxiv., ligs. $1 \ldots,=l^{\prime}$ ingtalm, lhil., $=1$: limetiomis, V. Buch, 1.. anmminl, J. de U. Suw., Min. Conn, tab, dexv., lig. I, ", r, r), (not li.).
- muncumifurns, Phillips, ficol. York., pl. viii., lize. S, 14:3f; Nas. Mon., fl. xliv., ligs. 5-s, I'. Je" that ine Phit.
püd acithus, De Vom., Bulletin de la Sure. Ceol.
 xexisı, lize. I-I.
(rumbers, Do Kominek, Dese, des Animmux Fuses.
 x xaiii., lig. 5 .

$$
\begin{aligned}
& \text { England. } \\
& \begin{array}{l}
+ \\
+ \\
+
\end{array} \\
& +
\end{aligned}
$$

$$
\begin{aligned}
& + \\
& \begin{array}{l|l|l}
+ & & \\
+ & + & + \\
& & \\
&
\end{array} \\
& + \\
& + \\
& + \\
& + \\
& 1+ \\
& \begin{array}{r}
+ \\
+
\end{array} \\
& + \\
& \text { (: } \\
& + \\
& \text {. }
\end{aligned}
$$

—— costatus, Sow., Min. Con., pl. dlx., fig. 1, 1827, $=P$. costellatus, M Coy ; Dav. Mon., pl. xxxii., figs. 2-9. - muricatus, Phil., Geol. York, vol. ii., pl. viii., fig. 3, $1 \mathrm{S36}$; Daw. Scottish Carb. Mon., 1l. ii., fig. 25, pl. iv., fig. 2 5̌ ; England, Scotland; Dar. Mon., pl. xxx., figs. 10-14 - carbonarius, De Kon., Dese. des An. Foss. de la Belgique. pl. xii. bis, fig. 1, 1813 ; and Dav. Mon., pl. xxxir., fig. 6 .

* -_undatus, Defrance, Dic. des Sc. Nat., vol. xliii., p. 35 1, 1826 ; De Kon., Desc. des An. Foss. de la Belgique, pl. xii., fig. 2 ; Dav. Mon., pl. sxxiv., figs. 7-12, $=P$. tortitis, M'Coy?
aicuarius, De Kon., Desc. des Animaux Foss. de la Belgique, pl. xii., fig. 10, 1843 ; Dav. Mon., pl. xxxiv., fig. 17.
* - aculeatus, Martin, Petrif. Derb., pl: xxxvii., figs. $9,10,1809$; and Dav. Mon., pl. xxxiii., fig. $16-20,=$ P. laxispina, Phil.

Youngianus, Dar. Mon. of Scottish Carb. Brach., pl. ï., fig. 26, and pl. v., fig. 7, 1860; and Mon., pl. xxxiii., figs. 21-23.
-Keyserlingianus, De Kon., Desc. des An. Foss. de la Belgique, pl. x., fig. S, 1813 ; Dar. Mon., pl. xxxir., figs. 15̄, 16.

H'rightii, Dav., Carb. Mon., pl. xxxiii., figs. 6, 7,
tessellatus, De Kon., Desc. des An. Foss. de la Belgique, pl. ix., fig. 2, 1813 ; and Dav. Mon., pl. xxxiii., figs. 21,25 . and pl. xxxiv., fig. 14. plicatilis, Sow., Min. Con., tab. cccclix., fig. 2 ; and Dav. Mon., pl. xxxi., figs. 3-5.
-_mesolobus, Phillips' Geol. of York., vol. ii., pl. vii., figs. 12, 13, 1836 ; Dav. Mon., pl. xxxi., figs. 6-9. - sub-lceris, De Kon., Desc. des An. Foss. de la Belgique, pl. x., fig. 1, 1843 ; Dar. Mon., pl. xxxi., figs. 1, 2. ductus, pl. xvii., fig. 3, 1847; Dav. Mon., pl, xxxii., fic. 1 . - scabriculus, Martin, Petrif. Derb., pl. xxxvi., fig. 5, 1809 ; Dav. Scottish Carb. Mon., pl. iv., fig. 18, and pl. v., fig. 6, Mon., pl. xlii., figs. 5-8; $=P$. quincuncialis, Phillips. pis. pustulosus, Phillips' Geol. of York., vol. ii., pl. vii., fig. 15,1836 ; Dav. Mon., pl. xli., figs. 1-6, and pl. xlii., figs. 1-1, $=P$. oralis, Phil., $=P$. rugatus, Phil., $=P$. pyxidiformis, De Kon.
*
 1814 ; Dav. Mon., pl. xxxiv., figs. $18,20,=P$. granulosus, Phillips.

- punctatus, Martin, Petrif. Derb., pl. xxxvii., fig. 6, 1809 ; Dav. Scottish Carb. Br., pl. ir., figs. 20, 22, Mon., pl. xliv., figs. 9-18, $=P$.elegans $=P$. laciniatus, $1{ }^{\prime} \mathrm{Coy}$ - fimbriatus, Sow., Min. Con., tab. cecelix, fig. 1, 1823 ; and Dav. Mon., pl. xxxiii., figs. 12-15.
VOL. IV.

$+$	$+$	+	+	+	+	$+$	+	$+$	+		$+$	$+$	$+$	$+$	$+$		+	England.
+	+	+	+	+			+	+				+	+		+	+	+	Scotland.
+	+	+	+	+			+	+	+	+		+	+		+		+	Ireland.

Cataloune of British Carboniferous Brachiopoda.

OBSERVATIONS.

Terebratula.-Four species have been provisionally admitted; but as they appear all so closely connected by intermediate or passage shapes, it may still remain a question whether they in reality are more than varieties or modifications in shape of a single species? It has often been said and thought that T. Tustata was no more than an elongated full-grown condition of Martin's T. sacculus, and it is at times hardly possible to distinguish certain examples of T. Gillingensis and T. vesicularis from Martin's shell. T. virgoides has been supposed to be distinct from T'. hustuta; but after a lengthened examination of the original specimen figured in the "Synopsis," and another from the same locality (IVindmill, in Ireland), I could not make up my mind to separate it from T. hastata, to some specimens of which it bears much resemblance. T. vesicularis is a very variable shell; for, while some specimens present the deep triundate or triplicated dorsal valre, or frontal margin, in the greater number of individuals this is very slightly marked, and even absent. T. vesicularis was for long believed to be a small shell not exceeding seven lines in length, but some large examples recently discovered at Bowertrapping, in Scotland, have exceeded an inch in length.

It would, therefore, not be impossible that all the British Carboniferous Terebratulæ hitherto discovered may, perhaps, belong to a single species, capable of assuming different shapes, and not presenting a greater extent of modification than what we find in the T. Australis as well as in many other recent and fossil species. Are not the Jurassic Ter. plicata and T. fimbriata entirely smooth up to a certain age, and indeed often so to an advanced age, when they suddenly, or by degrees, becomes more or less regularly or irregulary plicated during the remaining period of their growth? For the present, however, and until our ideas as to the absolute necessity of enlarging the circle or range of variation to be permitted to a species be admitted and understood, the four species of Terebratula recorded may be provisionally retained.

Athyris or Spirigera.-In external shape the species of this genus approach more to Terebratula than to any other, and therefore in a good or natural arrangement should preceed Spirifer. Of Athyris, eight species have been provisionally retained from among the many synonyms, while the value of A.globularis and A. squamigera may still require confirmation, for of both these shells the material at my command has been very scanty; and it is even uncertain whether the identification with A. squamigera (de Koninck) be correct.

Of Retzia there appears to exist two species, of which R. radialis is both the less rare and most variable shell; for in some localities it appears to occur as a small race with slender ribs, which in other localities individuals twice the size with stronger ribs are prevalent. Of Retzia ulotrix I am acquainted with but two or three British examples, so that a search for more would be very desirable.

Spiriferd.-Twenty-five species (\%) are here provisionally retained, for the reasms already given, viz, the want of sufficiently certain enomecting links; but it is highly probable that with time and study some few of these may be dispensed with, or retained as mere varieties. Martin's spritientatriutu is the largest and most typical form of the gomus, and must therefore ahways be considered a good species: bot I would recommend a further study of Sp. Mosquensis, sp. lumerosa, and s'p, Inplivicnste, in order to ascertain whether they are also good species, or moditications of sp.striutu; for I contess that many cxamples of the three last-mentioned species could he but doubdfully separated from Martin's shell. Spp. phente and Sp. trienguteris appear to be groul species. Spp bisulcuta has varied considerably in form; and I am quite disposed to agree with my friend, Prof. de Koninck, in the idea that s"p. cressa and Spr grandicostata are simple modifications in the shape of stp, bisulceta. It is even a question requiring further examination whether sp, trigonalis should be considered separate; and, although $s p$. concolute is a wonderfully transverse and curions shell. 1 am not yet quite satisfied that it is not likewise related to S. lisulcate. isp. rhombuiden, Phill., is still an uncertain form, of wheh my material has been too seanty ; and as I am mecertain whether 1 was justified when uniting it to sp. conveluta it will be better for the present, at least, to retain it as separate. Of S_{p}. fusifomis but a single fragmentary specimen has been hitherto discovered, so that its specific elaims camnot be definitely admitted.
s'p. mesogonice is also a rare shell, for 1 have never seen of it more than the figure in the "Synopsis;" and 7rish geologists and collectors will do well in searching for more specimens. Stp. cuspictate is a good species. distinct from sp. Ulistens; to which last I would unite s.' ${ }^{\circ}$. Vicarinatu, which M'Coy established on a single imperfect specimen from Cork, in the possession of Dr. Haimes, and which has much of the appearance assumed by certain examples of S. distans. rip. trimuluelis is a grood species, but very variable in the arrangement and number of its ribs; and of which the sp, trisuleosa and sp, searadinkie of Phillips are evident modifications. Sp. Reedri must be looked upon as a donbeful species, reguiring, perhaps, to be hereather expunged; my material was very seanty, and I have since had doubts as to its validity. Sp. pinguis is a grod lust variable species, into which should perhaps be combined, as varieties, spo onetis and $S p$. interrionsta. Pior many intermediate shapes are often found. so much So that the palamentolegist is often puzzled how to determine with which of the theree they should be loeated; lat, the larger number of spercmens heing tolerably distinct and easily recognisable, we may te excheel for provisionally retaining the three demominations.

Sy. gluthen is another excellent speceies, or a type romed which are rhateren many modifications not sufliciently marked to constitute surpate opereics; for, althongla the typical finin of sip ! ! latora possessed smomth ralves, it is mot uncommon to find in other examples faint indications of lateral plication, or olserurely thattened or slighty rommed rits, the fold :tuk sims remaining always smooth. These
modifications lead us gradually to Sp. chomboidalis, which might also be nothing more than a variety of $S p$. glubra. I merely express here on this and other questions the results of my own impressions or personal observations, which may be more or less erroneous. Sp. Lriii is a good little species, which I believe to be a recurreut form of the Devouian, and present also in the Permian strata, notwithstanding Prof. King's assertion to the contrary.

Sp. Cailukiensis, as far as I know, is also distinct: while Sp. lineater is another excellent species. but exccedingly variable in shape and sculpture; at one time I felt disposed to unite with it S'p.elliptica; but having subsequently felt somewhat uncertain, have since preferred to consider it prorisionally separate.

Sp. Urii, $S p$. lineata, and I beliere $S p$. clliptica had their surfaces closely corered with numerous small spines, and it is possible that other forms were so invested.

Spiriferina.-Of this subgenus three species only appear to have been properly distinguished, viz., Sp. laminosa, Sp. insculpta, and Sp. cristota, var: octoplicata. Sp. minima has been established on one or two specimens still very doubtfully characterized; as all my efforts have been unsuccessful in the endeavour to obtain more, I consider the name hardly worth retaining.

Cyrtina.-Of this subgenus two good species appear to exist, viz., C. septosa and C. carbonuria, a third, C. dorsata, is somewhat doubtfully determined, ou account of the imperfect material at my command, which consisted of two fragments only from the Carboniferous limestone of Cork, in Ireland. It would, therefore. be rery desirable that geologists in that locality should have a search for better specimens.

Rhynchonella.-Nine species are provisionally retained; but the claims of Rh. cordiformis have not been satisfactorily established; and of Rhynchonella? gregaria but two imperfect valves have come under my examination. Rhynchonella? trilatera appears to be also a very rare species, for I am acquainted with only a very ferr specimens from Derbyshire, in the British Museum, and in that of the School of Mines : it appears also to be a rare shell in Belgium. Rh.? nama and $R h$. semisulcatu are by far too doubtful to deserve more than a passing notice ; and it is deeply to be regretted that palæontologists can bring themselves to fabricate species on such insufficient aud imperfect material, adding only confusion where such should be carefully aroided.

Camarophoria. - Four species have been recorded; but more abundant and better material with reference to C. isorkynchic and C. lateralis must be obtained before these can be definitely adopted. Of the first I am acquainted with but a single imperfect example: of the second, with those only in the Cambridge Museum.
C. C'rumena, Martin, is a well made ont species, and eridently the same as that from the Permian rocks known under the designation of C. Schlotheimi ; and although I consider myself justified in referring Terebratula rhomboidea and T. seminula of Phillips to the same
author's C. glolulina, the matter may perhaps demand some further (xamination.

Stophomerne analoun. - This spereies appens to have been recurrent firom the silurian and Devonian periods; and although certain small differences of secondary value may be observed in the St. rhomboiAlulis (Silurian) and the St. ameloga; they are both construeted on a similar model, and appear to be varieties of a single species. As howerer some small differences in detail may be noticed in the ('arloniferons shell, the term unalogu should perhaps be retained, if not as a specific, at least as a varietal designation.
streptorlyncus crenistriu, Phillips. Many so-termed species have been fibloricated out of varieties or variations in: the shape of the very variahle shell: andofwhel the larger number (if not all) are undoubted synonyms. Three or four of these may however still demand finther examination and study, so as to determine whether they should be consilered more than varieties of S. remistriu? I have therefore provisionally retained the following designations, s. ururlmuided, S. Krlli, S. cylintricu, and s.emtiolis, as mamed varieties of S. cremistriu. Of S'. rylimeriod I have never seen any other than the type, and althongh si. Killii is stated to be plentiful in certain Irish localities, but three speemens in all have passed mader my observation. Prof. Phillips informs me that he helieves 心. rutialis to be quite distinguishable and distinct (except l'rom S. Darriniuna) from s'. crenistria; and M. De Vernenil expresses a similar opinion.

Uithis.-Of this genus O. resupinutre, () Mishelini, and O. Feyserlingiemu atre well made ont species; but the Orithes? dutipuetue has not been sufliciently studied; and indeed all my efforts have been unsuccessful to procure the sight of any other that the original specimen figured in the Geology of Yorkshire, now in the British Museum.

Productus:-Of this genus some thirty species have been retained: nor does the attentive study I have made of the species lead me to imagine them more variable or diffieult of recognituon or identification than are the other Brachiopoda of the Carboniferous period; but have been perlapss less attentively stadied by the generality of geologists. In my monograph I have endeavoured to describe and illustrate all their external and internal details; but with reference to sonne few the material in my possession or at command was insuficient ; and I would arge mpon those who may be favomably located to search for specimens which woulal emable palarontologists to clear away those doubts that may still remain unsolved.
 gemse, lont very variable in its shape. Large examples are abundant in certain localities; while young specimens appeitr to be less commonly found ar collected.
F. hemispharicus is a hadly made ont speces? and I am not yet able to exncur in the apinion reeently expressed upon the subject by my learned and much estermed friend, l'rol. de Koninck; and to whose latuurs sadence is sum moh indebted. I am, on the contray,
disposed to believe that Sowerby's figures of P. hemisphoericus, belong to varieties of P. giganteus. This matter will be further discussed in my monograph, for the limits prescribed to this communication will not permit of more lengthened explanations. P. humerosus has been establislied on some singular internal casts; the shell itself not haring been hitherto discovered; but I cannot agree with those who would refer these casts to either P. gigcutens or P. semireticulatus. The prominences in the casts or deep conical hollows (in the shell) for the accommodation of the oral arms indicate that the rentral valve was enormonsly thickened. The position of the adductor or occlusor muscle in the ventral ralve is also shightly different from that common to P. giganteus, and which would of itself, in this instance, denote a specific difference. The material, however; is so very imperfect and insufficient that very little can be said upon the subject. P. proboscideus, and P. ermineus, P. arcuaitus, are new species to England, and a very interesting discovery entirely due to the indefatigable exertions of my zealous and kind friend, Mr. Burrow, who has in the most liberal and generous manner presented me with his best, and by me figured specimens. The discovery of P. proboscideus, (known in one Belgian locality only,) and of so many other species at Settle, in Yorkshire, render that locality especially interesting, as it exactly represents with us the equivalent of the celebrated locality of Visé, in Belgium.
P. sub-loevis is also a new species to Britain; but I am not yet satisfied regarding the differences said to exist between it and P Christiani; and shonld urge a search for more examples of both of these large and almost smooth species of Productus. The first has been obtained at Leek, in Staffordshire, as well as at Llangollen. The second is stated by Prof. de Koninck to be from Wales, but of which the locality is still unknown.
P. Wrightii is a small species with fringe, found by Mr. J. Wright, at Midleton, near Cork, in Ireland, it differs from P. tessellatus in several respects, and both appear good but rare British shells. P. Youngianus has appeared to me new; and in this opinion I am supported by Prof. de Koninck, P.carbonarius (if a good species) is decidedly very rare, for I have never seen more than two British cxamples which wonld agree with Prof. de Koninck's description and illustrations of the species. The distinction between P. costatus and P. muricatus are also difficult to determine, and I am now disposed to believe that if the last is not a distinct species, it may be a good variety of P. costatus.

Productus sinuatus, under the designation of Leptcena sinuata, appears to have been noticed for the first time in England by Prof. I['Coy, and. notwithstanding its well defined area, should be located under Productus, of which it possesses all the characters, with the exception of its well-defined ventral area, a character rare but not impossible in the genus Productus; and I am glad to find that Prof. de Koninck entircly coincides with the opinions I have expressed upon the subject relating to his remarkable species. P. simuatus has also been recently
discoverel at Bowertrapping, in Scotland: and which l was happy, to recognise among some duplicates kindly presented to me by Mr. Yomer. Pionl. Griftithiomes de Koninck has been recorded by Mr. Morris and others as a British species; lut no examples referable to that shell have come under my observation. We need not prolong our observations with reference to the other well-known species of this important genus. but pass at onee to Chonetes, for its species appear still involved under considerable confusion, and will require muth further investigation under farourable ciremstances before they can be properly or satisfactorily arranged. The diflienty is principally cansed by a number of batly definet so-termed species, tabricated in Ireland and America on insuflicient material.

The only British species which I have been able to recognise with any degree of certainty are ('. romoides, ". pepilimnaten, C. Buchima, C. Iterdonsix, and perhaps C. Delmaniana; but I am still uncertain with reference to this last, (althongh we possess examples identical with those of Belgimm,) on account of the great resemblance certain specimens bear to others of ('. papitionacet. ('. Buchime appears to be a well marked species, on accomit of its fewer or stronger i ibs; but these also vary to a considerable extent. It is quite erident that the shell figured as Leept. ciessisistrin, by Prof. M'Coy, in the "British Pal. Fossils" is a symeny of 0. Buchume; but 1 am still meter some uncertainty whether the typieal form of C. critsisistrie. published in the "Synopsis," he really the same. Anyhow, on acconnt of its fewer and simpler ribs, it will be preferable to provisionally locate inth it and !': Interculatu under C^{\prime}. Diuchemun as uncertain varieties. The next diffenlty is in the determination of what are the synonyms of the grood species for which we have refainel the designation of
 are evidently synomyms; lont 1 would not venture to speak with so muth confidence with reference to C.. colea, C'. sulvatu, C. pertata, and ${ }^{\prime}$. sirtute, M'Coy, all established on imperfect hrish specimens; but it is at the same time highly probahle that if not all, the greater munber are simple variations in shape of a single species. All we know of C . sulculn consists of a single vent aal valve. ' ${ }^{\prime}$. (Lept.) stroutce
 murbl resemblane to 1'. Huretronsis; while ('. preftutu is perhaps alse at small wariety of the same:- C. pmita, a' Coy, althonghe deseribed as -month': looks very like many examples of ' ' IFurlensis or ('. rolut? in which the ribs are somewhat ohliterated. It wonld therefore low imposible with the semty material at my command ; and in the present atate of omr information to determine which of these Jrish forms are aperies or symonyms; and it would therefore be very desirable that lrith geologists of collertors slmuld carefnly assemble mumerons specinens of 'thombes firm the localities where the sn-termed sperins were mentioned to ocenr. The (': Lutymesimus stated to ocem at Werwick in Eingland, and Rahoran in Preland. is probably also mothing more tham a variation of Howtreusis ? Having done all that wats within my power to clear up these difliculties,
without that success I had anticipated, I must leare the matter as an open question, notwithstanding the advantages I had of being able to examine the original speeimens or fragments mpon which the sotermed Irish species: have been founded.

C'runia. - Three species have been retained; but of these C^{C}. quadiutu is the only satistactorily determined speeies. Of Crania? trigonalis I have never seen more than the original type, and it is still uncertain whether it is a Brachiopod, notwithstanding that we are acquainted with several similarly striated or costated species in the rocks of other periods. Of Crania? (Patella) Ryckholtianu de Koninck $=$ C. vesiculuris, M'Coy, I am acquainted with but a single Irish specimen; but the shell would appear to be less rare in certain Derbyshire localities. It would be very desirable however to procure more specimens of both C.trigonalis, and C'. Ryckholtiana, and especially those showing the interior.

Discina.-Two species only have been retained, riz., D. niticle and D. Durrcuxiana, de Kon.; but as of this last but a single example has been found by Mr. J. Wright, in the limestone of Little Island, in Ircland, it is therefore here doubtfully recorded. I may also mention that I am strongly impressed with the idea that the Permian D. Koninckii cannot be specifically separated from the Carboniferons D. niticlu.

Lintruta.-The many so-termed species are reduced to four, viz., Liuguia squamiformis, (which has sometimes attained upwards of one inch and a half in length). L. mytiloinles, a more elongated species, L. Civelneri, which may possibly be a variety of L. mytiloites, and L. Scoticu which is separable from all the others by its tapering beaks and peculiar external sculpture.

Having thus briefly exposed the present state of my researches in connection with British Carboniferous Brachiopoda, as well as mentioned some of the difficulties which still beset my mind with reference to the positive value of certain so-termed species, and exposed my ignorance as well as the absolute necessity for much further rescarch, let us cast a rapid glance on the Brachiopodous life during the deposition of contemporaneous (?) Carboniferons rocks in other parts of the world, in order to ascertain whether onr British fanna in this respect was not to a certain extent universally represented. In Europe we find that where carboniferous strata prevail a vast majority of the same species exist; and as those of Belgium, France, Russia, etc., are alleady so well known, from the researches of several distinguished palaontologists, we will at once proceed to India, where out of twentyfive or twenty-six species of Carboniferous Brachiopoda hitherto determined, some fourteen or fifteen were found (on an examination I have recently made) to be specificaly identical with British forms of Spirifera striata, S. lineutu, S. octoplicata, (cristata,) Athyris Royssï, A. subtilita, Retwia ralialis, Rhynchonella plewoolon, Streptorhynchus. crenistria, Oithis resmpinatu, Productus striates, P. custuters, I^{\prime}. semireticulutus and P. longispinus, and a further researeh in these clistant regions will no doubt bring to light a larger number of common species.
'The Anstralian and Tasmanian emboniferons rocks hare also afforded their puota of eommon species, for althongh the forms from those continents have not been sufficiently examined, still from a passing grance l have given to collections sent home from bundaba, mud l'ort Stephen in Australia, as well as fiom Tau Diemen's land, I have alrearly been able to recomnize ${ }^{T}$ '. Fustata, Sp striutu, Sp'
 l'rod. cort, ele. If again and by a rapid stride we should find ourselves cast on some of the Spitzbergian frozen coasts, we may there pick upereral of our common species, such as sp. octoplicutu, Stiept. crenistric, Pro. semireticulutus, I^{\prime}. costulus', etc., along with other forms not known in Britain, and lastly, not to extend the limits of this paper heyond reasonalle bounds, should we visit the prodigiously extemed (anbonferons regions of America, we shall there also find a vast perventage of species identical with one own, but which in many instances are still hiding their true characters muder the disgnise of borrowed names. Possessing as I do a very extensive serios of American Carboniferons species, and for which I am indebted to the kindness of Mr. W'orthen, as well as to that of some other American geologists, and having eompared these with our British species and specimens, I may mention from among others not yet sutliciently sudied, the following few as being identical with our own s.

 Pome cores, P. punctutus, I'. longispinus, P. semictimututus, P 's sentrirulus., I^{\prime}. costutus, Cionin tpentritu, Discine nitide, Lingula mytilvides, cte.

This rapid but convineing proof of the existence and distribution of many chatacteristic British species all ower the world where contemporancons carboniferons rocks have beendeposited, shonld inenteate upon us the alisolute necessily of carefolly examining and re-examining nur species, sn as to aroid the mufortmate results that may ensue from arbitrarily narrowing their limits of variation-thus violating the law of nature, as wellas retadiner the advance of seionce.*

Mand indeed may be expected fiom the rising erencration of young natmatists, who, muprejudiced and metefored, may work ont for themadres a new path: and ly secking to determine with more alfontion tham has hitherto been done what ane the resemblanees that axist betwern so-termest specios, may be able to trace and eomeet those modifeations that have heen prombed by time ant ciremmstances

[^10]on the descendants of the parent type, although it would not be possible for me fully to subscribe to Darwin's theory-which I do not perfectly realise, withont much further examination and reflection -still there is so much trath in many of his riews and statements regarding "The struggle for existence" and "principle of natural selection," that the subject has full claim to a calm and dispassionate examination, and may lead us by degrees to the better understanding of many problems relating to species and their origin than we at present possess.

A CHRISTMAS LECTURE ON "COAL"

By J. W. Siliter, F.G.S.
(Continued from page 13.)
In our last lecture stress was laid on the fact that coal-beds, unlike mineral veins, are stratified-not injected, or filling cracks in the earth as metals do. And when we use the term stratificd, we mean that the materials we are considering-coal, ironstone, sandstone, clay, shale-were all deposited sheet orer sheet, layer over layer, principally by the agency of water.

In scarcely any other way, except by water, can we conceive of materials being spread abroad over vast surfaces, in that even and regular manner which we call "stratificd." As a rule, the matters ejected from the mouths of fiery volcanos are only milely heaped up, and unless they fall into the sea, do not undergo this smoothing, spreading-out process. The sand of the sea-shore however, and the pebbles on its margin, and the mud of its great depths, are truly "stratified;" and if a fertile plain, or a marshy district were submerged in the waters, the materials on that surface would be soon covered over by the ooze and sand and shingle, and would then be said to be "interstratified" with them. In this way coal-beds occur among beds of sandstone and other rocks.

It is seldom that any coal-field contains more than twenty-five or thirty workable seams: and perhaps these altogether do not amount to above eighty or one hundred feet at the utmost, while in South Wales the coal strata are twelve thousand feet thick. The mass, you see, is rock.

The miners have names for all the other beds, or "measures" as they term them. Some of them are amusing, In Stafforlshive, for instance, the beds of sandstone (once loose sand) receive the names of White, grey, green, and blue rock; Rough rock; and "Peldon." This last is a very common term.
'The clays or shales are more oddly named - Clunch; Gronnd; Partines: Sinds; Clod; Shale; Pomeil batt ; 'Table batt; Pricking' and Blackiry.

Fronstone beds rejoice in the appellations-Pemystone; Brownstouc; Whitery; Lambstone; Blue flats; Cakes; Crains; Gubbins; Ballstome; Binclstone ; Silver thread; Diamonds; Getting rock; and " I'oor Robins."
'The bad coals are-Bass; Smutt; Black bazil, de. And every coal bed has its name too. There wre the-'Top four-foot eoal; Yurd conl; Brook coal: Robin's: Flying reed; Deep coal; Mealy grey coal: White conl! Stone coal; Shadlow coal; Old-man's coal; " Heatlacu" coal ; Stinking coal; Batzils; Slipper coal; Sawyer coal; and Buttom coal.

I'm sure that is emongh. Morenver, every district has its orvo voubhlary. Only fancy what the Welsh must be!

But whaterer be the kind of bed ocer the coal there is ons invariable male beloue it. A bed of clay, called " fire clay"-a tine soft substanee nseftul for furnace-pots and furnace-bricks-ocen's bencath every seam. Sir William Logan, now at the head of the Geological Survey in Camada, first found this ont in Wales. It is the clue to the history of coall : and we slatll have to refer to it again.
l'lease to hear in mind that these layers or beds of coal are remarkatbly regnlar. It is of the greatest eonsequence in mining that they are so. If you find, for instance, that the Old Man's Coal is alwas: next to the "Heathen" Coal, and the "white coal" comes next (I don't know that they do). you are safe for the whole coal-ficht. Fon have only to measure the distance between the Ohd Man and the tleathen, and so m, and yon know whereabouts to expeet them in aly wher part of the field.

We have reason to believe too that erery bed of coal and ironstone has some peceuliarity in its fossil eonenes; and if this shonld tmon out to be tmen, we shatl have a still better means of asecrtaning in what part of" a coal lasin onn pits may he sunk-a very important point-lin if one mines should happen to lie men the lowest beds of the whole scries, (say at h, in the woodent, p. I!) it wonld he a mather munofitable imvestment to loy ground there. But if wn the contrary we ane likely to be on the "Topl conl," why then, work away murily ; we may say, aftering Mrs. Hemans' semse, but not her word:-

> "Yiet more-the di pths have more; whit wealth untold Far down, and shiming in their stilluess lies,"

I will not :ud imother line-for ology does mot admit of parodires, and gersl seluse refines them.

Wedl. new, weve fomud omr coal. The next thing is to get it. linerand rapuires for lome consmaption and for export nearly seventy million tons per ammon: and if yon pat all lace conalfieds dogether they do lint meatisure nine of torn thonsame squate miles. Yet
by good? management we contrive to get that enormons quantity annually from them. On an average coal fetches nine shillings a ton. So that here is thirty million pounds sterling, and more. Besides we raise four million tons of iron. Each costs about a penny a mile per ton carriage by the railway. And where carts are used, a shilling a mile per ton must be paid for them.* Coal and Iron together wonld pay two-thinds of our taxes for the year !

America is richer in coal than we are; she has twelve times as many square miles of coal-beds. But her forests are yet so extensive, that she does not-including British America-find it necessary to raise above seven millions of tons a year. This is scarcely so much as France gets from her seanty coal seams. All honour to her genius and industry (would they were always employed in arts of peace) ; she gets seven and a half millions from about one thousand eight hundred square miles of coal. But what shall we say of little Belgium, which raises eight millions ont of her five hundred square miles! Belgium has plenty of iron too, and she meties muskets, but does not wish to use them.

Russia will scarcely tell us much about her coal-mines. She gets less than a million tons per annum! Austria is almost equally poor; and the whole of Germany does not raise much above five millions.

England has very nearly three thousand collieries in profitable work, and four gorernment inspectors to see that they are safely handled.

As the beds in a coal basin, though regular, are often much broken, it is usual to bore the ground before commencing the operations for extracting it. The horing apparatus is very simple. It consists of a gigantic gimlet, which from its weight also acts as a chopper or a chisel. It is made of iron, tipped with steel; and of joints which screw together as they are successively pushed down - the point being either a cork-screw or scoop for soft strata, clay, \&c., or a chisel for harder rock. The principal instrument in use is called a " wimble." It consists of a steel cylinder, or rather a plate of stecl rolled round into a cylindrical shape, but so that the edges overlap a little; and it is found that this curled-up plate, with a square notch cut out of the sharp-cdged end, is about the best form for the double work of chiselling the stratum and bringing up the fragments. Then there is a scoop for mud called a sludger; and a great many varieties which may be screwed on to the end of the rod. But the main end and object of all, is to cut the beds through, one after the other, and bring up such fragments to the surface as shall show the uature of the ground through which the rod passes. The instrument is worked by four men when the depth is not very great; but horse or even steam-power must be used in deep borings; and the work is very expensive, since the rod must be continually drawn up and the fragments removed. For eight hundred feet down they can tell very accurately what beds they are passing throngh.

[^11]All this is only preliminary : there monst be a done to your honse if your ane to ret into it, and the shaft is the door to a eral mine. This is the first thing to be completed. It must go the whole depth of the znine. in order that they may get rid of the water that sorkes throngh the strata. This is man's great enemy when he is mining - at least the first one-for bad air is at least as great an ememy afterwarls.

The shaft then is sunk to the "dip" ead of the main, or lowest level of the floor, in order that all the water which may pereolate into the workings may eventually llow down into the "sump" or cistern that lies at the bottom of this "engine shaft."

Fig. 3.- Diagram of slafts, I b, chgine shaft,- b, the " sump," or cistern; c, upeast shaft,- l, its furnace.

It is wo light work to sink a shaft-cleven or twelve feet wideto at depthof perdaps one thensand feet. The materials are sometimes very soft, as shate; lomt this las the disadrantage that yon must line it with brick or wood thronghout. Sometimes the rock is hard chonerlito stand alone; then the matrix is a tongh rock and wery difleult (o) cut. Oftentimes the loaky state of the bed makes it necessary to line it with woorlen "tuhbing" thronghont; and this is an old consom. Nome recently it has been fonnd adrantageons fo mse iron erlimers the whole way! A shaft a thousamel feed deep will ordinarily cost alont there thonsand prounds; and it a two humdred and fifty horsepower engine be required, there is another five thomsinul pomads fo lecrin with; and while on the subject of expense, it may be well 10 say at ouce that fifty thousand to two humbed thonsamd pounds are (10) menmmon smms requited to set a colliery faily gening, hefore a hancen of coal is drawn. but then if it yiclds - and it ought to yicll-twolse peremt., it is mo had sperulation alter all.

They encmeally fime too they must sink two shafts; and the pumpinge cotrine will not do for drawing also. The two shatts are rergured for ventilation ; and they serve also to prevent the mischief of letting
 leave the bentilation alone just now; and only say with reference to
 (formolls.

The way in whicle water limes its way into a coal pit is the same asthat in which it fimles its wiry infor Artesian wells. The water comes
fiom the surface, a, u, runs down the porons strata, till it comes to the bottom of the basin, and therefinds its own level. It will not run through the clay (b), and hence you have only to drain what lies above it in the strata, a. Nay more, if one part of the basin be cut

Fig. 4.-Scetion of Coal Basin. a, porous beds; b, clay ; c, water level.
off from the rest by fanlts, as in our diagram, p. 9, only what lies on its own side of the fanlt will have to be drained by any shaft. So that a fault is a positive adrantage, paradoxical as it may sound.

Though they cut up, and often tumble the beds much, yet being filled with clay, they effectually shut off the water of one compartment from the other: and render it possible to work in the dry, when otherwise you would have to work in the wet. Like many other apparent disadvantages, they do good after all.

We may guess what a terrible plague the water is to the miner, when we know that in sinking some shafts, the engine has had to draw off three thousand gallons a minute, with a pump eighteen inches diameter. It is still worse in the Cornish tin mines.

It is a curious fact that in deep mines the water is generally saltoften salter than the sea. It often, too, contains green vitriol (sulphate of iron) iodine, bromine, and other constituents of sea-water, which no doubt it once was. We shall see that by and bye.

And now we've got our shaft down to the lowest point-our pumps at work-nearly all our money spent; and we have to find out how to work the pit to the best adrantage: for some pits will send up three linndred or four hundred tons a day; and an acre of coal with sixteen thousand tons in it may be cleared off, by a good method of working, in six weeks!

The winding engine 0 " "whimsey" is not nearly so powerful as the pumping engine-seldom one hundred horse power-and round the drum over the pit's mouth are coiled the flat chains (of three or four links.) or strong ropes, which last they find best for draming coal.

The baskets or "skips" are of various shapes in different mines. A common form, which strikes a stranger with some surprise, is a low flat box on wheels, on which the coal is piled; and when the pile is high enongh, a broad iron hoop is thrown over it; more coal is added; other hoops thrown over that-till the pile is as high as can be raised
with saldy: The hoops edfectually prevent the coal firom falling off; hut it has an ord appeature , like a black erimoline petticoat.
supperse then the miner at the hoteme of his shaft, it is not all straight formand ligeging then. There is a structure in cobl, and he mast take advantage of it. It is fall of joints which cut it up into -guarish pieces; one set being backs or entters, and the other joints; :und the art is to drive the piekaxe and lever along these two sets \&n as to work the coal in the easiest directions.
'This structure ean be secn even in the little specimens in ourown coal scoutles, and is che to the pressure the eoal has reccived sinee it was hardened. There is nothing erystalline abont it, as some have fancied. It is a surt of clearage.

As most conal lies on a slope, the first sallery is driven horizontally along it at the lowest level, ", ". This lomizontal gallery, which mmst

 n promedins forwatio and sillways, in signares, fo the extent of 11, ir workiner of of anch portions as they clonse tor work ont tirst.

to support the roof, and gradually driving the galleries or stalls forward, up the slope of the mine.

The coals are brought down the galleries, which have each a tramway laid in it, in small wheeled cars, which either carry the skips or are themselves detached from the train, hauled np, returned empty, and again wheeled up by the "pntters," or boys employed for this purpose. Ponies generally draw the loaded cars in lines along the diphead level to the mouth of the drawing shaft; and these ponies, sleek and well-fed, live in the warm mine and like it. They learn to hold their heads low, for there is never too much space in a coal gallery; and if we would imitate them, we should escape many bumps through life.

When all the galleries are cut, then they begin to thin the "posts"-and this is a work of some little danger. Not only is the roof inclined to come down on the miners' heads, but the floor often bulges up beneath their feet. Such a disturbance of the ground, arising from the great pressure above, which forces down the pillars into the clay beneath, is called a "creep." It has an odd effect on the buildings over the colliery. They begin to fall sideways out of the perpendicular; square windows take a lozenge shape; doors, \&e. will not open, being jammed at one corner. Ceilings fall, bit by bit, upon the inmates; and altogether a "creep" produces umpleasant feelings for all concerned. But it caunot be helped-the black stores below are worth more than the buildings above; and, therefore, they must go the way of all bnildings.

The process of thinning may begin at one corner, a, (the furthest from the shaft,) before all the galleries are finished; and when a good many of the "posts" are thinned as much as they will bear, they extract even these, substituting wooden posts for coal ones. The space then looks like a forest of dead props, among which you may easily lose your way; and, as these decay, down comes the whole mass, slowly but surely, till the roof and floor meet in a broken irregular mass. The hollow space with its ruin of shale and sandstone-of sound and decaying props, is then shat off from the other compartments of the mine. No ventilation is further given to that quarter, called a "goaf," and foul gas and tar-water, and every abomination, may collect there till time shall end. It is a sort of Tophet.

There is another way of working, much used in thin seams and small collieries, and universally preferred in Scotland. It is "long wall" working. In this method the galleries are driven (as before from a dip head level) parallel to one another the full extent of the mine, but not near together, and the coal between the ways is then worked out bodily ;-small entries being made through the wall, and all the intermediate coal "got" out, enough only is left along the sides of the ways to ensue the safety of the latter.

Our diagram shows a piece of this sort of work. (See p. 66).
The rubbish, (roof,floor, \&c.,) which must be got out in the main ways with the fuel in thin seams of coal or ironstone, (for ironstone is got in almost every coal pit,) need not be taken away; but is filled into
the empty spaces, 7 , as the coal is extracted. And a sort of hed is thas made to receive the desending roof. It is stilling work in these thin seams when the poor hewers have to lie on their sides and ply their picks agranst the black wall in face of them, with a yellow

Fig. 6.-Plan of worked-out Mine.
at the galleries with their walls of solid enal; B, C, the "roafs," or worked-ont spaces filled with shale and rublish; D, shart ; b e, dip-head level.
remdle flaring in the one hand. (or a Dary) the elbow resting in a hole cont to receive it, and the whole man sweating in a hot atmosphere for homs together. It is a heary price to pay for comfort above gromed. Bat they do not mumur ; and a good hewer will clear eighteen shillings a woek, after paying for liis candles, tools, de. ; while the overmen receive twentr-five to thirty shillings.

The thick coal of Statlordshire was formerly mined on the "pillar and stall" system : and Mr. Warington Smyth has given a graphic pieture of a "side of work in the "thick seam,' when a large fill of enal is brought down from the dnsky heights of that lofty ehamber. The thmorler of the falling masses, which seem to shates the solid earth, contusts fearfully with the dead silemee that emsues. 'The handy colliens seare hreak it by a whisper, while in suspense they listen for the slightest crack which might portend a firther fall." Bat the Pmomone laight of this eoal-chamber, often thirty feet, was of itself as somere of dangere amd the pillars required. and whel must be all waste, so lancer, that it is mow fomurl profitable to work it in "longwall" methorl. a half of more of the seam at a fime, becgming at the top. By this means they get all or mearly all the coal-abont thirty thonsand toms to an acree. They nsed to get bom sixteen thousand. 'Thero are fome homdred amb twenty collieries in this rlistrict alone. Alont wne thited of the coal they mase is expended in their famaces ; (for mear a million lons of ironstone are raised in this fied anmally, hesides the eroal formerly mentomed, pare 10). About hate as mand is sent from other plares ; and a year or two hack this pametity prodnced six handorel thonsand tons of pirs-ivon from sixty-font
furnaces. There are one hundred and two mills and forges in the Staffordshire district. For this information, also, I am indebted to Mr. Robert Hunt, of the Mlining Record Office.

We are not talking, however, of Staffordshire, but of coal mining in general, and now a word on the rentilation-the most important of all things for a mine after the water has been expelled.

Without a furnace to create an upward dranght in the one shaft, so that the air may rush down the other and travel through the mine, the work would be well nigh impossible. The way this precious air is made to circulate throughout, instead of merely going from one pit to another, is partly explained by our diagram, fig. 5, p. 64. The arrows point the way the air goes up one side of the workings, round the further end, along the working faces of all the galleries, and then back again nearly to the same point to the upcast shaft, U. There tha contaminated air, after passing the mouth of the burning fiery furnace, gains the upper world, and makes room for a better and purer element. The air is restricted to this course by the air-doors, which are marked as black lines in our plan, across the galleries. These are strongly framed doors, of iron chiefly, and are kept by boys, " trappers," as they are called, whose sole and solitary work it is to open and shat these trap doors whenever a train of waggons passes. A few words of converse with the " putter" lads. who bring the loaded skips down the "ways"-or it may be, quite as likely, a scuffle with them-are the only relief these poor boys have (they are mostly very young) during the dark and solitary hours. They cannot afford a "low". or candle for the "trapper" boys!

In most of the important mines, a separate "windway" or "airhead" is driven by the side of the galleries (or an air-tight wooden tube is carried along), exclusively devoted to air from the downeast shaft; and then, after supplying the miners in the stalls, finds its way back along the galleries, escaping every time an airdoor is opened. The same method is adopted in longwall work. But occasionally, as I learn from Mr. Smyth, they work two galleries side by side ; and use one of these for the incoming air, and the other for the return draught. Whichever mode is adopted, the principle is the same, viz. : to carry the air all round the mine, drawing it forcibly down one shaft and up another, at the other end of the system. Be it remembered the actual heat of the earth is much greater below the surface than above; that choke-damp (an elegant term for carbonic acid) and other poisons too sometimes, are present in the mine; and ventilation, whether by fans or furnaces, will be seen to be vital to the work.

Any neglect in this important matter exposes the miners not only to the displeasure of the overseers, and the ill report of the government inspector, but to the positive danger of explosion from the foul gas, which is ever accumulating in the mine. The fearful fire-damp, which has played so terrible a part of late, is generated rapidly in the coal pit. It is carburetted hydrogen, the same gas which burns harmlessly in our streets. It rushes out from many a fissure and dark chamber upon the miner, who, in spite of all the precautions taken for
his safety, often ventures on his work with a naked candle, instead of the useful instrument which Davy and Stephenson had given him.
l need not speak of this "wonderful lamp," which lights to treasures as ralnable and far more durable than those Aladdin found. Who would have thonght, when Dary was pondering on the fact, that flume dicl not pass readily through narrow tubes-and trying shorter and shorter lengths of these in philosophic sport-that he was really making a discovery which has saved the lives of thousands.

The govermment inspection, now regularily carried on, will do much to encourage those that do, and shame those managers that do not conform to the regulations laid down for their benefit. But more, a great deal more is be looked for from the education of the miners and their children. They lave friends for the body, and for the mind too; and a life spent underground camot kill out the intelligence and virtue of a man who is determined to hold it fast.

And now we have done with coal for the present, let us try and find out how it was formed.

It is perfectly understood that it is made up of plants. We neod not enter again into that proof: coal is full of them. You cannot stand five minutes by the side of a shaft, and look at the heaps of dark blue shale brought out of it, without finding them full of ferm-leaves, and grass-like plants, and bits of diapered or fluted cylinders highly ornamented; with occasional fir-cones, or what look like them, and a heap of other fragments. The coal itself bears witness to the quantity of plants in and about it. It is generally too solid-too crystalline so to speak-to show its strueture well. But here and there the chareoal fragments in it are covered with regetable tissue, and the microscope reveals still further traces. Of these I will say a little more in our next number, for my space and time too are somewhat limited at present ; and with the fact that plants in myriads are found in the coal, above the coal, and umder the coal, I must request my young readers to be contented till next month.

> (To be Continued.)

(N゙ SOME NEW FACTS RN RELAATION TO 'THE SEC'TION UF' 'THE CLAFF AT' MUNDESLEY, NOREOLK.*

By Josepu Prestwich, F.R.S., F.G.S.

Ir the fine coast section extending from Happisborg to Weybourne, the Bonlder clay is laid open to an extent nowhere else equalled in Fingland. 'The relation of this Bonlder clay; on the one side, to the fiorest bed and Crag underneath, and, on the other, to the serios of

[^12]sands and gravel above it, is there exhibited in full detail and great variety. It is our type section of the Glacial period. In the interesting account of this coast given by Sir Charles Lyell,* in 1840, one place is noticed, where, owing to the wearing away of the cliff considerable changes have since taken place, and a section of importance has beeu more clearly exposed than it was at the period referied to. I allude to the section at Mundesley, where the Freshwater deposit was thonght to be intercalated in the Boulder clay - an anomalous position and one difficult of explanation.

In my paper read before the Royal Society, in May, I859, speaking of the flint imple-ment-bearing strata at Hoxne, I mentioned Mundesley, amongst other places which are probably synchronous with it. I am therefore desirous to show, briefly, the nature of the resemblance, and to prove that this Freshwater deposit really overlies the Boulder clay and is not intercalated in it. It is not as a matter of controversy that I now bring the subject forward, but merely as one of fact, for I believe that all geologists who have lately visited the spot, including Sir Charles Lyell himself, now view the section in the same light. (See section, fig. 1.)

I was at once satisfied that such was the order of superposition when first I visited

* Phil. Mag. for May, 1840, p. 353 .

this coast in 1819, and sereral visits sinee paid to it, in company with Mr. Morris, Mr. Godwin-Ansten, and other geologists, eonfinned myself and my companions in the same view-a view, I find, which agrees whith that taken by the Rev. Mr. Gumn, who has made this part of the coast his especial study for some years past. So variable, however, is the condition of the cliff, that on each occasion some new point of interest has been displayed.

Commeneing with the lowest beds of the series, the Chalk and overlying Crag are not exposed. The dark sandy clay (I), known as the Forest bed, from the abmedanee, amongst other remains, of stems and trmuks of trees found in and on it, here forms the base of the cliff; but it is only exposed at a few spots, and when the talus, too frequent at the foot of the eliff, is washed away. Immediately upon it is a thin bed of sand, gravel, and clay, in variable proportions, containing a number of mammalian remains, and especially characterised by the Elephas antiqums.

Above this is a series of thin beds of sand (h), with subordinate gravel and clay seams, together from twelve to twenty feet thick. No fossils had hitherto been found here in this part of the section, but in a visit there in 1858 , the Rev. Mr. Gum showed me, on the sonth of Mundesley, a thin scam of pebbly clay (x) in the lower part of this series, and only one or two leet above the Forest bed, full of Freshwater shells, ehiefly Uuir, Cyclus, Pisidium, ete., all, I helieve of recent species, and like those in the overlying Freshwater deposit (b). * On examining the same zone, on the north of Mundesley; I conld not find the same clay bed, hut I fonnd in a higher seam of sand Cylas ant Suceinert; and further I found above this level, and in the middle of h, a thin seam full of some marine sliclls, but in a very fragile condition. They consisted of the common Mytilus edulis, with Julumi attached to some Littorina littorulis? Naticu, and one or two other indeterminable specimens. Above this series (h) is the great beel of lhoulder clay (y), lere not more than seren to fifteen feet thick. Nortlr and south of Mundesley, this is suceeeded by a series of laminated clays, upper boulder clay, loams and sands, (1), of erreat thickness-with a bed of gravel eapping the whole. But at Mnndesley these upper heds have been removed and an ohl valley, the bottom of which is oceupied by a Freshwater deposit, cut through them. The section, which is well exposed in the cliff, shows the former old valley to bave been depper than the present one, and seooped ont throngh all the sames and gravels (i). the Boulder elay (11), and dewn nearly to the so-called Fowest lext. The buttom of this depression is lined first hy a bed of grawel, and then filled up to the depth of twenty to twonty-five feet liy a peaty clay, abounding in

[^13]land and Freshwater shells, all of recent species, together with remains of fishes and insects; and for the list of which I refer to Sir Charles Ljell's paper. Some mammalian remains have also been found, but the only bone I myself obtained was, apparently, that of the ox. Now this deposit is underlaid throughout its width, and thereby distinctly separated from the Boulder clay, by the bed of ochreous flint gravel (l^{4}), two to four feet thick. It is orerlaid by by another bed of gravel and brick earth (a), of five to ten feet, also newer than the sands and gravel $\left(f^{\prime}\right)$. The way in which these two gravels merge one into the other, at each end of the section, is rery instruetive.

In superposition, therefore, abore the Boulder clay, this bed resembles the Hoxne deposit, as it does likewise in its Freshwater character and shells, and in its unconformity to the existing line of drainage; for a reference to the section will show that this Mundesley deposit is not exactly coincident with the line of the present valley. I consider it is a deposit in which flint implements like those of Hoxne may probably be found - especially, however, would I suggest a careful search to be made in sandy part $\left(l^{1}\right)$, and the gravel $\left(b^{4}\right)$. The determination of the exact superposition of this bed is further of consequence, inasmuch as some important questions, connected with the fauna of the pre-glacial and post-glacial periods, hinges materially upon it. In this inquiry, therefore, I have, for the present, limited myself merely to the question of position, and to pointing out the presence of the Freshwater shells at h^{3}, and the band of mussels in h^{2}, otherwise learing aside the other important question of organic remains.*

I have annexed a rough but proportionate and measured section of the beds, taken at different favourable periods.

PROCEEDINGS OF GEOLOGICAL SOCIETIES.

Royal Institution.-Dr. Tyndall's lecture on the 1 Sth ult. was a momorable one in the annals of eren that famous institution, of which Faraday is one of the brightest ornamants. The Radiation of Heat is an old and familiar subject; but Professor Tyndall has crowned it with some new and most important facts - "On the Influence of Gases and Vapours unon the Rays of Heat Emanating from a Dark Hot Surface."

Before an andience of five hundred persons, of the highest rank and education in the metropolis, Dr. Tyndall, pale with anxiety for the success of those experiments, almost unrivalled in their delicacy, on which the ennnciation of his important facts depended. demonstrated forcibly the new truths that the heat radiated from dark bodies differs in many respects from the heat radiated by

[^14]lmminors bodies. The solar rays reaching the earth lose some of their properties on radiating from it - for it is well known all material substances not absorbing heat are radiating it, and by the aid of instruments of the most relined character, Dr. Tyndall has determined that such dark heat-rays pass without loss through absolutely dry air-that they permeate many of the gases; but their progress is arrested by the perfectly colourless and transparent olifiant gas. Amongst rapours the dark coloured bisnlphate of carbon opposes no obstruction, but the attemuated rateour of ether stops them completely; while the yapour of water admits of thell permeation wth difficulty. Carbon-vapour in the air would facilitate the radiative action of the carth's surface, and occasion its rapid cooling, but water-vapour prevents the heat radiations from passing away, and preserves that temperature necessary for the existence of amimals and plants. The warm gnlf-stream, impinging on our coast, charges the air with moisture, and this envelope spreading over our island compels the heat absorbed from the sun by dar to he retained in the earth at night, but if any circumstances produced a drier atmosphere we might suddenly lind ourselves reduced to all the severitics of an arctic climate.

What are the bearings of these new facts on the anciont geological condition of the Carboniferous age aud the Clacial period, are gnestions at onee suggested to our mind, for it appears to us tl at the presence of a large quantity of carbonyapour in the atmospliere, as there has been generally supposed to have been in the Coal-cra, would of itself have facilitated the radiation of heat from the carth's surface, and have promoted its rapid cooling; but as besides this additional quantity of carbon, there is supposel to have been a vast amount of moisture in the air, we have thus to consider what would be the effect of the commingled condition on the elimatical state of the grobe during that interesting and impor ant cra. 'The effect of a drier atmosphere in allowing the free radiation of heat is also, cevidently, a point which camot in future be left out of our speculations, on the causes of that extraordinary period of cold-the Gilacial period.

Geological Soriety of London.- Depember 19, 1860.

1. "On the Geological Structure of the Sonth-west Highlands of Scotland." By 'T. F. Jamicson, Esq.
2. "On the position of the beds of the Old Red Sandstone in the Comitics of Forfar and Kineardine, Scotland." liy the Rev. Hugh Mitehell. Communicated by the Socretary.
denneriy is, l"Cil-1. "On the Distribution of the Comals in the lias." Jey I'. Is. Mrodir, II.A., F.G.s.
3. "On the Sections of the Matvern and Leedhury Thmmes, on the Woreester and IIereford Railway, and the intervening liane of Ratroad." By the licr. W. S. Symonls, A.M., P.G.S., and A. Lambert, Eisq.

NOTES AND QUERTK心.

Trerventasi Ovi.- Where through the English range of the "Old Red" tilestones has l'terygotean ora (I'trlan deripsiens, l'age) been met with besides the Trimpley pharry, near Kidderminster?-(ieorse L: Roberts.

Fonssi, Oitives. Ir. R. WV. Wallaer in a mest able paperem the Bornen orang, siys: "Onc camot liclpreflecting on at former condition of this world which
would give a wider range to these strange creatures, which at once resemble and mock the "human form divine"-which so closely approach us in structure, and yet differ so widely from us in many points of their external form. And when we consider that almost all other animals have in previous ages been represented by allied yet distinct forms-with what intense interest and anxious expectation must we look forward to the time when the progress of civilization in those hitherto wild countries may lay open the monuments of a former world, and enable us to ascertain approximately the period when the present species of orangs first made their appearance, and perhaps prove the former existence of a allied species still more gigantic in their dimensions, and more or less human in their form and structure !"

Beds of Flint Pebbles at Charlton.-Mr. Edm. Jones having informed me of the remarkable difference in the character of the two beds of flint pebbles at Charlton, near Woolwich, and prescnted spccimens, I requested him to furnish me with a section showing the position of the beds, which he has kindly done. The flints from the upper or No. 1 pebble-bed are readily broken by the slightest blow of the hammer; while those from the lower, or No 2 bed are intensely hard and tough, and are broken only with the greatest difficulty. It is not easy to perceive the reason of this difference, as both are ordinary chalk-flints.S. J. M.

Section at Charlton (Mi. Allen's Pit).

VOL. IV.

New Fossils from Skindaw Slates.-Sir,-I thimk it is worth while to call the attention of your readers to a new and very interesting locality for fossilsin the eclebrated Skiddaw slates. Mr. Bryce Wright, of

New C'mastacean from skudaw-slates. Russell-street, who is well known in the natural history trade, devotes some time amnally to collecting them : and lie has a store on hand, from the neighbourhood of Keswick, of the Graptolitesseryillarius, G.latus, fi. lemuis; also a new Crustacean form allied to Dithyroceris, very abmodant.
Lastly, he hats diseovered-and we owe him many thanks froi doing su-the manched Graptolites (which Sir W. E. Logan birst brought to light in Canada), of this shape.

Prof. J. Hall considers them only to belong to the gemes Giraptolites, which has a simple stem with one row of eells. But this is ecrtainly not the case, for the true simple Graptolites are perfeet from cud 10 cud. I shall shortly, I hope, describe the new branehed dichotomous form under the name of Dichograpsus; meanwhile I think 1 am doing some service by ealling the attention of those living near the Skiddaw slates to the mexpeeted riehes of that formation.

Trails of worms (and those abmomal things called fucoids), are abundant rmough everwhere in then. But no grod list has yet been published; and the formation is ahmost a rircin one for explorers.

C'm no one find the Jingula flages on the flanks of the Saddeback? We are beriming to disbelieve in metamorphic roeks being unfossiliferons.- Yours truly, J. II. Sillter.
(ibobugical Githe to the OnNy Valey.--In commeneing a geological trip up the Omy Valley, the most convenient plaee to start from is the Craven Irms, a slation on the shrewsbury and Herford Railway; and laking the furupike-rond towards showsbury for about a mile, a stile is reached on the left hand side. Whenee a font-path leads arross a field near the bridege ower the Omy River. Procerd along this path about three homded gards and eross over the railroad, then turn down to the riser and follow up, the seam to the tope of the meadow- the Wenlock shate may there be observed expered in the river bet, and if the water is low some fine specimens of J'herropse lomgicandalus may be proensed, logether with

 heds are just helow the fenee, clone to the left hand bank. Keep on up the sit of the hrowh until arriving at a fout-bridece, which cross and immediately go inte the fiell alove: nearly at the furthry cond is the eedebrated "Onny Seretion," showing the lower membere of the Wenluck shate, (or Purple Beds;) the Llandowry or Pentamerns limentones, and the ajper beds of the Caradoc samblomes, lying nearly romformable, and in ware cont mons section.

Fiom the Th enlock shate has been procured C'heirurus Limucromalus, Binerimurus gunctatus, E: rariolaris, a now trilobite; Orlhis bilobler, Beypielime luberculater,

Leptenu leevigata, Stiophomena pecten, Atrypa reticuluris, Rhynchonella fircuta, Petraia bina. The only fossil that I am aware of haring been found in the Pentamerus limestone, in this lueality, is Pentamerns undutus; it is a very thin band here, and only to be observed by carelul search; it lies about the middle of the section. From the Caradoc sandstone at the further cud of the section, some very fine and perfect Trinucleus concentricus have been observed; several heads of Ampy.r pinnutus, and one entire specinen; fragments of Remoplewrides rudians, Illenus Darisii, Calymene Blumenzachii, a new Raphistoma, Orthis elegantulu and a new fossil allied to Siphoneticta. At the top of the second meadow above this place again cross the stream, at a spot where a pole hung by a chain is suspended, and on the side of a scetion of Caradoe sandstone, a new fossil Sphecrospongia hospitatis may be readily observed, as the marks of hammers show clearly the exact situation in the cliff where they are to be found; and besides this new fossil, many others belonging to this formation are there to be procured. Continue up the stream to Longrille Common, where a quantity of loose stones, of a qreenish olive and jellowish brown colour have been thrown down from several old quarries abore, belonging to the middle Caradoc formation. These stones here are rather barren : still some good specimens of Modiolopsis orlicularis, Bellerophon bilobatus, B. acutus, Strophomenu expansus, and sereral species of Orthis may be procured. At the further end of the common, cross the river by the stepping-stones, and immediately orer the turmpike-road leading to Bishop's Castle, is a large quarry of Bala limestone, the beds of which are all pitched up perpendicular, owing to several large faults in the neighbourhood. The stone is very hard, of a light blue colour, and meh used for road-purposes; few fossils hare been obtained, being here a rather barren rock; but Mr. Salter, Palæontologist of the Geological Surver, found a short time ago a new Lingula, which may be obtained in abundance; small portions of Diplograpsus pristis, some very large Strophomena grandis, with other organisms are to be found. The lower members of the Caradoc sandstone lie conformable to it on the lower side of the quarry, and some of the beds are very rich in organic remains; the best beds are about half way up the bank, and may casily be known by the hollows in the side, where the right strata hare been rorked, the stone is of a light brown colour, and of a tough sandy character. A sharp chissel-shaped hammer is the best for these beds. Some perfect Trinucleus concentricus have been obscrved here, together with a now Asuphus; several other Trilobites, which I think are not described; some very beautiful Fenestelle, Beyrichia complicatu, and sereral fossil shells. These beds would probably yield sereral new organisms, if a careful search were made, as hitherto they have reccived but very cursory inspection from geologists.

About a mile and a half higher up the road, is a hill called the "Broken Stones," the lower part of which is composed of the Longmynd or Bottomrocks; and the top of Caradoc sandstone, very poor in fossils. tll the rocks bere are very mnch pitched about in consequence of numerous faults.

From the Bala limestone to the Wenlock shale, which are about tro miles apart, the road, with the exception just mentioned, passes through the lower beds of the Longmynd rocks, from which no fossils have yet been obtained.

After passing the Wenlock shale, in which no sections are to be seen, the road again passes through the Caradoe sandstone, which continnes to the Marsh brook; on the sides are several quarries full of the general remains peenliar to this formation. The most prolific section is in the private drire, close to Marsh Brook Station through the eoppice to Minton, where a large proportion of Caradoc fossils are to be procured. The following are some of them that have been obtained there:-Tentaculites anglicus, Phacops conophthalimus, Homnlonotus bisulcutus, Trinucleus concentricus, crinoid plates, species of Fenestclla, Teluitipora lens, Oilhis unguis, Oithis elegantula, Oithis respertilio, Strophomena
grandis, a new species of Trematis, a species of imbonychiu, Bellerophon suleatus, Morliolopsis ordicularis, Lingula oratu, and is species of Nueula.

The reader is referred for further information on this interesting and beautiful locality to Messrs. Salter and Arelin's paper, in the tenth volume of the Quarterly Journal of the Geological Society:-A. Marston, Ludlow.

Trkms used in the Description of the Brachopoda.-Sik,-I should be greatly obliged if some of your correspondents would favour me with a definition of the terms "mesial fold" and "beak ridges," which occur in Mr. Davidson's valuable monograph on the Brachiopoda, published by the Palrontographieal Society. These two expressions, which are used frequently, are not explained, as I am aware, in the body of the work.-Yours, A Student.
Our correspondent enquires what is meant by the term "mesial fold" and "heak ridges;" perhaps the accompanying sketches will explain these and other terms better than could be expressed by words.

Figs. 1 nal 2.-spirifir.
 flinm; d, area; ρ, mesial fold; f, rilis; x simus: !, lites of Lrowth; the line m is the lunge line; m and n are the eardinal angles, which may the angular or ronnded ; the line m h mal $h n$ is the rarilisal efler ; the murgit between o and p is the frontal margin; between m and n, or n and μ the lateral margins.

The "mesial fold" is therefore a longitudinal mesial elevation which often exists in the dorsal value of many species of brachinpoda, and to which corres fonds a simus in the epposite, or yentral one. The "heak ridges," or "lateral ridges" are ridges which in certain speries of Rhymelonella, ete., exist on the lateral proftions of the heak, leaving a thathened or concare space betwen them and the hinge-line. These" lateral ridges" are reither eontinued atong the side withont recurving to join the hinge-margin, or, after procceding some distance,
curre inwards to join the hinge margin. The "beak ridges," or "lateral ridges" are well displased in such shells as Wraldheimia resupinuta, W. numismalis, etc.

Figs. 3 and 4.-Terebratula.
i, larger, or ventral valve ; k, smaller, or dorsal valve; a, beak; t, foramen truncating the extremity of the beak; r, deltidium ;surrounding a portion of the foramen ; x, beak ridge ; v, flattened or slightly concave space between the beak ridge and binge line; l, umbo or beak of the dorsal valve.
T. Dividson.

Fossil Fers.-I have unsuccessfully searched the last, number of "The Geologist" for any information concerning the interesting specimen of a fossil plant from the coal-measures of South Wales, figured at page 461 of the last volume. I am quite ignorant of the flora of the coal period; but having had some experience among recent plants, I mas at the first glance led to the conclusion that the specimen is a partially dereloped frond of some fern. There is nothing leading us to suppose that the stem has any connection with Lycopodiacer. There are many species among recent ferns the roung fronds of which would present precisely similar appearances. In Polystichum and Cyrtomium for instance, (not to mention other genera,) the stipes and rachis will be found quite as shaggy as in the plant figured. A partially developed frond of Cyrtomium would also present the same appearance (if pressed flat) in regard to having the pinnæ all on one side of the rachis. Older fronds upon the same plant would not appear half so shaggr, as their squamæ, or scales, are very deciduous; and tro-thirds of them fall ofi before the frond attains its full size. The form of the whole frond shows that its vernation was circinate, another proof, if it were needed, that the plant was a fern.

I quite agree with Dr. G. P. Beran, that we sadly need some new and comprehensive work upon fossil plants. But in the meantime the publication of such new and intercsting species as the present in the pages of this magazine would greatly enlarge our knowledge of them. Our metropolitan muscums would furnish ample material for such a work, if any person of note could be prevailed upon to take the matter in hand.-C. W. Crocker, Kew.

This subject has not escaped our attention, and has already been the subject of consersation with a thoroughly competent gentlemen, whom we hope to induce to undertake the task.--Ed. GEOL.

Influexce of Peronide of Iron on Animal Life.-Dear Sir, the late Sir H. De la Beche, in the Mem. Geol. Surv. of Great Britain, vol. i., page 51, sass, "We have made experiments to ascertain the influence of peroxide of iron
upon marine and frew-water life, and, as might be expected, the presence of this substance was fomm to be highly iujurions to it, so that the anmals quitted the peroxide of iron as speedily as conditions would permit."

Where these experiments ever put on record? If so, where? If not, can yon tell me what was the nature of the experiments? Information on this suhject will greatly oblige, yours truly, W. I'.

REVIEWS.

The Coal-Fields of rireut Britain: their IFistor'y, Structure, aind Duration. With Sotiers of Coul-Fields in other parts of the trorld. By Emw. Iluld, B.A., of the: (icological Survey of Great Britain. Londoin: Edw. Stamford, Charing Cross: 1560.
'This is a small but extremely interesting and valuable book-valuable chiefly, however, for the ennsideration of one topie-the duration of the produce of onr coal-fields. When we look at the fact that of the ninetr-five millions of tons now raised for the supply of the whole world, the hritish lsles alone contribute serentr-five millions; and that our home consumption also, is not only enomons, hut perpetnally on the increase-the vital character of the question, in a national point of riew, is strikingly apparent ; and Mr. Mull's statements, brief as they are, will be read with great interest even by those who are not. geologists. While we hatre a good deal of information given us of the ereneral character of the strata, physical greology, and fossils of our own, and the primeipal foreign coal-lichle, in a very condensed form, all these mathers are brought. to bear upom the one impertant point - the exhanstion of our coal-mines. The results which Mr. Hull has arrived at are brietly given in his own recapitulatiom, and are as follows:-]. There are coal-dejosits in various parts of Enghand and Wales, all at depths down to nine or ten thonsand feet. 2. That mining is possible to a depth of four thousand fect, but beyond this the high temperature will prove a barrier. B. The temperature of a coal-mine at a depth of four thomsand foet will probably be found as high as one humadred and wenty decreces lathr.; but there is reason to bedieve, that by the ageney of an (flicent system of ventiation, this temperature may he so recheed, ai least during the cooler months of the vear, as for allow of mining-()perations without umbanal danger to loralth. A. That for working mines of greater depth tham 1 wn thomsand on two thomsand tive handed foed, madergromed stares, with indeperdent wonding machincry and cogines, will be found not only to remder veryderpminine practicalle, hat also to lessen the amome of risk from areident. 5. Lastre. Ddopting a depth of four thousand feet as a limit to deep mining, 1hare in still a quantity of poal in store in Emeland and Walles, sullicient to afford a supply of sivi y millions of tons for about a thousand yars."

In his summary of riesomeres, Mr. Hnll gives for Fingland and Wales a total coal-contaming arca of thee thonsand seron hunded and eleven square miles wheld he eonsulers may he worked to a depth of four thousand feet, grivine thas a total asailable ruatity of fifty-nime thonsand our hundred and nine millions of toms. 'Taking the present probluee at sixty millions, and allowing three millions for the ineratere of futhere years, herenisiders the above supply of cond
 mineral rescurece of Dincland are rapable of learin in any drain to which they ean pousibly be subjected, cither for home or foreigen consumption."

For our part we are inclined to join issue with Mr. Hull, on some pointstwo in particular. First, we think he has underated the ammal drain upou our coal-store: and, consequently, the supply he calculates upon will not last a thousand years. Moreorer, we think the exhaustion will be accelerated by a much larger increased demand than the three millious of tons he allows. But then on the other hand we do not think he las admitted all the available store we possess. He has restricted mining-operations within a depth of four thousand feet, on account of the increase of temperature-regarded, generally, by geologists as equal to one degree of Fahrenheit for every sixty feet-and that greater depths present insurmountable difficulties for engineering operations. Doubtless, in one sense this is right way to view the question, because as increased depth causes proportionably increased expenses, and greater cost of the material the more we should be placed at a disadvantage with respect to other nations whose coal-fieids might be more accessible. When needs must, however, our engineers will undoubtedly surmount both the difficulties of mining, and find also some plan for keeping the mine cool enough for the rorkmen. We must also bear in mind that if the temperature increase with the depth, it does so in an ever decreasing ratio; and that from one degree to fifty feet from the surface, we have at greater depths to go seventr-five or eighty feet for an equivalent increase.

Our space, howerer, will not allow us to discuss these questions at length. Mr. Hull's book opens out a very important subject for consideration, and will, we trust, draw a wider attentiou from the public, and more detailed information from the School of Mfines. Some important data have already been printed by Mr. Robt. Hunt, in his Mineral Statistics ; and we hope to see these extended, and the whole subject grappled with in a manner worthy of a national institution.

Mr. Hull's book deserves attentive reading; and being inexpensire, that result ought to be attained.

On the Primordial Fauna and the Taconic System. By Joachin Barraxde; with additional Notes, by Jules Marcou. Boston, U. S. : 1560.

One great ralue of scientific research is the kinship it makes between peoples who would else know little of each other, and rithout it have no inducement to become better acquainted. Commerce is said-and rery truly, too-to make communion between man and man, though a geographical division of a thousand leagues may part them; but the deep thinking men of any nation, if this was the ouly "free passport," would be shut out from participation in the great and raried benefits accruing from an extended intercourse. For they, whom "men of business" nsually look upon as "half witted," and as men behiud the age-"busying themselves about things unprofitable, and past finding out"-have no stake in the wide-cast uct which is fast corering the earth, and drawing its riches into certain rortices of trade, to the impoverishment of the many and the enrichment of the ferr. So that unless rock unto rock answrered as truly as American cotton does to English gold, or African ivory to Birmingham guns, the value of the highest scientific researches a man could engage in would be lost in its best and noblest sense, from being locked up within the brain that imagined it, or exported rildly, without hopes of an imported return corresponding to it in value. Science which conduces to commerce, being made subserrient to the lower purposes of trade, will always be cosmopolitan in its extension, and be well thought of everywhere; but it is of theoretical geology we are now writing, and this, because it cannot be made to agree with any standard of human weight or measurement, commerce will hare nuught to say to. But here do not let us be misunderstood. We have
neser adroented theoretical gedogy: we do mot adrocale it now. The age of scological leaming is too voung for any theories to be put forward which ain at completemess. or that do more than indicate the position of a truth, hereafter to he limud, with greater labour and pains. But deductions from known and wablished facts so insensibly grow into theories when they are treated of, that the utmost care has to be used by those who make studies of any brameh of matural scienee, lest that which is hypothetical should be made to pass for a truly-hased conclusion. And though the domain of the "true and established" is gituing erery day somewhat of the treacherous and unstable ground of the ". rnecrtain," and so chanees of error are diminishing, yet at no time do we belinve, siuce geology began to be studicd, wats there less taste for drawing muduly upon the steady gain of honestly-got and costly facts, or a stronger fucling among those who are building ifoo the strong foundation, that the wealtif of what is real and true shonte not be perverted to suit a visionary soheme, or made to hear witnens to what may turn out a false and dehding theory.

These thoughts have oceurred in considering a certain question of great intreses and importance which has arisen out of the endewour to classify the wher Taconie (Cambrian) and Silurian rocks of Ameriea. That these Taconic rocks are the representatives in the New World of the Primordial zone of Burope, chiefly developed in Scandinavia and Bohemia, is generally accepted amone gestocists; while the only hesitation lelt is from the fact that these Buropean "Bottom-rocks" show sery scanty traces of life throughout their thirly thonsand fect of thickness, whereas on the American continent they contain more than one hondred species of ernstarean and mollusean life, aud are iudeed nearly as rich in famat and flora as is the Lower Silurian of Europe.

In a letter from MI. Barrande, of Buhemia, to M. Jules Mareou, of Boston, dated dugust 11, 1400, we tind the passare whieh set us thinking how grandly one mation thay beeome intertinked with amother, throngh a seientific discovery of harmenirs exivting betwern the construction of the eont inents they inhabit. Two Enropean lands - England and sipain-are bronght into cousinship with Comarla and the States, by similaty of rocks and sympathetic arramgenent of their layers: for M. Barrande has reasomable grounds for his expressed opinion that the Taremie sehists and limestones of Vermon! reproduee in Ameriea the: b]erk shates which lie ageanst the wewtern flamk of the Matrem Hills in our own laud, atu the selhisty deposits which hodd a similar position with regrad to the Camtabrian Monutains in spain. For thoush slight variations and, in the
 of the heds is berond doubt identimal; and we are elail to read II. Barramde's It math " that it is a getal ant moble quention, whone final solution will comphete the imposing hatmonion existing ableady lectween the series of Palaozoie fame of Snerica, and that of the contomprameons fanar of Enrope, leaving the cech the imprint peculiar in its comtinent."

It is inderd a moble ghestion: and while it i, one that semence can seltle by
 chterprise bert that ereat mans of spreatinge gerod, work hencath bamers of surecos, and sather in fruits till its hams con hold nos more; but still, there will be momenta when lahouress in the world's hive will be undazaled from the glare of their of lden sum, and wish themstlses with ahmost a sigh of regret, :menz thene frow workers who are teiling in the shadr, and there hailding up, with material besomel all the groled of emmeree to buy, a fabric which shath be a mind-dwatling for eser !

THE GEOLOGIST.

MARCH, 1861.

NOTES ON THE GEOLOGY OF CLEVELAND.

By Charles Pratt, Esq., Oxford.

Tre district of which it is the object of the present paper to describe the principal geological features, has within the last few years attracted an extraordinary amount of interest and attention, as well from scientific observers as from those who are always seeking some fresh ontlet for the investment of their capital. Until a period so recent as little more than twelve years ago, it was only for its fertile meadows and picturesque scenery of hill and dale, that Cleveland had gained any celebrity; but a metamorphosis so truly marvellous has since that time taken place, that it is already entitled to be associated with the most productive iron-making districts in the United Kingdom, and what, in all probability, will be its future position in that respect I shall not now venture to predict, although present circumstances would seem to indicate that, at no very distant day, the great ironfields of South Staffordshire and South Wales must give place to their youthful opponent in the north.

The discovery, or more properly speaking, the development of the great ironstone deposits of Cleveland in 1848 has given such a stimulus to the iron manufacture of the district, and indeed, of the country, as has seldom been experienced by any other brancli of trade. The present flourishing town of Middlesburgh, which, with its new environs, has a population of nearly twenty thousand, for the most part dependent on the iron trade, was, forty years ago, represented by one solitary farmstead, with a census of five inhabitants: and in like manner have all the surrounding villages in the neighbourhood of the new works and mines multiplied their former dimensions with amazing rapidity. But difficult though it be to know such facts and not scek to make them known, I must pass on from my few observations
on its sncial geography, to what is my proper sulyect-the Geology of' 'leweland.

The district is one of peemliar good fortune with respect to the attention it has received from scientific explorers, and the nomber. of notices which it has called forth in varions forms from those who have so investigated it. I might seem, indeed, to be performing it smpertinous task in thus addling to their number, did I not feel confident that a compendious résume of the chief points of interest will prove acceptable to many, eren of those who have kept pace with all that has hitherto been writien on the subject. Much of what I shall say has, donbtless, in one shape or other heen said already; but I shall say little which I have not proved ly personal examination on the field, and at the same time shall correct some crrors which I have discovered in the remarks of some of those who have preceded me. For a more elaborate accome of the history of this district, and for more extensive sections and analogies than I here an able to give. I may refer the reader to a very valuable paper read by Mr. John Marley, C E., before the Society of Mining Engineers, at Newcastle, and published in the fifth rolume of the proccedings of that excellent society. A voluminous monograph has been very recently bronght out on the Cleveland ironstone, which contains much valuable information. The writer, howerer, erinces a wat of comprehensiveness in his general ideas of geology; and the volume, besides some inaccuracies, contains so much which can only be of interest to the writer himself, that I regret my inability to commend it, either as a literary production, or as a scientific mannal remarkable for brevity and perspicuity. To other rolumes aud notices 1 shall give reference as I proceed; althongh I may mention that, to Professor Phillips in particular is due the merit of having been the first, and I need hardly add, the ablest investigator of this interesting portion of Yorkshire.

The whole of Cleveland may be divided into the great plain, or lowlands, and the hill-comerry, or highlimeds; the former of which is to a gerat extent surrounded and abruptly determined by a noble range of hills, varying in altitude fromone thonsand to one thonsand five hundred feet, and which gives the whole serne the appearance of a rast natural amplitheatre.

Before I proceed to a descriptive aceome of the varions strata, it may be well to make a few ulbervations upon the most striking physical features, and the theory by which they are accomed for: Noone who has visited the lovely diales with which the south-east of Cleveland is adomed em have failed to have been struck by the gentle acelivities, the curionsly-shaped " nabs," and the noble escarpments, which altermately present thomselves to the view ; and most chservers, donbthess, who have thonght of the matter, have in their own minds tixed upon some actionary ranse for all the pleasing diversifieations of seemery. 'Jomost, prohally, the watery element at onere presents itself as the mest familiar cause from which such a result conld flow; and liy some I know, the tiny stream, which sluggishly meanders throngh the vale, has been dignitied by being ioade
the agent of the metamorphosis. If, however, we consider the portion of the strata at rarious points, the different angles and directions of declination at which we find them, we arrive at once at the conclusion that aqueous action can only be referred to as the means of haring modified the superficial irregularities which had previously been occasioned by a more powerful-a subterranean agency,

That the Oolitic and Lias formations have obtained very much further in a north-westerley direction-how much further I see no data for ascertaiuing-their steep escarpments and abrupt termination towards that quarter most clearly evidence; and that the present inclinations of the strata, dipping as they may be found to every point of the compass, have been acquired subsequently to their formation, is only in accordance with the great principle of horizontal deposition. The general dip, however, of the strata is towards the south-east.

The tremendons consulsion which raised the great Penine Alps of England-that subterranean convulsion which uplifted the mountain limestone to a height of a thousand yards through a length of nearly se renty miles, which, in all probability, broke the continuity of the Yorkshire and Newcastle coal-fields, and which is justly termed one of the most magnificent examples of dislocation in Europe.-This stupendous disruption, I say-to which we may refer so many pheno-mena-may be regarded as the probable cause of much which may not otherwise be easily accounted for in the physical aspect of Cleveland.

How rast and potent must have been the oceanic currents, which cansed the denudation of so great an extent of strata! But, upon the fractured edges of the dislocated strata, the violent action of the waves and currents would exercise a wondrous wasting and excavating power. Here, then, we have causes sufficient for the changes we observe ; but, whether the actual efficiencies in operation, is a question for others to decide.

The rivers, as Professor Phillips observes, run from the north part in valleys which the sea made for them : the gradual wasting, through atmospheric agencies of the shales below has caused the superincumbent solid rocks to fall away, and crumble in their turn.

If we follow the course of the North Yorkshire Railway we shall see at a glance some of the instances of dislocation to which I have referred above. A little more than a mile eastward from the village of Kildale we notice the sandstone rock of the Inferior Oolite (which I shall hereafter call the " Bottom Sandstone rock"), a few yards only abore the level of the valley on our right hand, going eastward; whilst, on the left torrards Weyworth, it caps the summit of the valley at a very considerable height, and is easily traced descending very rapidly, as far as Commondale Station. At Castleton, which stands upon this same Sandstone rock, a very considerable dislocation is easily observed, which extends to a great distance eastward, and becomes more and more apparent where the rale of Danby is narrower, as at Danby Crag and Howlsike. The Esk here runs in a synclinal axis of the strata, as is most clearly discernible in Crunkley Ghyl, to which I shall have occasion to refer hereafter.

Before I proceed further with my notes, it may be as well to give a tabular section of the varions strata as cxhibited in this district. preparatory to their minute division and explanation. It will be observed that they are confined to
 the middle and lower divisions of the great Mesozoic scries.

Although I have endeavoured to show in my section the comparative thickness of the several divisions, we shall find that they vary very considerably in the extent of their development at different parts of even the small district mnder our present notice.

The following may be understoot as a general view of the series:
g, Impure limestone, with shales, sandstones, de., above 200 leet.
f, Shales, sandstones, ironstones, with fossil plants and thin scauns of cosl-500 feet.
c. Sandstone and ferruginous beds -70 feet.
d, Upier Lias shales- 200 fect.
c, Ironstone and marlstone series - 150 fect.
l, Lower Lias shales-500 feet.
a, Poecilitic gypscous marls.
I shall now proceed to examine the various beds of which these series are composed, taking them in the order of their deposition.
u, It is only the extreme western and north-western part of Cleveland where we find the lowest division of omr section apparent on the surface, and where, in fact, it forms the extreme northem termination of that long contimnous New Red helt, which has one extremity in the rich vales of Taunton and Exetere, and its sther in the broad astnary of the 'Tees. It is most easily seen in the distriet under notice, on the hanks of the Leven and other smaller streams near Hutton Rodlby; althonch I am not aware that its thickness has ever been acemately ascertained. A short distance below the village, the whoke bed of the pioturesque Leven is paved with the ripple-marked shales, which are so general in this part of the series. To the geological stmelent of vivid imagination. how strange to stand upon these rippled beds aud call to fancy's view the secne which, wons upon xons
ago, was there presented, before the mountains he now sees before him were brought forth, or ever the hills around him formed!

To sink through part of these shales and all the intervening strata to the coal formation below has been, as we need hardly wonder at, long a favourite project with the landed proprietors upon whose estates they crop out to the surface; but, whether a consummation so devoutly to be wished, is ever likely to be realised, is a question which may well be donbted. If we consider the inclination of the seams at the southern extremity of the Durham coal-fields, (which is about twenty miles north of the clistrict of which we speak, and the possibility of the attempt being made at a point where the coal attains a low depth in the fault (as we know the Lias is seldom conformable to the carboniferous series) : and, moreover, if we think of the doubt which may reasonably be entertained as to whether the coal-measures do actually underlie the Lias of North Yorkshire or not, and the great depth to which must in any case be sunk before the question can be pronounced to be finally solved, I cannot certainly hold out any hopes that for many years to come Cleveland will be reckoned amongst the coal districts, or that ever a trial will be made with a result to satisfy all, who are either scientifically or pecuniarily interested in the matter. Although the search for coal has so often proved unfruitful, yet the dim prospect of such a rich mine of wealth does so easily beguile the landed squire, that it seems an idea which the personal experience of an attempt to realize this fond hope alone can banish from his mind. And if we believe Sir Roderick Murchison,* amid all their failures we never meet with an individual who is really disheartened; but a frequent exclamation is, "Oh, if our squires were only men of spirit, we should hare as fine coal as any in the world!" An attempt was recently made on the estate of Visount Falkland, of which I cannot refrain from speaking in anything but terms of commendation-since the abandonment at a depth at which few would look for any result more than has been arrived at, has done nothing towards setting the question at rest. Its continuance, if persisted in. should be a matter for public, rather than private expenditure. As regards the gypseous marls of which we were speaking above, there seems nothing of sufficient interest in them to detain us longer in our examination.
b, The Lover Lias shales obtain over most of the plain or lowlands of Cleveland, and are seen to a considerable height in most of the escarpments of the long range of hills. These beds, which we may safely estimate at five hundred feet in thickness, consist for the most part of a dark homogeneous indurated clay or shale, sub-calcareous bands and layers of ironstone nodules, which are too much inconsiderable to be worked for profit, although when found on the shore, loose from and washed out of the surrounding shale, they have been shipped in small quantities for the furnaces on the Tyne. An excellent natural section of the upper part of the Lower Lias is visible on the Cleveland coast at Huntcliffe, and inland in the steep ravines on the

[^15]north side of Carlton, or', more properly, Dromonby Bank. In some parts, it it is very abondant in organic remains, and contains whole rocks which are little else than a congeries of extinct molluses the rioyphera incure being one of the most familiar and characteristic. No part of the Lower Lias has ever in this district been mrought for ceonomic purposes. From this we proceed to one of the most important divisions in that respect, namely-
c, The Ironstone or Marlstune Scries.-The lower part of this scries, Which we may estimate at a total of one hundred and fifty feet in thickness, consists of alternations of shale, marlstone, and sandstone, of a soft and argillaceons character, generally abundant in fossil reliquix, especially in Belemmites, Ophicricle, and Cardium trancatum, and partially fermginous. A good section may be obtained at the same points as I referred to in the last division, and the marlstones may be well scen in the prominent edges which they form in the farfimed Roscberry Topping, at the east end of the Wainstones Bank, and many other elevations.

It is, however, to the great irunstonc-band, which forms the highest stratum in this series, that this district owes all its celebrity as an iron-producing country, and in respect of which we may truly say, it is a "good land, and a land whose stones are iron." 'i'he seam was first developed in 1848, in the pieturesque hill of Eston Nah, where the yied may be ealeulated at about fifty thousand tons to the acre. The following detailed section is from a communication by Mr. Johu Marley, C.E., to Professor Phillips:-

The atore gives a solid mass of ironstone rock no less flam seventeren feet in thickness! This is, however, the point at which we find its erreatest development, since at Gionsmont, near Whithy, the same serves is fomend in this altered and divided state:-

- ft. in.

Shale ... 0
Ironstone-" Pertern-scam," in two hamds, scprarated by one feet six inches of shate 4. ()
Shale 4. 0
Ironstonc-rroud 1)

Shalc	ft. in. 70
Ironstone-grood	16
Shale	180
Ironstone-" Avicula-seam"	40

In the Grosmont district, however, as I shall have occasion to mention hereafter, the inferiority of these seams to their thickness at Eston is compensated by the presence of other seams above, which are not similarily developed at Eston Nab. The extent of country over which the Cleveland ironstone bands extend cannot be estimated at less than two hundred square miles, capable of producing from twenty thousand to nearly one liundred thousand tons an acre. The present total yield of Great Britain is something like three and a half millions of tons of iron, from (say) thirteen million tons of stone. Although Cleveland was not worked until 1818, its produce is estimated at six hundred and thirty-three thousand tons of pig-iron from near two million tons of ore. From the extensive mines at Eston alone the rast quantity of two thousand six hundred and twenty tons nineteen hundred weight has been wrought in one day,--thirteen thousand four hundred and-seventy four tons in a week,--six hundred and thirtyeight thousand six hundred and twenty in one year; and a total during the past ten years of four millions sixty-one thousand nine houdred and eighteen tons.

This ironstone is chiefly a carbonate of protoxide, of a greenish grey colour, and yields by government analysis thirty-three per cent. of metallic iron,* although the average should probably be given at about thirty per cent. The following is what is generally requisite to the manufacture of one ton of pig-iron:-ironstone (calcined), two tons twelve hundred weight, or uncalcined, three and a half tons; coke, one ton fifteen hundred weight; coal, one ton ; limestone, fifteen huadred weight. What countless tons of iron, therefore, may be extracted from the vast beds of Cleveland-sufficient to supply, for hundreds of years the whole demand of the British Isles!

In every direction from the maximum thickness at Eston, we find the seam grows gradually thinner and thinner, especially towards the south-west, where it may be said to die out at Thirsk. At Swainby also the seam is reduced to about four feet, and divided by rather more than a foot of shale. The seam at Eston is formed of a compact coalition of what are found in other parts as two distinct seams, parted by as much as nearly thirty feet of shale at Grosmont, and the eastern extreme of Cleveland; the upper of these two seams, as in the Grosmont section, is designated the "Pecten seam," from the vast number of pectines (Pecten cequisaluis), which are found in it; and the lower the "Avicula seam,"

[^16]owing to the abmudant remains of Avicula cygmipes in it. Towards the east the "Pecten seam" acquires more the concretionary spheroidal form, as usual with argillaceous deposits, and approaches nearer in appearance to the hard, compact clay-stones of the coal-measures at Bierley and low Moor. As the diminution in thickness towards the south-cast and west from Eston is very gradual, it is impossible to fix any line of demareation to point out the exact boundary within which it is of sufficient value to be worked.

An interesting paper was read by Mr. H. C. Sorby, F.G.S., before the West Riding Geological and Polytechnic Society, ${ }^{*}$ in which the writer endeavoured to show that the Cleveland ironstone was altogether an altered limestone-rock, in which the carbonate of lime had been changed to carbonate of iron, by the percolation, probally, of some chalybeate water, and that the ironstone was not deposited in its present condition. I confess that I am not inclined to adopt those views without further examination, as I think the whole analysis of the ore does anything lout favour such a theory. In concluding my notice of this most important division, I need only add that these lias bands are rery extensively wrought, at Eston, Upleatham, Codhill, Hutton Lowcross, Belmont Banks, Rosedalet on the coast, Grosmont in Fskdale, and several other parts of Cleveland. The usmal royaltyrent paid in the district raries from fompence halfpenny to eightpence per ton of twenty-two and a half hundred weight; and, so cheaply may it be worked, that it can be sold with profit at haif-acrown a ton at the mine's month. Such brief statistics may be of interest to those readers who are in any way connected with this great branch of manufacture. I now ascend to
d, The Their Liess Shells, which also possess great importance in an cconomic point of view. Λ fter abont thirty to forty feet of hard sandy shale, which is the lowest rock in the upper Lias, we find what is generally called the "Hard Jet Rock," a rariable shale twenty fect in thickness, enclosing irregularly jet and pyrites. On the coast, as at Kettleness, the rock is larder ard more productive of jet than in the interior of the country: the raw material is, according to quality, worth from two shillings to twelre shillings per pound, and the total value of the jet-manufacture at Whitby, whither it all goos from this district, is estimated at twenty thonsand pounds per ammm. Owing to the great guantity of iron-pyrites, or nodules of sulphuret of iron, which these shales contain, it not unfrequently happens that upon being dug ont in the search for jet. and exposed to the action of moisture and the atmosphere, the sulphur combines with the oxygen of the air and of the water, and in this decomposition sufficient heat is generated to canse spontancons ignition. An instance of this decomposition occurred not long ago in Westerdale, and caused no little wonder amongst the homely inhabitants; it is, however, of

[^17]frequent occurrence on the coast at Runswick Bay. Here, it is scareely necessary to remind the reader, is a most marvellons profusion of Ammonites, Belemnites, \&c., and an abundance of the now familiar remains of Ichthyosauri and Plesiosauri. An excellent section of these rocks, and a delightful field for geologieal observation, will be found in the quiet and picturesque bay of Runswick. Above this jet-rock are about eighty feet of shale with ferruginous nodules, irregularly interspersed, and for the most part aggregated round Ammonites and other organic bodies. Being very compact and argillaceous, they closely resemble some of the clay-ironstones of Derbyshire, and claim a similar, though far from a synchronous origin. Above this shale, again, we reach the fine argillaceous deposit so well known by the name of "alum-shale," which is from eighty to one hundred feet in thiekness, and has been worked for the manufacture of alum since about the year 1594, when alum-works were first introduced into the district of Guisborough, by Sir Thomas Chaloner, where these shales have ever since been more or less extensively wrought. Scattered up and down through the whole length of Cleveland, we find traces, in vast heaps of ealcined shale and large excavations, of abandoned alum-works, as at Carlton Bank, Kirby Bank, above Great Ayton and several other places, whilst we find in present operation the works near Guisborough, at Boulby, and at Kettleness. The process of manufacture is simply as follows: the decomposition of the shale is accelerated by being burnt in large heaps by the manufacturer, who avails himself of the carbonaceous character of the shale, and the sulphur of the iron is changed into sulphurie acid, which forms a sulphate of iron and alumina; by subsequent processes of eraporation, the sulphate of alumina is purified, and potash is added to render the salt crystallizable.

Abore the alum-shale is a stratum about twenty feet in thickness, which is usually termed the "Cement-rock," from its containing mumerous calcareous nodules, which are used in the manufacture of Roman cement. These nodules will, for the most part, be found to be an aggregation round an orgauic nucleus; and by baking them uutil they divide, I have frequently proctired most beautiful specimens of fossil Ammonites. Above this is found, in a perfect section, a deposit of about four feet of indurated clay known as the "soft jet-rock," from its containing a quantity of jet, inferior however to that in the hard jet-rock, of which I spoke before. This rock, in opposition though it be to many, I shall make the highest one and the conclusion of the Lias formation, the upper division of which, as I have described it above, may in summary be given as follows:
ft. in.

The deposition of the Oolitic and Lias formations, unlike that of the Coal-measures and Now Red Sandstone, was evidently continous, and is without any traces of an interval elapsing between. In proportion, therefore, as we find the transition from one to the other more gradnal and mudefined, we may regard the section as more perfeet and complete. At the head of Fryup Dale, for example, we find the transition line far less marked than at Roseberry and most other places; and therefore we may assume that it is a more perfect section than the others. The basement-bed of the Inferior Oolite has, in the south of Eugland, been the object of a contest between Dr. Wright on behalf of the Lias, and Professor Buckman for the Oolites, as may be seen in a paper read by the latter before the Geological Socicty.* I shall, however, here content myself by merely stating that there are reasons, which I cannot now spare space to adduce, for regarding the next important stratum, as it sometimes appears as the lowest member of the inferior Oolite.
c, There is no bed amongst all which I have described, which varies so much in so short a distance, as the lowest bed of the division which I have before termed the "Inferior Oolite and fermginons beds." They give an aggregate of about seventy feet at many points in the district. This is, at one place a vast iron-rock of thirty-two feet in thickness, and at another a mere silico-ferruginous mass of no commercial valuc. At many places, as for instance at Eiston, Hutton, Loweross, Fryup, and Grosmont, its importance may be said to be almost in inverse proportion to that of the lower, or "Pecten-seam," in consequence of its being geologically higher up than the other seam, which is often callucl the " liston-seam," from having been first opened out near a village of that name: this band we now speak of is commonly called the "top seam," although improperly, as a higher one still has been wrought. The "Oolitic seam," as I shall now call it, is workerl on the east near Staithes, and at Beek Hole in the Grosmont district, and at Rosedale in the interior of the country. Near Staithes it assumes a compact and argillaceous appearance, and is at the best part about fon feet thick. At Beek Hole it is unt less thin fifteen feet thick, and has a more open and oolitic structure, and in appearance more resembles the hias semm at liston. At Rosedale its character is again changed, and it las beeome a vast oolitic iron-rock thirty-two feet thick, attractable by the magnet, and yielding, as a maximum, nearly fifty per ernt. of motallic iron. To develope this invaluable deposit, a lime of railway is now heing made across the monrland heights, from near Inglely Greenhow on the North Yorkshire Railway-a distance of aloont tem miles. To account for, if I may use the term, the metallic richuess and the great thiekness of this Rosedale iron-rock, has long been a puzzle to many of the local geologrists, who have thought its value amb extent less than some antiecipate. At the quary, indeed, where most liave oliserved it, and where it was primarily npened out as "metal" for the roads,-rich

[^18]metal too, it appears-the seam assumes such an aspect as might deceive many; since owing to the percolation of water through the countless cracks and fissures at its outbreak, the iron has become oxidised gradually more and more; and where not quite oxidised throughout, the blocks consist of a nodule in the middle, of almost unaltered dark blue ore, of nearly equal parts of protoxide of iron (about thirty-three per centum where richest), and peroxide of iron (about thirty-two per cent.), and several concentric layers of brown ore, the outer of which contains all the iron in a peroxide state, and clearly showing a change to have taken place from a protoxide to a hydrated peroxide. In the drift made a little eastward of the quarry we find, after eighty yards of hard shale, other eighty yards of the altered brown ironstone, with blue nodules, which increase in size as we proceed, until at last we reach the solid rock, unaliered by any percolation; intensely hard; of a blackish-blne colour; highly magnetic; lying in horizontal layers; scarcely fissured, and thirty-two feet in thickness. A considerable distance from this drift it has been twice bored down to, at a depth of forty-five fathoms, and proved still of the same great thickness: although its per centage will probably average less than has been given above, there seems no reason to fear that the seam will soon be exhausted. Some have thought that this rock exhibited symptoms of igneous origin; others have made it out to be affected by heat, subsequently to its deposition; and some have even tried to trace a cause-and-effect-a connection between the Whin-dyke, seven miles away, and this astonishing stratum of ironore. There is however not the slightest foundation for any such surmises, as we find it in a horizontal position, in distinct laminæ, between the upper Lias and sandstone-rock of the Inferior Oolite,most assuredly the natural place of its deposition. The depositing waters were greatly impregnated with oxide of iron, which congregated round any solid object ; and accordingiy in each oolitic particle, there is some nucleus of shell, sand, \&c., which is perceptible under the microscope, as in oolitic limestones, in the interior of each of the grains. There have, I believe, been no organic remains discovered in the rock, owing, it is possible, to part of the irou being in the peroxide state-in which case it is a noticeable fact that there is either very great scarcity, or an utter absence of traces of animal life. Whether, however, these two facts, so generally coincident, are related as cause and effect, is a question for further consideration. The Lias iron-seams, which contain the iron in a protoxide state only, showv the ocean at the period of their deposition to have been very prolific in organic life.

An interesting view of this oolitic iron-seam may be obtained by tracing its development from Crunkley Ghyl up the eastern side of Great Fryup Dale to Fryup Head, and again to its appearance in Northdale, on the other side of the moor, and opposite to the great iron-quarry of Rosedale, which I have just remarked upon, and where, as I observed, the seam appears to attain its maximum thickness and to possess also its maximum dose of iron. The outbreak of
the seant has, owing to the decomposition of the iron, a reddishbrown appearance; and, where sufficiently rich in iron, shows the usual "scrappy" layers, or envelopes, owing to the percolation of water. This is very noticeable at Fryup Head, where the seam is of great thickness.

1 now pass upward to the "bottom sandstone rock," of which I spoke lefore. and which is the great and safest guide in searching for the ironstone strata. It runs along the summits of the sides of most of the Cleveland dales, and has been nsed very generally in the distriet for building purposes. At Sleights, near Whitby, it has been extensively wrought for local nse, as also for shipment, and is in fact the great building stone for the whole of Cleveland. It caps most of the chief hills, or "banks," as they are called in the district, erowning the summit of Rosebery Topping, Easby Bank, \&e. The excellent state of preservation of the stonework in the rnins of Gnisborough Abbey, and Moment (irace Priory, attests the durability of the rock.

I now come to the next division in my section (f), which it would be diftieult to subdivide in such a manner as to be equally applicable to all parts, where the roeks contained in it crop out to view. Above the bottom sandstone rock. howerer, are alternations of shales, thin iron-bauls, and gritty saudstone layers, about sixty feet in total thickness. We then come to a vast series of sandstones and shales of various colours and thicknesses, and amongst them are some siams which demand a short notice. In this series we find a variable stratum of fire-clay, which is well seen in the excavations ot'a recently-formed Fire-clay Company at Skelderskew, in Commondale, where it is of considerable thickness, and, it is also stated, of great commercial value. Embedded in an impure sandstone bed above this seam are found wertical Bequisetites, in great abmadance- Whe Eytuisetume colummum. Higher up, amidst the countless beds of shale and sandstone, we find a thin seam of coal, of suflicient importance however to be workenf for local use, althongh the thickness is never more, and sometimes a ferw inches less, than sixteen inches. This scam, which is arempanied by fossil plants in the slates alowe and below, is similar to one discovered in the same oolitic series of Brome. in Scotand, and worked from the patriotic - eertainly unt pemiary-motives of a late Duke of Sintherland. In the North Yorkshire district it is worked at Rosedalc Head, Danly End, and, mutil recently, at (ireat Fryup Head. It may be seen out to the day mon the side of the road from Castleton to Ginishorongh, abont half a mile from the former place; and in the hill as yon awend to Dandy Beweon from Howlsike. An are of this moneronal is gromerally estimated to contain about two thomsand chaldrons of thirty-two imshels. The appearance of this earhmiferons deposit has mot failed to excife hopes in some whone scientific knowledge, it newd larally be sairl, is like the coal-seamlimited: that by geing further down, better, or as some crem think - the Durham coal-sams will he discovered Although men seem lum with the "only-gu-deeper" notion in their hads, it seems monecessafy to remark, that any hopes of finding coal superior to that
now worked, are entirely withont other foundatlon than the above instinctive notion.

I had almost forgotten to mention another seam of iron-stone amongst these higher strata, which has a more argillaceous aspect than the others, though its thickness is less considerable. It is, as all the other strata, of anything but uniform thickness; and at present the only place where it has been fully explored and worked to any extent is at Burton Head, near Ingleby Greenhow. It has, I believe, also been worked at Raithwaite, near Whitby. At Ingleby mines the stone was found to obtain in three bands, with shale intervening, giving a total of rather more than four feet of iron-stone, and two and a half of shale between. These mines, however, are for the present abandoned, although a great sum has been laid out on an incline-plane, and other preliminaries to active operations.

To anyone who is familiar with the section of the Bath Oolite, in the south of England, it must be at once apparent how different are the analogous beds, in the district which I have been describing. This last great division (f), is isochthonous with the Fuller's-earth group of Bath, although we can see so little similarity in their components.
g, The last division in my section is the earliest wherein is any trace of a limestone rock; and its aspect in Commondale, where we see it most easily, bears little or no resemblance to the type of an oolitic limestone. It is very much debased by an admixture of silica, iron, and other extraneons matter, which causes it to be of little value for agricultural purposes. So little indeed is it regarded as a limestone, that it has long since ceased to be burnt for any purpose; and whilst it was regularly burnt formerly at the kilns on the high moorland above Commondale, great care had to be taken lest it should run into a flux from too intense a heat. Although as a limestone its value can never be considerable, yet if silica were required with any argillaceons ironstone to help to form a clay, it might probably be of service to any furnace near where it exists : as such however is very inuprobable with most of the Cleveland irou-seams, we can only wish it had been more calcareous. I append an analysis of this seam as at Commondale, made by Prof. Henry, who gives a much more favourable one than appears in Prof. Phillips' "Geology of Yorkshire."

Above this limestone is another very thick series of sandstones, shales, \&c., very similar to those in group f, of which I have often spoken. As they present little that is noticeable, I shall not attempt to examine them, although we find them occupying some of the highest ground in North Yorkshire, as at Danby Beacon and White Cross. With this notice I shall conclude my observations on the sedimentary rocks, and proceed to make a few remarks upon the only igneous rock which we find in the district-the well-known basaltic dyke, which has been termed "one of the most remarkable phenomena of English geology." It extends in almost a straight line from Cockfield Fell, in Durham, to Maybecks, in the east of the North Riding-a distance of seventy miles. It is unaccompanicd by any dislocation,
and its only risible effeet is the charring of the coal, which it divides in Durlam, and the ordinary results of intense heat apon the contigrous shales, limestones, and sandstones. Its width is from seventeen to about sixty feet, and is greater in the middle than at its two extremities. Its depth, it need not be added, is unfathonable. When umaltered by weather it is of a dark blue colour; but owing to the iron which it contains, the outer portion becomes rusted upon exposure, and exfoliates like an ironstone. An excellent view of this "frolic of nature," as it has been called, may be seen in a cutting which the railway has made through it near Castleton, and its caustic effects on the bordering strata for a very short space on each side, and total absence of dislocating fracture may be elearly observed. Owing to its intense hardness, it is of invaluable utility as a material for the roads to a great distance on each side of it, for which it would otherwise be a difficulty to find a stone sufficiently durable. It is, and when the proposed lines are completed will be much more, extensively wrought, and sent to a great distance to pave the streets of several of our large towns.

There are many instanees of alluvial deposits, and many isolated granitic boulders at the foot of Carlton Bank, at Lealholme Bridge, and other places, which I cannot now stay to remark npon. "With reference to the vast superficial accumulations of peat at Danby Find and other places, I shall quote an extract from a work published ahout cighty ycars ago,* as an illustration of a geological theory at that period, and at the same time to impart a piece of interesting information for any "Judxus Apella" of the nineteenth century: "Hazel-trees and nuts with kernels in them are found in our peatbogs, eovered up most probahly by the deluge ; and I cannot help olserving lece, that these nuts prove to a demonstration that the fluod of Noal happened in the antumnal season of the year, aud most probrably in the month of September, when it is known that kind of fruit is always ripe with us here in Yorkshire."

1 may here obscrve before, before I conclucte, that there are traces to be noticed, at Furnace Firm, near Fryup End, in Commondale, at Castleton, and other places, of the rude mannfacture of iron in ancient times. At the above places are large heaps of seorix, from which the metal has been but imperfectly extracted, and amongst which I have fomm pieces of the metal itself. These primitive ironmasters, who lived most probably in monkish times, seem from the small pieces of ore which I have found to have merely collected the loose boulders; or outside pieces of the thin rich nodular bands, and, of comrse, used charenal only, as may abundautly be seen, in their reduction to a fluid state.

It now merely remains for me to express my regret at not being able within the scope of this essay to dwell, as i shomld greatly lave wished, upon the characteristic and other fossil-remains of the several gronps; and to express the obligation I am muder to tho

[^19]works of Professor Phillips,* who has devoted much time and attention to the grology of this interesting district, which my observations will, I think, abundantly prove to be one of great fascination to the man of science, and of great importance in the national economy.
Analysis of the Cleveland Ironstone (Pecten-Seam), by Prof. Percy.
Protoxide of iron 39.92
Peroxide of iron $3 \cdot 60$
Alumina $7 \cdot 86$
Lime $7 \cdot 44$
Magnesia 3.82
Silica $7 \cdot 12$
Carbonic acid 29.85
Other substances in small quantities $7 \cdot 39$
$100 \cdot 00$
Metallic iron $38 \cdot 62$
Analysis of Darl-Blue Magnetic Ironstone from Rosedale, by W. Crowder, Esq. \dagger
Protoxide of iron 33.55
Peroxide of iron $31 \cdot 40$
Alumina $16 \cdot 05$
Lime $2 \cdot 35$
Magnesia 1.29
Carbonic acid 1026
Silicic acid 4.50
Water $1 \cdot 34$
100.74
Metallic iron $48 \cdot 07$
Analysis of Commondale Limestone, by Prof. Henry.
Carbonate of lime $44 \cdot 8$
Silica 514
Alumina and oxide of iron $2 \cdot 6$
Water, \&c $1 \because 2$
100 .

[^20]
ON NEW BRAC'HIOPODA, AND ON THE DEVELOPMENT OF THE LOOD IN TEREBRATELAA.

My Charles Moore, F.G S. (Cortinuel from page 4.5, col. iii.)

Tiecidely. Defrance.

> Thecideum ornatuin. Moore. Pl., ii., figs. 1-3.

Shell inequivalve : punctuate, rather rugose, front deep, rounded; attached by a considerable portion of the ventral valve ; beak slightly ineured ; deltidium small and depressed. The ventral valve is flattened on its under side. Its interion is surronnded by an elerated, slightly granulated margin. Under the deltidinm are seen two raised oval processes, separated by a longitudinal septum, which occupies the erreater length of the shell. The exterior of the dorsal valve is rugose and flattened. The interior possesses a narrow, thin, punctuated margin. immediately suececting which is a ridge of single graumations, which are stronger towards the frontal margin, gradually disappearing as the ridge passes upwards. Springing from the centre of this gramulated ridge is a septum, slightly tapering from its base. on either side strongly serrated, between which is a central longritudinal groove. The septmm oceupies nearly the whole height allowed by the eavity of the sholl, and divides it to nearly threefourthe of its lengeth. From the toj of the septum there are theown ofl' two extremely delicate lamella, forming a loop which eurves downwards towards the front of the shell, where they hifureate, and are then again uniterl to the shell at its inner sides. A bove the septom and attached lamelle a band oceurs, forming a bridge over the visceral cavity. This is mited to the gramulated ridere, which thus erompletely surrounds the inner portion of the valve.
olfs.-The prescration of the loop as shown in the enlarged fig. : p, plate ii., is remarkable, siner in the original sperimen it is in subatance searecly thicker than the finest mapun silk, and extremely brittle. The interiors of the Brachinpoda are only to be developed by cancul manipulation in dissecting on operning up the valres. Many of the interiors of the 'Thecidida are very beantiful; but I have neroer as yet seen any tpecies erpalling in delicacy of strmeture that muler consideration. It is from the (foral Rag of Lyncham; Wilts, where it is not monmmon.

Shell microsenpie longiturlinally oral; hoth valres conrex; attached to other hodies at the upper part of the ventral valve; beak

ridge passes round the front and sides of the dorsal valve, until it reaches the dental sockets. It is without a central septum, nearly aiways present in other species, the only ornamentation within the ridge being numerous punctuations.

Obs.-This shell is very numerous in the Coral Rag of Lyneham, associated with the T. omutum and the T. triangularis. I have been unable to trace any passage into either of the above species, otherwise it might have been considered a young stage of one of them. As it is altogether different in character, and as the shell, though so minute, is very persistent in its form, I have ventured to give it the above specific designation.

Thecideum triangularis. D'Orbigny.

This species has hitherto been noticed only in the Middle and Upper Lias and the Inferior Oolite. I have now obtained it from the Lower Lias of Keynsham, which is the oldest formation in which it has yet been found. It theu passes through the beds above mentioned, and is very common-attached to Lima, Ostrea, and other shells-in the Fuller's Earth of Combehay, near Bath. It occurs also in the coralline bed of Hampton Cliffs, and again in the still higher zone of the Coral Rag of Lyneham. No other species of Brachiopod has yet been known to have attained so long a range as is indicated by the above facts. Its uninterrupted passage through so many formations points out the absence of any considerable climatal or other changes during the deposition of the beds in which it is found.

I have evidence of the presence of several other species in the Inferior Oolite of Dundry, one very nearly approaching the T. Deslongchampsii, Dar.; but as only separate valves have been found, it will be unsafe at present to say more respecting them.

Crania. Retzius.

Cirania canalis. Moore. Pl. ii., figs. 8-10.
Shell subquadrate, usually flattened, at other times more or less conical. The outer surface of the young shell exhibits a few coarse strix, which continue to the margin of the valve. In the adult these become much more numerous, many of them passing as narrow spines, some distance beyond the outer margin of the shell. The interior of the valve is concave, showing two pairs of muscular impressions, not strongly marked; the anterior pair curving upwards towards the posterior, which are rounded and larger. When viewed from the inner side the valve is seen to be surrounded by a flattened ridge, which is continued outwards in long spinose expansions, which are furnished with narrow longitudinal grooves, or canals, through the whole of their length.

Obs.-This is one of the most beautiful species of this interesting genus of shells. It is from the raggy beds of the Iuferior Oolite of

Dumbley which have furnished me with so many new forms of Brachiopola. The mpere valve only is known.

Cromit sumulesili. Moore. Pl. ii., figs. 11, 12.

Shell romided; exterior of the valye flattened, or slightly convex ; surfice wrinkled; shell-structure smooth. The interior of the ralve shows fomr mosenlar impressions; the upper pair being ronnded and dunessed, the anterior, occupring the middle of the valye, are raised and prominent, ear-shaped, and enved outwardy.

Ohe.-By its exterior it would be dillienlt to distinguish this shell from the ('. antiquior of the Great Oolite of Hampton Cliffs, but the interion of the valyes difler. In the ('s sumedersii the two pairs of muscular impressions are more widely separated, the lower pais being much stronger, and in shape diflerent from those of the r. untipmier, and there is also the absence beneath them of a longitudinal ridere nsually present in the latter shell.

It is from the Inferior Oolite of Dundry. near Bristol. I have muels pleasure in naming it after Wm. Samders, bisq.. of Clifton, to whom the Musenm of the Bristol Philosophical Institution is so much intehted. 'The shell also ocemrs in the Interior Oolite of Minchinhampoton, (iluncestershire.

Gramia Pomsortii. Eug. Deslongchamps. Pl. ii., figs. 9, 10.

The slatl described under the above specifie name was fomed by M. Deslongelampis in the Cireat Onlite of St. Auhin. It oceurs in the conalline bechs of Hamphon C'lifls, and with it the C'rmin antiquin' of otelly is found in great mmbers. 'The onter surtace of the latter shell is characterized by posscssing a somewhat rugose, or wrinkled surface, and the interior ty its well defined mmsenlar impressions, which always ocerpy the seme position in the speces, and give pretty mationly the sance pattern to the interior. The interior of ('. I'msurlii :uperars to be modistingmishable from it, the whef difference being in their onter surferes. Thise in the ('. I'msorlii, posisesses plirations which give it a slightly spinse aspect. After examining bany ('xamples of the C'. "ratignioi, I have ubserved in some of them a temedeney to beome more ragrobe, amd to pass grathally into the form represented thy the abowe slocl, and 1 am therefore disposed to consiter it only a varicty of U. rnliquime.

Drac'IV. Lamarek.
Thisemu Jumblamsis. Moore. Pl, ii., fig. Th.
Sholl small, thick, broader than longe flattencel, apex smonth, - Wevated; cxterior show ing narmow hands of concentric lines of erowth, which are slightly plieated, rriving to the sholl a wrinkled surface.

It is from the Tuferion Onlite of Dnadry, and is the nnly species known in that fomation. It apears to be rare; for after a lengthened examination of these beds, I have only succeeded in obtaining three epecimens.

Discina orbicularis. Moore. Pl. ii., figs. 16-18.
Shell small, orbicular, tapering to an elevated apex, giving the shell a somewhat conical form; margin smooth and rounded. Outer surface of valve smooth, with numerous concentric lines of growth; the inner smooth and very concare.

Obs.-This shell does not appear to have attained a larger size than is indicated in pl. ii., fig. 18. It is from the fish-bed and the clays associated therewith in the Upper Lias of Ilminster. By its form it is readily distinguished from any other species.

Discina Tounshendii. Forbes.

A very fine specimen of this shell, belonging to the Mnseum of Economic Geology, was figured by Mr. Davidson in the volume of the Palæontographical Society for 1850 . Its locality was then uncertain, though Mr. Daridson was iuformed it was from the Oxford Clay. Subsequently it was suspected to be from one of the lower beds of the Lias. Having discorered the species in the "Aricula contorta zone" at the base of the Lias, near Taunton, I am enabled to settle its position. M. Edtrard Suess, of Vienna, has informed me that he has also obtained the shell in the Rhætie beds of Austria, in which the "Avicula contorta zone" is included.

Discina Humphreysiana. Sowerby.

This species has hitherto been found only in the Kimmeridge Clay. It may be desirable to record its presence in the Coral Rag of Lyneham, where it is abundant.

Rhynchonella spinosa. Schlotheim.

In the Cotteswold and other lower oolites this shell has been supposed to indicate a particular zone. Althongh it is therein especially abundant, it is by no means confined to it. I have obtained the species from the Fuller's Earth, near Bath, and also in the Bradford Clay. Some very dwarfed or young forms of it are to be foumd in the upper beds of the Inferior Oolite of Dundry.

Teiebratula carinata. Lamarck.

This shell has hitherto been found only in the Inferior Oolite. Some specimens smaller than the type-form are to be found in the coralline bed of Hampton Cliffs, which I am unable to distinguish from this species.

A LECTURE ON "COAL."

Br J. W. Salter, F.G.S.

(Cuntinued from paye 68.)
We finished last monil with the fact that plant-remains were fonnd in plenty both above and below the coal. I shall draw your attention first to the rouf-shale-or clay over the coal-"over-clay" as it is often called: for in this the great majority of remains are preserved.

In the roof-shale two kinds of plants are the most conspicuons-fern-leaves, and the diapered cylinders mentioned in our last. These are the prevailing fossils, though there are a great many besides.

Looking first at the fern-leaves, which from their beantiful forms cannot fail to strike the observer's cye, one is surprised to notice the extremely perfeet state in which they oceur. Delicate fronds, spread out as for the sheets of an herbarium, with hardly a leaflet disturbed from its true place, crowd the roof-shales of nearly all coal-mines. Dr. Buckland sang the praises of this beau-

Fige. f.- Portion of a frond of Aletheplerise (Preopteris) luncilf c:- Brong. tifnl tracery, which covers the roof of the mine. in crlowing strains such as it will not do for a plain geologist to imitate. I have a lnrking suspicion, howerer, that the great doctor conceived the passage not in the mine. but ont of it.

At least one hundred and twenty species are known in our British coal-strata. So perfect are they occasionally, that the little fruit-pateles (smi, as botanists term them), are found mpon the backs of the fronds. This is not very common, except in one kindthe Pecontrois, which happens to be more abmadant than most of the others, and in some species of this the fruit is fomel. There is a specimen in the Nasemm of Practical Geolory which shows these little seed-patelhes. It is from the Forest of Dean; amd Mr. (i. Roborts has shown me several, find griven the some from the coal-fiek of Bewdley Forest. We shall give a figure of this froit in our next mmber.
some ferms, nay, many of them remind us closely of the tree-ferms familiar in our hot-houses; other's resemble the limmble

[^21]fern-fronds of our lanes and hedge rows. But all are perfect. It is rare to find a disturbed or crumpled leaf, though of course they are often only fragments, such as our brooks and rivers float down.

I am writing for the younger readers still, or otherwise this sort of lecture would have no business in a scientific periodical, and I shall not, therefore, burden your memories with a number of Latin terms, which would be rery intelligible to students, such as I hope you may all one day be. Howerer, coal-ferns have not received christian or surnames such as our wild ferns rejoice in. Lady fern and Rockbrakes, Black Maiden-hair and Moonwort, are a great deal easier to remember than Neuropteris Scheuchzerii, and Alethopteris lonchitidis. Pecopteris phemosa is not such a hard sounding word; Pecopteris Niltomii and P. muricatu are both tolerable. But it so happens that some of our common coal-farourites, like farourite children, have rery long and unprouounceable names. Yet we do not like either the less for that.

All those I have mentioned above are well-known fossils: all of them are found on the conti-

Fig. 7.-Alethopteris (or Pecopteris) Serlii. Brongniart.-Reduced size. nent as well as in England; and one or two of them are to be picked up at every coal-pit. The pretty Alethopteris lonchitica may be obtained in the nodules of ironstone in Shropshire, and large slabs of it come from Durham. It is sometimes known under another name, Pecopteris lonchitica, but the above is the true one.

We have represented only a single "pinna" of the plant, for in its perfect state it looks a good deal like our common heath-fern, Pteris aquilina. The P. plumosa is like the Lady-fern. P. loreopteridis, a strong-leaved fern, with a thick stalk or rhachis, a good deal resembles the Lastrea, and so on.

There is a beautiful fern common near Bristol, the Alethopteris Serlii, which has fine large leaflets like the Polypody except that it is a compound leaf (vipinnate) instead of a simple one. There are larger ferns still-the species of Newropteris as they are called, which riral in size our tropic species. But these, numerous as they are, and common too, for there are as many of them as of the genus above quoted, are not quite so often met with. They too, though very rarely, show the fruit on the under side of the leaflets.

There are the delicate Sphenopteris, whose leaves are of all shapes and
sizes, agrecing in mothing so much as the particularly slender and narrow shape of the leaflets and branches. They look like parsley leaves. corimuler leaves, mimosi, and some again look like what they are finely divided lemes. Figure 7^{*} shows the peculiarly graceful chatacter of the tribe. There are several other kinds of "upteris", with which, as the scotch song says, "I'm laith to rex ye." But 1 must mention one that is not very common in the coal, but which has heen foume in a perfect state in some beds older than the coal, both in Lredand and in Scotland. This is the Addentites Ifibermicus, a fern lirst brought to notice by that eminent man and ardent maturalist, bidwad Eortes. It is common in some rieh fossil beds in the upper part of the Old Red Sandstone of Treland. It puts one in mind of the lirn which is the glory of Killarney-the King or Royal-ferm, Osmumbe \therefore fulis--abont the same size, and with the spreading broud leaflets set wh aboad stem. But whereas onr Killamey friend carries her fruit on her lead, that is to say, the terminal leaves and pinme are changed into fimithearing spikes, the ferm that grew in old old times on the margin of the Palacozoic bogs has its lower or bottom pimme crowded with seeds.
(To be contimued.)

UN TVIE DOSTRIBU'TON OF ('EPHMASPIS ANO pTliR.LS'lS LN ENGLANJ).

By Geoncie E. Roblerts.
I mo th our scoicutifi tomists of the approaching season will take their
 puly of the Old Red fi-hes is hroken mp, they will he fomm forepay time and tromble. if searehed fore in that and the adomining comnties: and
 m, W, the result of a simgle seasons work. There is a meat deal
 qolerably abmulant, thongh sory tragmentary, hoth in the samdsfones ant corit fome ; aml therefore I hase a peonliar plensure in intro-- meine ome primatal fi-h-limas to the notice of those on search alpanty or hophing to be ats the sceasun advances for relies of : ancernt lifi.

Before I call particular athomtion to some fruithal localities, let mo

 thy anticipatiod the adrout of the systan they are perpulaty said to

[^22]limestones of Deron are witnesses-called by us Old Red or Devonian; and first appeared upon the stage in true Upper Silurian times; for the Pteraspis Ludensis of the Lower Ludlow shales of Leintwardine (county Salop), is the oldest representative of the family. Its discorery in these older rocks, though of great interest, did not in the least surprise me; for a sea-deposit, so clearly marked out as littoral by its starfishes and its shrimp-like crustacea, would be the natural home of shore-fishes, which Cephalaspides undoubtedly were. Moreover, the shells and fuci which the Lower Ludlow rock has everywhere in keeping, tell a certain tale of its shallow-water condition; and enable us by strdying them to read with greater ease and increased interest, the record mritten by succeeding seas.

Indeed, if we are to understand the physical aspect of the Old Red age, we must make ourselves well acquainted with the foregoing: Silurian; for no aid will be of greater value to us, or more beantiful as a study, than the slow and gradual transition from the deep-sea condition which prevailed over the border-counties I am calling attention to, during the accumulation of the marine limestone of the Wenlock series, and the inland lakes of brackish water, terminated, probably, by wholly freshwater conditions, which have left us the fine silty shales of the Upper Old Red as their legacies.

And thus it comes to pass, that not only for the first stages of its new physical career, but also for the birth-place of its life-forms, the Upper Silurian age is insolubly linked with the Old Red Sandstone; and in every exposure of these older rocks, which contain littoral crabs and star-fishes, we may reasonably expect to find the ancestry of the ancient shore-fishes I am describing. But though they thens anticipate the age they are popularly said to belong to, they did not-so far as we know-live beyond the close of the Old Red system; and beyond doubt their metropolis is in the grey and red cornstones of Herefordshire and Worcestershire.

The position of these beds (see section, page 104), which are seen in many places in these border counties to pass throngh a tilestone series into the underlying Silurian, is now clearly made out, and only their fossil history waits our reading. And this must be learnt by us before the true contemporaneons relations of the two very distinct rock-series which we together know as the Devonian system can be cleared up; before we can see what communication, if any, existed between the shallow waters which laid sandy sediment in Herefordshire, and the deeper ocean, which has left us hard coral-rock and shells, in Devon. Upon the physical boundaries of these waters, Eichwald has some instructive remarks in a short memoir prefacing the fish-fauna of his "Lethœea Rossica," in which he points out the marked difference between fishes of the shore and tishes of the open sea, and describes some new forms of osseous fishes from the Deronian rocks of Russia, not unlike onr English Cephalaspids. And now I will mention the results of my own hunting among the Old Red quarries, and I hope, by thus putting others upon the trail, many good fishes may be taken. For more specimens are wanted before even their (precise) position

among fish-families can be decided. Probably a kinship existed between the two chief forms of ichtlyyic test of Cephalaspis and Pteraspis, and it is most likely that our noble friend, the stmrgeon (Acipenser), will have to own them of his family; for, as Prof. Hnxley has lately pointed out, they bear, in shape and arrangement of head-plates, a great affinity to the grenus spatularia, a North American attaché of our larger and caviare-giving fish.

It may help the comprehension of those who are nnfamiliar with the osseons head-shields of these old ganoid fishes, if I sketch the tiro forms whose acquaintance will be most easily made by exploring' collectors, Cephalaspis and Pteraspis. Form of shell is a very deceptive guide both in fish and crustacean life; indeed, if we made our affinities from this alone, one great genns would include many species of both orders, for the shape of Cephalaspidean bucklers is copied almost literally by several crustacea. A new Harpes from the Silurian limestones of Oesel, figured by Eichwald, agrees not only in shape of head, but even a position of the eyes with Cephalaspis; while it would be a matter of serions concern where to draw the line between the head-plates of Eurypteris and Cephalaspis. But it is from the closest and most minute examination that species and even families are determined among those which lived during the infancy of vertebrated life.

Pteraspis Luulensis, the oldest fish with which we are at present acquainted, was found in the Lower Ludlow mudstones at Churchill Quarry, near Leintwardine, and has been well described and figured, side by side with its ally, Pteraspis truncatus, from the Upper Ludlow rocks, by Mr. Salter, in the "Annals of Nat. Hist." for July, 1859. VOL. IV.
P. Lumbusis ranges up into the Upper Landlow slaales, in which it was found as fill haek as 88.2 by Dr. Harley, of King's College. I have not heard of other Cephalaspids being found in Upper Ladlow roek, lout in the Downtom samdstone they reappear, and are aboudant in the nentral ground lying between that roek and the tilestones, and still keep the company of Enryptera and Pterygoti. The Downtou sandstone is well displayed near Kington; where in a quarry near Boadnor Hill, two forms of I'teraspis were discovered hy Mr. Richard lanks. These are deseribed and figured by him in the Geol. Soc. .Journ.. vol. xii.. p. 93.
The noted railway-section near the Lndlow station is in the zone of these passage-shales, and has been most indefatigably worked by Messrs. Lighthooly and Marston. Other exposures of these fishlbearing shales ocenr, though all are not equally prolific. The earliest true Cephalaspis comes to ns from the lowest layer of the passagebed. Iurhmuspis, an allied genus was first found in the Lutlow exposire of the shales, hat lately our best specimens have come from a sonth-east extension of the hed, cut through by the railway near Ledhury. An interesting memoir of this exposure will be found in the Geol. Soe. dourn., vol. xri.. 1 p. 198-7. Its : mithor, the Rev. W. S. Symonds, proves the existing relationship between the Ludlew and Lodinny deposits; and motes the discovery of l'traspis in reel and motteil marls and sandstones (passage-rocks), lying alove Downton sandstones at the tmmel-mouth; and of alsundance of Anchemaspis (which may be described as a small Coplalaspis with a neek-collar, or plate filling up the space hehind the eyes, and between the cormated folongations of the shiekl), in the top layers of the tramsition beds, answering in stratigraphical jnsition to those on the Ludlow railway: The upper tilestomes are the next repositories of Ciphalaspids with which 1 am acquainterl.

Many grood specimens of D'teraspides eame ont of this rock when it was quarricd at Trimpley, near Kidderminster, and two heads of Copluhluspis Burthismi (\because) were met with laye: hat when I saw the Loceality last, some very fine putatu-plants were making gond use of their time just wer the hole which had given me good fossils, and two cottares mear-hand owned the pharry as a garden; so mo more P'toraspides at 'Trimpley. But one notable expusure is left to us at Whithatelo, three miles morthecant of laultow-a chassical spot as having givem the late Dre Llopel the first Poraspis homeke, which still retains its name of P. I.lomilia. The relationship between these tilestones and the overlying hard comstone rowk. pure enongh in this meighbembened to be hurnt fin lime is plainly to be seen in the fuarrica in the Dhwitom drive, amd a more instructive walk camont lae taken than hlat lauling thomgh the Whithateh wonds tw Haytom, Suttom, sumd Bouldom hulced, it is to this gromed that 1 wish to direct the apeeial attention of travelling geologists, for I camot thimk it has had fill justice dome to its merits. Pteraspis is not meommon in fragements ammeng the tilestomes in the great quarry on the west side of the drive to the Ilall-by the way, there is a band of corn-
stone interstratified, which must not be confomnded with the true Old Red comstone which is quarried and tumelled into beyond this quarry-and I hare lately met with some bits of fish-armour, with cunningly convoluted strie, fragments of a related though, as yet, nodescribed genus. These also occur in a brown-red coarse grit, at the Wall Hills, near Ledbury, though higher in stratigraphical position.

I have said that through the Whitbatch portal we enter a very fine field of research, but our route must be adrisedly taken; and I do not recommend another halt in our march until we have left Downton Hall and its woods behind ns , and are looking down from the high grounds of Hayton, upon the beautiful dale of the Corre. If we trace northward from Upper Hayton the lines of cornstone in ontcrop parallel to the course of the Dale, we shall come to some notable exposures.

At some points, Hayton's Bent, for example, they are cupriferous, though the poorness of the ore obtained, (a carbonate), has yielded but little copper, and failure has attended the works. And at another spot, near the farm-buildings of Downton Hall, they have yielded an ore of lead, in the well-known form of cubic galena.

But it is for fishes we are searching, not metals. There is a small quarry in a field at the top of Hayton, which one would think a terrible place from its being called the "Devil's mouth," but there is nothing alarming about its appearance, nor has it any strange connections that I could see, sare its treasures of Cephalaspid fish. I think I never saw Pteraspis Lloydii of equal size to those I have taken in this quarry, thongh I could meet with no other species. The stone is here a fine-grained light-coloured sand-rock, interstratified with true cornstone. Two miles east of this place, in the Upper Cornstones of Hopton Cangeford, the monarch of the Cephalaspides in point of size, the great C. asterolepis, was found by Dr^{2}. Harley. More of this noble fellow when we mount up to him in time, and ascending order of beds.

On the same horizon, and yielding more or less evidence of their former life are the cornstones of Hall's Barn, near Kidderminster, and of Cradley, near Malvern. In both places I have found fragments of Cephalaspis and Pteraspis in abundance ; but I need hardly remind the collecting geologist that good scutes are of rery unfrequent occurrence; the majority of specimenshaving been laid with the breccialike gravel, whose weight and unequal pressure were enough, even if motionless and undisturbed by currents, to have broken up the shelllike plates. And in fact such an amount of grinding did actually take place among the shallows and pebble-reaches of the Old Red lagoons, that more than one layer of coarse grit lying above the lower cornstone is seen by a lens to be crowded with blue and purple atoms of fish-shell, the triturated remains of many a good Pteraspis.

Steering north, with a slight easterly inclination, from the Hayton quarry, we shall find several breakages into the lower cornstones, near the apex of the ridge, at Sutton and Bouldon and Tugford. Pteraspidean plates are to be found at each of these places, and a halt

 owemp nee and are much better preserved than elsewhere, phosphate of iron haviner colomed them hhe and purple amb chemically tixed the onter striated layer of shell-so seldem fumed in position to the internal cancellated and flmy ones. At Jonhlon ton), in the guarry man the mill, P'emaspis is not unfrequent; lat the comstome is coarmer, make ny of harerer and more angular pebbles, and the fussils hase suflered many breakages from leing laid in theivempany. On the sppensite site of the dale, grood l'teraspides have, I beliewe, heen fommat Nompon, a small villate nearly opposite to llayton: and if "Ce turn castwand from that puint, and skirt the foot of the Titterstone Hill, we shatl get smme specimens of moll interest fiom a quarry
 came from a sindstone rock oceurring with comstomes, near the forere in that village.

There is amother erood (xposure of fish-herang Old Red which has had seant justice done twit-the beanifin country lying north of bromfard. At llinston and Actun Beanchamp, near this tuwn, Ciephlnspiss cinlue !i ha- been met with. 'Ilhis is a large speceses having its enamel laye eovered with "pearly drop-like tubereles" of small size, which,
 fation are decribed hy Mr. Marley, in the Guart. domm. Geol. Soce, vol. xが. p. Sll

I thank it likely that the Epper Comstomes wemm near Tedatone Wh lamere, thomerl I have beem mable on werify this be a vist. This hamel hereciatal hame is well worth searehing fors as it contans in the two opreniners made into it, of which I am aware, that very bearn-
 and ormanentation, of the "Bnekler-heads." A short memone is

 fish is omamented by mbereles, variahle in size. but larger than those
 plato-borrowing the worls of Mr. Harley-" It presents lacuna and long lorathene canalionli preciace resembling those of homan home. Mhay of the- are completels injected with : tranaparent hlend-red matirial: and en leantifinly are they tha liaplayed, that one ignomant of the stometme of lwne wombl be ahle to appremed it by atanee at : minute part of this rancient fragment. So womberfully indeed has nathre trensured up hor secrets in this disentomberl relie of a time sot distont is to be incalembatie, that sbe diatinctly reveals in their
 thoumblelt of minch in diameter. and such ns defy the skill of the
 Leen from time fo time ultained ly me from an expmome of the lpper (ormstones at Heightington, near Bewdley. But the mine is now
exhausted; for my good friend, Mr. Baugh, of Bewdley, who has followed up my researches in Worcestershire by constant and unwearied attention, assures me that no other specimens can be got from the stone bronght up from the now filled-up quarry. Less is known abont the tuberculated Cephalaspides than of those whose head-shield is ornamented byscale-like area, marked out by the out-cropping of minute rascular camals, entering the disk from bencath, and exhansting themselves upon its surface. This true reading of the external appearance of C. Lyyellii is contained in a paper by Prof. Huxley, in the Quart. Journ. Geol. Soc., rol. xir., p. 270. Equally careful and minute is the description there given of the layers which unite to form the cephalic shield of Pteraspis. Briefly their characters may be thus given-the innermost layer is a thin delicate lamina of enamel, somewhat nacreous, and occasionally tinged with colour; the middle layer is composed of vertical plates of like substance, so arranged as to enclose polygonal cells, whose summits or external apertures are closed by an excessively delicate filmy layer, minutely reticulated; and lastly the outer plate consists of a hard layer, strongly ridged, whose summits are turned outwards. In one species I have observed the external edges of these ridges to be minutely toothed. Most of the characters of this triple armour are shown in the annexed sketch of Pteraspis.

Thus I have briefly called attention to the occurrence of these fishes in sereral places, though their condition is nsually fragmentary, in the Old Red of England.

And so, we bid our adieus to these shield-bearing ancients; but only that we may meet them elsewhere, and obtain from them in the field their willing tribute to our scientific treasury. Much has been written about them, but more remains to be said. And while the story yet to be told is in the careful keeping of an accurate naturalist, any collector who can find and contribute a readable fragment may be proud of being associated, not only with a memoir of the carliest known fish, but also with that which dignifies the study of Cephalaspis and Pteraspis-the history of the first appearance of vertebrated life.

NOTES AND QUERIES.

Tertiary Strata ty Kevt.-Dear Sir,-Tt has been aptly said by one of your correspoudents that deep railway-cuttings, though preseuting difiticulties to the engineer, are great helps to the geologist; and the sections exposed in the new Londou, Chatham, and Dover Railway, are particularly interesting in showing the geological features of East Kent. As oue who has taken deep interest in the geology of the county, and has studied these cuttings, particularly that over the chalk near Canterbury, at Beakesbourn, perhaps I may be permitted to give a short account of them, through the medium of your valuable journal.
Geologienl Sections on the Lonilon, Chathnm, und Doser Railway, between Canterbury and Beakshoume.

To those readers who may not have st mbied the geology of Kent, I may state that onr principal knowledge of the Lower Tertiary formations there are derived from those excellent papers on the Thanet sands, and the Woolwieh sories by Mr. Prestwich, in the Geological Society's Journal ; and it will be remembered that these sands are the British representatives of the Lowest Tertiary on Lower Locenc deposits. These series are abmondantly exhibited. overlying the chalk in the railway-euttings between Woolwich and Canterbury. The lowest more partienlarly in the enttings between Canterbury and Beakesbourne, which I will now describe.

The London, Chatham, and Dover Railway, atter erossing the valley of the Stomr, passes to the south-cest of Canterbury, and the first cuttings are through chalk. It erosses the Dover road it about a quarter of a mile sonthrast of che town; the depth of the eutting in the chalk being abont iwenty fect-that is to say, there is a depth of abrout fifteen feet of chalk, and over it a depth of five feet of brick-earth (postPlioceme). Between the chalk and the brick-carth is a stratum of irregular flints, about six inches in depth, as shown in the accompanying diagram.

In No. 1, a represents the chalk; b the flint stratum; and s the drift. In No. 2 cutting, e represents the drift, and d a strathm of sand of ochreous colour, having a thin stratum of ironstome, suphosed by me to represent the Woulwich sands. In No 3 cutting, c represents the drift: d the Woolwielt sands; of the frlmeonite; f the grey plast ie marl. These two last erpresent the Thanct sands of Prestwieh; but serm to differ in their litholegieal charater from those deseribed by him. There in nothing partienlarly worthy of note in C and d; hat stratum C is composed of an indurate grecoush stardstone, in its mper portions approaching in rolour to the ochreons sant at N, having chertatone interspersed. This samdstome: is very hard in places; but not in large hlocks. It appears split into perpendienlar and transerse sections, and abomeds in
 bejont this.
shells; the characteristic one of which is Pholedomya cuneata. This sandstone does not effervesce with acids, except in portions which show evident traces of shells. Beneath this at f we have grey or blue marl, the upper portion immediately under the sandstone being mostly composed of a green sand abounding in shells much like Cyprina Morrisii. This rock passes into a tenaceous grey plastic clay, very hard, and possessing a complete conchoidal fracture. This grey marl is very distinct in colour and appearance from the green sandstone above; it abounds in lignite and iron pyrites. The depth of the Beakesbourne cutting is about thirty-five feet. The average depth of stratum f is about eighteen feet, of e about ten feet.

The fossils found in the green sandstone, e, consist of Pholadomya cuneatc, Pholadomya Koninckii, Cucullea decussata, or C. crussatina; small Corbula (:), Cytherea, Cyprina, Turritella, Natica, Glycimeris and Panopaa in casts; fossil fruits; several casts of Pholadonxya, differing from most already described; some Echinanthus, or Echinoderm.

In the grey marl, F, were found Pholadonya margaritacea (?), Rostellaria, Cyprina Morrisii, Natica, Pinna, Tellina; also a supposed Venericardia. Several curiously cylindrical bodies resembling Calamites, lobsters' claws, \&c.*

From the orgamic remains found in these cuttings we should have no difficulty in referring them to the Thanet sands of Prestwich, bat they seem to differ in lithological character, and approach very closely to those sections described by Sir Charles Lyell, as occurring at Tournay, under the term of Glauconite, and grey marl, and classed in Belgium as the Lower Landinian. It has been surmised that these formations in Belgium were represented in Britain by the Thanet sands; and these sections I have described would seem to warrant the conclusion. I have attentively read Mr. Prestwich's paper on the Thanet sands; but do not find that he has described any portion which exactly corresponds with these sections. He speaks of the Thanet sands as to their lithologic character, and describes them as "consisting essentially of a base of a lightcoloured quartose sand, mixed in its lower beds more especially with more or less argillaceous matter, but never passing into distinct clay." The argillaceous matter is usually light-coloured, and does not therefore colour the sands, merely giving a certain amount of cohesion, so that when dug the beds are sometimes semi-indurated. In some places moreover, the clay with which the sands are mised is dark coloured, as in the lower beds at Pegwell and Hernc Bay."

The sands described as dark coloured by Mr. Prestwich, are for the most part not accessiblc, being below low-water, or obscured by recent deposits ; and it must be remembered that the sands at Reculver are represented as being seventy feet down to the chalk, though only twenty-five feet of them are exposed. It would thus be seen that Mr. Prestwich's description would only refer to the upper part, and this the least considerable. However this may be, I believe that there is much yet to be learnt of this important geological formation, and these cuttings I have been describing may reward the search of the diligent geologist. Before concluding, I may add that I have had the opportumity of observing the lower beds of the Thanet sands, having sunk a well at Stourmouth, passing through the Thanet sands down to the chalk, which I reached at a depth of one hundred and forty feet from the surface, and a depth of one hundred feet from the lowest bed of sand ; so that this dark coloured blue clay, which I tcrm the basement bed of the Thanet sand is of considerable

[^23]thiekness, "nd would more deserve the name of plastic elay. Thare reason in helieve, morenser, that this deposit is not always present; as I hawe olscrved, only a slight trace of it in a section that is exposed, of the Thanet sands at Wiugham, where the seetion exhibited reaches to the chalk.-Geober Dowrer, Stourmonth House, Wingham, Kent.

Imenar's Thenry.-In "The Geologist" for January, there appears in the "Notes anul Querics," "An 'Early English' View of "Adhemar's 'Thenry." Allow me to call your attention to a work, of which 1 cope helow the title page.
"An Essay on the Plysico-Astronomical canses of Clinanges on the Earth's Surface," be Sir Riehard Phillips. With preface by Willm. Devonshire Saull, F.(i.S., \&e." Published by Sherwood, Gilbert, and Piper, 1432. A note shows it was" "First published in the Monthly Magazine, in 1 412 , an (re-printed with other essays in 152l." The first publieation, in 1412, was cridently the Magazine "article" from which your corresponden quotes.-C. K.

Boxes of tie Dodo.-it a meeting of the Zoologieal Societr, Dec. 11th, Mr. A. Newtou noticed the discovery of some bones of the dodo in the Mauritius.
 lit le is known of the geology of these extremely interesting islands, a few worls on the subject, perhaps, mar not be unacceptable to the readers of "Trus Geolofist." The tourist, emburking cither at Southampton or Weymouth, will, on arriving at any one of the Chanel Isles, be struek at onec with the flifference in the geologieal chatacer of the rocks aromed him to that of those lee has but the day before left belind him; and on closer examination he will perceive, insteal of the low Tertiary eliffs of the Isle of Wight and its vicinity, or the oolitic crase of Portland, that he is surrounded be miea-chist, granite, and syenite, or other primary non-fossiliferous rocks. No true orgmie remains there are within lis reach, ind during liis stay in these islands he musi content himself with sperimens of rocks and minerals. It is my intention therefore to bring before my readers, in a few geological excursions, the principal features of interest in theres islands, hitlierto alunst unexplored by the geologist.
To begin with dersey-the large.st and most important of the group. After passing by the low sandy shore-whre, by the bye an important and comparatively reernt geological change has taken place, which will be hereafter spoken of -and the tall granitic clifts on the sonth-western side, which have heen here and there exeavaterl into eaverns by the aetion of the sea, the traveller will arrive at the chirf town, mamely, St. Heclier's, and on landine will seed on his richt hand a fortress, which is builh on a lofiy rock of syenite. The pier on which he will land is made of a beantiful pink or reddisth-coloured gramite, whinh is extensively quarried on the opposite side of the island, at a place called Mont Mado, where great erystals are oceasimally fomend in the sramite quarries; but these are of rare oefurence. The granie here worked raries in colour in the different quarries; some is of the reddish variety abovementioned, sone is grey, mud sone of a sellowish tint.* The first place wor the of notiec to which I would introduee my realers is the north-western point of the low lat sandy hay befure nentioned, where it was stated im importan geological changer appears is have taken place. Trastition asserts that in this hay of St. Ouen's there formerly was a large forest excenting far omt where the sea now is, and whielh ages ago was huried heneath its waves. But let us inguire into this statement: in the the first place, there are landowners who even to this diay pay rent for land whelh their :memenra formerly ponsessed in this forest. di low water, durine spring tides, if searel be made, stunps of oak trese ciur be foumb lirmly imbedded in the sand; these show, at any rate, that although

[^24]the extent of the forest may lave been greatly exaggerated in these traditions, yet that in a former age there were decidedly trees growing there; and that the sea has encroached, as I believe it still continues to do, on the land. I have no doubt that if search was made peat would be discovered under the sand, as is the case in a similar locality at Tason Bay, Guernsey, which I will speak of hereafter, where filbert-nuts and regetable remains are found, just as in the peatdeposits in Ireland and other places.

From this spot the rugged cliffs of the northern shore commence extending onward for about twelre miles: they are granitic; but reins of syenite, quartz, felspar, and porphyry everywhere intersect the granite. On this coast there are numerous quarries of the granite already mentioned at Mont Mado; also some porphyry quarries at a place called Fremont. The stone here looks almost as white as chalk; but on being broken it is often curiously stained with oxide of iron. If after passing these quarries the road is taken to the left, it will lead orer the cliffs to Bowlay Bay, which is a very interesting locality to the geologist.

Here commences the curious conglomerate, or pudding-stone, which extends along the eastern coast. It consists of fragments of rocks cemented together with an argillaceous paste containing oxide of iron. In this rein it occurs of a beautiful green colour. Here, too, numerous pieces of a compact green felspar are to be found strewed over the beach in various directions. The conglomerate extends along the shore as far as St. Catharine's Bay, where it abruptly ceases, and joins the porphyritic rocks which form the coastline as far as Groutville Bay, where the schistose rocks, forming the southern portion of the island, commence. On the road near Gorey one of those singular Druidical cromlechs will be seen, of which there are several in the island. In these, human bones, and even entire skeletons, amulets, flint-implements, celts, cleavers, ashes, and pieces of pottery, have from time to time been discorered.

Beds of amygdaloid are found in the island, which is much nsed for buildingpurposes. In many of the syenite quarries, on the surface of the stone, slight traces of binoxide of manganese hare been found.

Green porphyry is also quarried in some parts of the island. The following is a list of the principal minerals which hare been found in the various parts of the island of Jersey. Iron-prrites; oxide of iron; binoxide of manganese; copper-prrites; quartz; epidote; carbonate of lead; felspar; hornblende; titanium,

The geology of the island of Guernsey is more raried, and consequently more interesting than that of Jersey; but I can only briefly notice a few of the most striking points in it. The southern part of the island rises to the greatest height, and consists chielly of gneiss and other similar rocks; the western side is principally syenitic. Granite makes its appearance at the northern extremity; then hornblende (both schistose aid amorphous) follows on the eastern side; syenite appearing here and there. The town of St. Peter-Pont is situated in a valley, between the junction of the syenite and gneiss. There serpentine is found; also talcose schist. A blue grey variety of granite is extensirely quarried and much used for building-purposes; and reins of that curious mineral, "graphic granite," are found in the island. The rocky scenery of the sonthern cliffs is extremely grand and magnificent; aud there are some curiously shaped rocks at a place called Moulin Huet. These appear to be of a schistose character; and on account of the decomposition of the rock by the influence of sea and air, numerons mimute cones hare been formed, and the disturbed portions of stone lying about in every direction gire a very picturesque appearance to the scene. In the parish of Torteral trap is found, reining the gneissic rocks, and presenting the usual terrace-like appearance. Small and narrow veins of crystalline carbonate of lime are found in the gueiss,

VOL. IV.
but these are very searec. The following minerals have been found in this district by a loeal genlogist. Sulphate of iron, mundie, specular iron-ore, sulphuret and the black and green curbonates of copper, carbonate of iron, iron-ore, hrown and pearl spar, sulphuret of lead, carbonate of lead, sulphuret of mangancese, cpidote, schorlite, actinolite, prehonitc, steatite, asbestus, tale, and pot-stone.

On the western side of the island there is a bay where an extensive peat-bed was discovered not many years since. It happened thus: after a heary gale, masses of wood and peat were seen floating about, and several pieces were stranded by the force of the wares on the shore; the sand and shingle which form the sea-bottom having been removed by the fury of the storm, these beds of peat, which lie exactly below them, were thus exposed and portions uplifted, which to the astonishment of the islanders were strewed over their shores. "Trunks of full-sized trees, accompanied by the wreck of humbler plants, which once carpetted the meadows where they grew, roots and rushes, surrounded by moss, gave evidence of the rank luxurianee of the locality. The compression of the trunks and boughs exhibit the first indication of that flattened form which all fossil plants undergo, by the superincumbent pressure during the slow decomposition of the vecetable fibre, without the complete destruction of the texture of the wood. The trees were overspread with coralines, fuei, and sertularix; and riddled with the numerons perforations of three species of Pholas, P. dactylus, P. candida, and P. parca, the dead shells of which were found in their holes. Pieces of pottery, stone-implements, teeth of horses and hurse, have likewise been discovered in the peat." " This peat is used for fuel, and is called by the natives "gorhan" (corban, i. e., a gift).

From the position and appearance of this peat, we may conclude that ant extensive forest ouer extended along a great part of the western shores of finemser, and that the sea lias gradually eucroached on the land at this side of the island; and it is well known that part of Guernsey, called the "Braye du Val," was only prevented from being swallowed up by the sea by means of an embankment made near the Val church in the rear 1s04; for the eneroachments of the sea over this tract of land became yearly more and more apparent. The shores of this part of the island are low and sandy, everywhere dotted with little hillorks of drifted sand. 1) midical eromlechs are here very abundant, in whirh many curious relies of antignity have been diseorered. The largest cromlech is composed of live cumbent stomes of immense weight, covering an are:s of twenty-nine fret long and twelve wide; in this were found many human ferth and benes, and some phtire earthem ressels. There are several ather "druidical temples" in the vicinity of l'Aneresse. On the south-western side of Gucrnsey there is a rocky iskt called Lihon, which is accessible to the perdestrian at low water; lnut at high tide mast be reacherl by means of a hoat. On acrement of the beds of eravel, which here repose on the gramite, as alsn from marks of a supposed ancient sea-margin on the roeks, some have imagened that the present elevation of the distret is mueh liegher than formerly; these lavers of eravel have been aceomed for, however, as having betu washed liy rivulets and rain from the, high southem lands of Giurensey down to this liwer part of the iskand; but there still remains the marks on the roeks at Lilon to be accomest for. There is a similar appearaner of a raised sea-beach on the north-western eoast, near a place callenl " l'anadis."

The iske! of hatom consists chiefly of gneissic rocks, traversed in some places ly veins of folphar. There are the remains of an ancient priory; and in the rocks on the shore of this island are to be seen two corious natural hasinsseooper nut of the rock liy the violenee of the sea - which tradition asserts

[^25]were used as baths by the nuns of the convent of Lihon. A similar excaration occurs near Grêve de Lecq̧, in Jersey.

Situated abont seven miles from Gucrnsey, and twelve from Jersey, lies the beautiful little island of Sark. This island is about three miles and a half in length, and one and a half in breadth. Although small, there are a great many objects of interest in it. It is divided into two parts, Great and Little Sark, comnected only by a tall and narrow pass, called the Coupce. On the west side of Sark there lies another still smaller island, called Brechon, or "l'Isle des Marchands," which is divided from Sark by the Guilot stream, or channel ; this island is about three-fourths of a mile in length, and half a mile broad. Granite and syenite, as usual, form the basis or lowest rock, on which a great variety of the metamorphic rocks repose, forming the body of the island. The grante makes its appearance at the two extremities of the island ; then syenite follows, in which on the southern side many mineral veins exist, and at a place called Port Gorey, in Little Sark, mines of silver were for some time worked; but the amount raised was not considered sufficient to defray the expenses of the working, so they were after some time entirely abandoned. A great variety of minerals were found in these mines, amongst which were muriate, chloride, and sulphuret of silver, carbonate, sulphide, sulphuret, and phosphate of lead, carbonate and sulphuret of copper, sulphuret of antimony, and antimoniferous galena. The beautiful mineral, ruby silver, was also found, and veins and crystals of carbonate of lime. Heaps of the silver ore still remain scattered about near the mouths of the shafts, where good specimens can be obtained. At the time the mines were abandoned the amount of silver which was raised was upwards of twenty-eight thousand ounces, besides a great deal of copper and lead.

At the Coupée, before mentioned, there is a vein of porcelain-clay, about eleven feet in thickness, which appears to have proceeded from the decomposition of the granite. This is mostly white, but oxide of iron (red, purple, and ycllow), and veins of quartz, intersect it in many parts. The rocks in this locality are of mica-schist, and at a place called "Le Pont du Moulin" they assume an interesting appearance, on account of their horizontal stratification, this is particularly remarkable in three masses of rocks, called the Alterns (Les Antelets), near this spot.

Saxa, vocant Itali, nudüs quæ in fluctibus aras.-Virgil.
These singular looking masses stand out alone, some distance from the shore, and look like piles of masonry, or some artificial structure. Probably they were the buttresses of a natural arch which has been washed away by the sea. On approaching the northern point the original granite again makes its appearance, and on the eastem side of the island veins of trap, greenstone, and quartz occur. Porphyry too is found near Le Grêve ; the quartz sometimes is found of a pink colour, somewhat resembling the rose or milk quartz so abundant in Norway and Sweden. Pot-stone, or lapis ollaris, is found near Havre Gosslin, and is used by the inhabitants in making vessels for domestic use, as it can easily be cut with a knife. Tale, hornblende, actinolite, and chlorite are also found.

The island of Brechon, or l'Isle des Marchands, consists chiefly of gneiss; but veins of different rocks occur, and here a mineral lode was discovered and worked with some success; but this also was finally abandoned. Copper was the principal metal found there. Another metal lode was discovered at Le Pot. In Little Sark, in many of the caves metallic traces are discernible: iron pyrites is found in some of them.

I camot conclude these remarks on the geology of these islands without some notice of the curious caverns found in many of the cliffs, called by the natives "creux." These are crater-shaped cavities, having generally steep rocky sides
open from above, and in all cases a tunncl which commmicates with the beach bechow. The fumel, probably, was formerly the cave, the top or eciling of which giving way, produced the eurious tumed-shaped appearance as seen from abore. There are several of these; one near Sorel, in Jersey, called "Le creus du vis," and two in Sark, called "Le creux terrible," and "Le Pot," being annong the most remarkable. 'There are many other ordinary shaped caves in all the islands, produced both by the action of the sea on the softer strata, and by the first great upheaval which raised these islands from the ocean.-J. H. Macalleter, Stoke Goldington.
()rift at Doxali's Himl, Treland.-Dear Sir,-As any fact which elucidiates the oceurrence of osseous remains in what is called "The Drift," and the probable age or history of that deposit as determined by such collateral evidence, is at present of especial interest to geologists, the accompanying sketch and remarks, taken from one of my note books, wi'l, I am sure, interest you.

Surface, with soil.

Quarry in ('halk, or "White Limestone," at the base of the Batsalt, 7 on) feet above the sea. South llank of Donadd's Mill, townland of Kilhoyle, co. Derry : (sbeet 17, Ord. map).
1, Drift elay, formed by the disintegration of the lasall.
2, Hasale, compuct at ton, becoming sof and earthy below, and resembling a varicgated whaly mandsone.
3, llardened chalk-murl, contaning sub-angular lumps of red and grey (chalk-drif, below the lasall).
1, Thper chatk with hants, bardened to a compact limestone with conchoidal fracture.
5. Laters of tirit.

A I, Jaze hue of recent drift.
Is If, Ifollown in the surface of the chalk, containing fragments of decr's horns and bones.
On the southern flanks of Donald's Hill, eomenty of I erry, fown-land of Killoyhe, and at an clevation of sesen humdred feet abowe the sea, a large guarry was copened many years back, in the hard, or as it is called by geolorists, "altered chalk," known lueally as "white limestone," at the very limit of the escarpment of superineumbent basalt which eovers the entire remaining uper portion of the memutain. The chatk, which, as usual in the counties of Derry and Antrim, resembles a elose-grained eompact white marble, with a conehoidal fracture-is locre, as chewhere, werlaid by a stratum of drifted sub-angular tlint shinele, enclosed in what was once chalk mud; hut which is now nearly as hard as the chalk itself. (on this ancient chalk drift the basalt rests-the jume-
tion between the two being sharply and clearly defined, (ride right hand side of the sketch).
The cutting afforded by this quarry slows that the basalt, the ancient chalkdrift, and the chalk itself, have been denuded; and a layer of dark brown clay, formed apparently exclusively of disintegrated basalt, spread over all to the depth of eight feet.

The surface of the chalk beneath its ancient flint drift, as well as the more recent basalt clay deposit, has been worn into hollows and cavities of variable width and depth; and in those filled by the basalt clay, the quarrymen frequently find the fragments of deer's horns and bones. (See left hand side of sketch at $b, b)$.

With regard to the probable age of this drift basalt clay, there are some who may probably suppose that it is comparatively recent ; and the product of rain and snow wearing away and washing down the basalt from the higher lands of the mountain on to its flanks. Such would be a hasty conclusion. Rain acting on disintegrating rock cloes not deposit its sediment, or fine detritus, on the flanks of hills; but carries them by the floating power and velocity of its waters to the lowest lands of the plains, and eventually to the bed of the ocean. If that was the origin of the deposit, its formation should be still progressing; but it is very evident that the contrary is the case.

On carefuilly studying the facts presented to us in this quarry, it is clear that the era of the last great denudation was drawing to a close before the formation of this basalt clay, which must have been deposited as mud at the bottom of possibly a shallow sea or estuary: It belongs therefore to the Glacial or Escar Drift, which bears the same relation to the other rocks as this clay does to those beneath it. The horns of the deer, and boues of the same animal, or of others, may have been washed into the sea, and swept by tides and currents on to this bank of silt, through which they sunk till they rested on the surface of the chalk beneath.

If this supposition be true, and I see no reason to question its correctness, we have evidence here to show that deer, aud very possible other animals, existed in these latitudes, while the land presented a very different configuration to that which it now has; and a large portion of what is now the north of Ireland was more than seven hundred feet lower than at present, and therefore submerged beneath the lerel of the sea.-Truly yours, Geo. V. Du Noyer, Dublin.

Dithyrocarlan Crustacean Remains at Portuadoc.-Sir,-Allow me to iuform your readers that the "New Crustaceau form allied to Dithyrocarus," referred to in your last number, page 74, occurs in this neighbourhood (Portmadoc), and has recently been collected by me from the lower Lingula beds at Wern.

My specimen is the exact size of your woodcut, which is rather larger than the Skiddaw specimens lately sent me by Mr. Gregory, of 3, King William Street, Sitrand, who has, I understand, some very fine examples.-1 am, Sir, yours obediently, John Ash, Portmadoc.

Curious Geological Fact.--In a field, the property of Mr. Renton, situate a short distance from the point where the Leeds and Liserpool Canal is crossed by the Midland Company's railway, at Idle, near Bradford, is a considerable liill, or piece of rising ground, which has been notieed to be gradually attainiug greater elevation during a period exteuding orer the last thirty years. There are even young men who remember the field being quite level, whereas now there is a mound near the middle of it. The canse of this singular eleration has given rise to much speculation. Some persons suppose that it is owing to the upward pressure of water in the bowels of the earth.-"Times," Nov. 22, 1860. What does this mean?-Querist.

We do not know the hill referred to, but we should think from the above
paragraph that the rise of the ground mentioned was caused by some neighbonting hill or higher land, the weight of which, pressing on soft clay beds, would cause then to rise up, probably at their outerop. The accompanying diagram will illustrate this action. If a
 limestone hill a presses by its weight (sce downwad arrow g) on a clay stratum, b, resting on hard rock, c, the effect of the weight must be to comoress or tlatten the clay bed 6 . If this clay bed ean find a rent, which it would naturally do at its outerop, $i k$, the elfect of the pressure would be to canse the clay land to be squeczed out there in the direction of the arrows, $h e$; the highest elevation, or erown of the dome of the raised tract (shown by the dofted limes) being at d. This kind of elevation is not uneommon in gault dis1 ricts, which are thus pressed up between the Chalk and Lower Greensand.Eb. (ifol.

Fossils from Old Red Saydstone at Whibatcii. - Sir,-It may be interesting to some of your readers to know that I hase procured a nearly perfect Cephulaspis Lypllii, from a quarry of the Old Red samstone at Whitbateh, near Ludlow. I believe this to be the most perfeet Cephalaspis that has been found in this neighbourhood - I only know of one other specinen showing any portion of the body; that specimen was procured some years ago, from some men that were breakers of stone for the road near Pontrilas; but the exact locality where it came from is unknown. The quarry at Whit bateh is a very prolitie one for C'ephatapides; and some rery fine l’teraspides have been procured from it.1 im, Sir, yours, Se., Alrred Marstos, Cove Strect, Ludlow.
List of Fossits fount in the Old lirat Santstone, in the neighbourhood of Ludlore, By A. Marston.

Sprecies.	Localities.
Cophurlaspis Iyyellii.	Whit bateh, Rouldon.
- Settreyi	Oakley Park, \&c.
- asterulephis	Whithatels.
Onchus, fisli-ldefruce	Whitbatel.
P'eruspis roskritus]ownton Hall drive.
	(tan,
Spiny Stem of Tree Furvids, very large	Rouldom.
Ege packets of Plery gotus	Whithatel.
Fish-Tracks	Bouldon.

 a bork of travels in spain, published (anomymonsly) about sixty ycars ago, the writer, in deseribing his visit to the muscim at Madrid, mentions that "The most remarkable and interesting objeet in the cabinet of natural history (whieh recupies a suite of ten rooms), is the skeleton of a nondescript anmal which was discovered some years ago, buried about forty feet in a mountain, near Pamens Ayres. The fength from its rump to its nose is about thirteen fert: its hecight a litto more than six. The leredth and size of its borly are very astonishine ; and the collar-and hade-bomes are not molike those of the human species. The legs are uncommonly stout, particularly those behind, which are of such prodigious and wonderful strenth that they must lave been designed to supprert, upen oceasion, the whole hody of the aminal reared up; an idea whirh is remered more probahle from the lencrth of the claw and the sotid pieer of bone which projects behind, forming a basis to the heg. Whether it

Was a carnivorous animal or not is still, and will probably always remain, in great doubt. The enormous claws are in farour of such a conelusion; but the evidence of the mouth is against it, which is merely fumished with common grinders, without fangs, or any traces of them, though that part of the skeleton is entirely perfect. The neck is long enough to touch the ground. It is cvidently of the cat kind, and appears to have been a sort of gigantic tiger. The breadth of the animal and the solidity of its bones are wonderfully striking."

Can you inform your readers whether the remarkable fossil animal above mentioned is still in the museum at Madrid; and whether it has been seen and described by anyone who (from the great adrauces made in geology of late rears), is better qualified to give a more particular and scientific account of it than the writer of these travels?-Query.

Errata in Mr. Prestwich's Paper on Cliff Section at Mundesley, Norfolk.-At page 70, 9th line, omit reference mark (g) ; 30th line, for littoralis read littorea.

REVIEW.

The Cleveland Ironstone. By J. Bewick. London: Jołn Weale. 1560.

In a paper which appears in our pages this month upon the geology of Cleveland, the writer has made a casual reference to the volume before us, by Mr. Bewiek, which has very lately appeared from the press ; but as it is intended to be an exhaustive treatise on the subject, it demands a more particular notice than we might otherwise have bestowed upon it.

The volume shows a vast amount of observation amongst the strata of the distriet, and gives a tedionsly-minute history of the development of the Lias iron-seams in the Whitby district, where their commercial value appears first to have been recognised. We may date the birth of their importance, indeed, from the year 1833 S , when the Wylam Iron Company leased the ironstone on the estate of the Marquis of Normanby. Mr. Bewick's observations, however, are too much confined throughout to what is usually called the "Grosmont district," which has now been outstripped in point of importance by the discoveries in the neighbourhood of Guisborough.

When the writer speaks of the fossils of the Lower Lias as "the remains of antediluvian animals which enjoyed life, in all probability, at a date far beyond our chronology," he will find few greologists to dispute the probability; but when he long's for "some Newton to teach us more than we know of the birth of matter," the probability of his hopes being realized is scarcely so well founded. In most pages there is work for a judiciously handled pruning-knife; whilst there are within them the elements of a scientifie treatise of the greatest value. The inaccuracies whieh we notice in the present volume might easily be rectified, and much interesting matter added, which is now wanting. We do not certainly see auy reason for "inferring" from any faets whieh the volume contains, "that the rocks upon which the Lias rests are of a very uneven character," although such may undoubtedly be the case. Wheu, again, the basaltic dyke, which intersects the distriet, is referred to as the "probable disturbing element" by which the rocks in Commondale are said to be uplifted on their edges, a glance at the phenomena there exhibited would at once negative such a supposition : on each side of the dyke the strata retain their horizontal position, or whatever inclination they may have had previously, without
any sign of violence or alteration, except such as we should expect from their having formed the walls of a dyke of molten matter. 'The strata are never either " 1 wisted" or "contorted," as most wonld understand the terms, and certainly not, near Dibble Bridge and IV esterdale, as Mr. Bewick has deseribed. The seam at Frymp End, which we find there spoken of as the Lias seams which have been opened out and show a thickness of ten feet, is in reality the oolitie seam of the luferior Oolite immediately below the great sandstone rock, as mat be seen in the narrow defile of Crunkley. The Lias beds are, at this partieular point, two hundred feet below the surface; the seam opened out is analogons to the great Rosedale iron-rock, which is sufficiently explained in the artiele to which we have above referred.

Mr. Bewiek's plan of colouring green the strata covered by grass, ete., is in unseicutific mode of overeoming a trifling diffieulty; a short glance wonld have shown him, for example, that the village of Castleton rests on the Inferior Oolite. The granitic boulders are, in all probability, from Shap Fells, in Westmoreland, and not from Deronshire, as that author suggests. As a prool' of Mr. Bewick's great enthusiasm, we may give his laborious calculations of the aggregate tomage of iron-ore to be extracted from the whole of Clevelaud; the figures are-for they are worth recording-4, $520,000,000$ tons; which, he adds, will sutfice for treble the number of all the fumaees in Great Britain until A.D. 2,510! What will be doue in Januare, 2,541, Mr. Bewick does not iddd. Such a calculation, lowever, although taken literally as a mere idle curiosity, will serve to express a practieally unlimited supply, whilst we have un doubt but the higher seams will ere then be better known and more used. 'The Staiths' fishermen profess to know to a dozen the mumber of herrings on their coast, and we must class Mr. Bewick's calculations with theirs, as patterns of exactitude.

The map of Cleveland which accompanies the volume we can only admire for its neatness of exceution, and express a wish that it had been more accurate: since a map of such dimensions ought to be of invaluable service in an examination of the geology of the district. In the first place, the basaltic dyke appears to have been dotted through the country about Danby without the slightest regard to accuracy; from I'arke's Howe, at Fryup, to its appearamee on the moor above Commondale, it is marked far to the sonth of its natural line. We notice the oolite colour covering many large tracts where the Lias shales most evidently exist; as, for example, in the Vale of Kempswithen, and part of Sleddale; the whole of Sengdale, Lownsdale, Northdiale (Rosedale), the eomery near lugleby Manor, between Little and Great Fryup at the head of the formere, and near swainby, as wedl as a large tract near Roseberry. To the south of Guisborongh there is a similar error in colour, and comeless instanees along the ser-coast. The Trias and Lias are divided by a semingly artitrary boundary, very wide from the actual one, as near Eiston Junction and at Hutton Rudby." The words "German Ocean" might mislead a stranger, by eommeneing, as they do, sereral miles upt the river Tees; but we shall dismiss our eorrections by a disprewal of the cutire negleet of such vast and important alluvial denosits, as are fomert at Saltburn, Rumswick, I calholme liridge, and other places. A geological map, in our opinion, should mark the first peologie series beneath the superfieial accumulations, and the one before us, if intended to do so, but ill fultils the intention. In eonchasion, we would recommend all who can in investigate for themselves one of the most interesting parts of Fingland to the geological student.

THE GEOLOGIST.

APRIL, 1861.

A LECTURE ON "COAL."
Bi J. W. Saliter, F.G.S.
(Continued from page 102.)
Ir many respects the plants and animals of the coal differ much from forms now living. It is probable that the greater part of them are even of different groups or families from the existing ones. But the ferns at least show strong traces of affinity. Here and there we meet with the young fern-leaves coiled up as they now lie on the heather, ready to unfold on the return of spring. We all know these "Bishops'

Fig. 1.-1. Curled up fronds (circinate) of Pecopteris (Brongniart). 2. 3, Fructification of ditto.
crooks" that nestle in the bottom of the fern-baskets; and when I saw a grand specimen in Mrs. Stackhouse Acton's cabinet (it now graces YOL. IV.
our museum in Jermyn Street), with the delicate coil of pinnas, every leaflet in its place, I almost leaped for joy. It wats trom the Le Botwood coal-field. There is one figured in this work, rol. iii, p. 460 (but the finder has not yet been told, [think, what his fossil is) : it is from South Witles, and a beautiful specimen.

Fig. 2. Sophomploris Shhthrinai, a coal-firn from Stranhourg.

Our space was too crowided last month to give the necessary figures of the ferms: and it is but limited now. The leaves or fronds of the delicate Splomoluris, montioned p. 101, are very abundant. There are a mmber of species. N. dequns, N. cressa, and especially S. aftinis occur in the lower coals, beneath the monntain limestome of Scotland; -S'. artmisimfulin, S. Momiughausi, S. liuraris, S. trifoliato, are all characteristic of one יpper coals, and the two last are found in France and Gemany. Our fighre represents the Sp. Srhinthimii of Brongniart, a plant that is found in the coal slates of Strasbourg.

The Adiantites of the Old Red Sandstone, mentioned last month, will be figured, and full descriptions given of it by the officers of the Irish Geological Survey; it is only, therefore, needful to give a sketch

Fig. 3.-Osmunda regalis, living at Kllarney.
Fig. 4.-Adiantites Hibernicus, fossil in To show the terminal fructification of the living ferm.

Kilkenny. To show the lateral spikes of fructification in the fossil.
figure of it here, especially as it does not actually belong to the coal, though the same genus is found there. We must now pass on from the ferns, and speak of the cylindrical stems so common in the coal.

The other plants of the coal, which strike us most, are the fluted stems called Sigillaria. They abound in all the shales, with every kind of varying proportion in the patterns, which nevertheless is of a regular and definite kind. It consists of longitudinal flutings, generally ir right lines, sometimes a little zigzag; and on the surface of the flatings are scars, either round or somewhat kidney-shaped, or hex-agonal-or even double ovals-or purse-shaped, narrower above than below, and always with a couple of dots in them, which are the marks of the vessels that supplied the leares. For the scars are the bases of the leares, which are seldom found ; they are of a long shape, with a rib down the middle. The stems vary from a few inches broad to three feet in circumference, and specimens have been found that must once have been sixty feet long. They are generally quite flat in the shale, and often broken to pieces; and they are, most generally, covered with a coat of coal. The scars outside the coal-envelope are not quite the same as those which show within, but pretty nearly so. Our figure shows this (Fig. 5).

The Sigillaria was a tall tree, with a bare frunk regularly pitted by the leal'-sears. It brameherl at the smmit, and hore long marow leaves, as above said: its frut is not known. lts intermal structure las been cxamined in some very perlect specimens. by foreign and English botanists (fossil-botanists as some folke call them), - lbronguart, Hooker, 1) itw som, and others. It is a good deal like the (!!eas, known in our erver-lonses as at (ape plant, hat in some respects more like Ferns. Nor is there any living family of punts which tallies with it, thongh in a mong way it has been supposed by gond judges to belong to the ereat tribe conifera-to whell one fir-trees pines, cedars, and junjers belong. Hooker regards it as mearer the chub-mosses, and especially neatr to Lepriltulembion.

The patterns on the hark difler in all the spectes, of which no less 17an fiftern are known in Jingland alone. Wre have figured two of the mone remarkalile; and really they mient be used for paper-
hangings in the studio of the geologist. Who will try copies from nature for this purpose ?

Fig. 7.-Sigillaria elegans. Patterns of bark Sigillaria.

Fig. 8.-Sigillaria Defrancii.
Pattern of the markings on the bark.

But Sigillaria is not always found lying prostrate. It is very often upright, as it grew ; so many instances are known of this that it is almost useless to repeat them. A stump, ten feet high, is figured in Dr. Mantell's " Wonders.", a book worthy of every young geologist's ambition. Others have been noticed by Sir Charles Lyell, and a whole forest of short stumps was discorered in 18:38, near Chesterfield, during the diggings for a railway. There were no less than forty trees-a few feet apart-on this one spot. In Durham, at Newcastle, and in the South Wales coal-basin, others have been foumd. Hugh Miller, in his interesting book-"First Impressions of England and the English," (p. 233)-has described his visit to the celebrated Wolverhampton coal-forest. Here seventy-three stumps, in three tiers, one over another, are closely packed : and three successive forests -on the same spot-scemed to him the best way of accounting for it. I think we have a better explanation; but I am not sure of that.

But, then, these trees hare roots to them; and the discovery of these roots has opened up a new chapter in the history of coal. Nay, it has deciphered that history; for till Sir W. Logan found that every coal-bed had its underclay full of roots, and till Mr. W. E. Binner, of Manchester. traced these ronts (which are called Stigmaria, (fig.), to their connection with the tree, we never truly knew how coal was formed.

2nd Edition.-By T. Rupert Jones, Esq., Vice-Sec. Geol. Society, 1Süs.

I onght to have said however, that the bark of the Sigillaria is in seneral the only part preserved. There was within it only a soft tisime of cells, with a central stem or axis of wood, the latter ocenpying hat a small part of the eylinder. The soft tissue easily disappeared white fuscilizing, or even before the tree fell, for we often time tho atump filleel with sand, and broken fragments of vegetables mixed within it. In one or two trees of this kind in the sandstone beds of Cova Scotia, Professur Dawson and Sir C. Lyell found a whole colony of centipedes or such like things, with snails and lizards! W"a must see how this happened when we come to the mode in which mal was deposited. The clay beneath the coal called an "underclay" ju-t is the roof-shate is called "overclay" - is, as I have said, full of plants. These are the Stigmariar and our figure above shows what, they are like. Now the ereat importance of sir Willian's discovery was this,- that the ouly fossil found in the clay is, with the rarest exception, the Sigmaria : and it is invariably present. The fireClay as it is called, is generally a pure sediment: amb close upon it lies the coal, as pure coal as the other is clay. Now if we want to know what plant the coal is made of, we must certainly ask the under(lay where the ronts grew: for there, if anywhere, we shall get an :msire. Here Mr. Binney's discorery comes into play, for if Stigmaria is the ront off Sigillaria- foud is miversal in the direeclay-then, of comerse, Sigrillaria is miversal in the conal.

We livive seen, foo, that

 fragments of the sigillatite tries are among the eommonest in the shale that lies alorere the coal-bed. In 1 muth the trees were higher than the depth of the coalsenm. Thas we maty easily eoncerive that the ronts of a tree may he birlue the coalwhich is seldom above a liew feet thick the lower fart of its sthmp, fintly in the coal, and its bole and branchess all abmee.
'Thus it is we find the flatterned stems, and thimer loramelses and leaves, so often in the rouf shate.

There is amother tree, $L e$ pichulemblon, whose roots we do not certainly know, but whinh appears to have mown in the mberelay. It is almost as comoren as C゙ighllario, ant maty an laree. Perfect specimens have been fummi, forty font in langth fienn the mil in the end of the bramelhes. lint of conrse it is tho rarest of things to mect with such trees.

Lepidodendron differed from Sigillaria in the arrangement of the leaf-scars, which pack closely in quincunx fashion over the surface. Our sketch shows this. The patterns are equally beautiful and as applicable to pictorial design as in the other case. The diamond shape of the scars will help you easily to recognise fragments.

There are many species of these trees. The commonest of all I think is the L. Stembergii, of which a full length figure is to be found in the revised edition of Dr. Mantell's excellent book-"Jones's Wonders," as it ought to be called-p. 749. I have only given you fragments of branches, stems, leaves, fruit cones and their seeds or

Stem (a), and leaves, catkin (b), seed-vessels (c), and seeds or spores (d) of Lepidodendron. We have added (e) its supposed root Halonia.
spores. It is well known now that Lepidostrobus (b) is the fruit or catkin of Lepidodendron. The little mountain clubmoss, which rears its yellow catkins amid the sheltering boughs of the heather,-its stem clothed with long scale-like leaves, is the best representative, in England at least, of these old giant forms, as large as forest-trees, which abounded so greatly in the times of the coal.

There is yet another plant, so very common in coal-shales, that it ought to be mentioned separately. I mean the Calamites. We have not space for a figure, and refer you to the book above quoted, p. 736 , where the plant is, however, drawn upside down in fig. 3-quite right in figs 1 and 2 . The look of these plants is so much that of the horsetail (Equisetum) of our ditches, that it is no wonder ordinary fossil-hunters should take them for blood-relations.

[^26]Yet this plant was probalbly nearertothe great trees above-mentioned than anything else we ean mention. The stem (or rather pith, for we clo not see the stem itself in one ease ont of a hundred, bat only the east of the pith) is ribbed, and jointed jnst like Eyuisetum stems, but wery rarely shows any leaves. Its haves and branches were probably the plants called Asterophatlites and Sphenophyllom, and they look much like the "goose-grass" with which as sehoolhoys we msed to hleed our fongmes in sport. These two are very common. Some have broader leaves than others, and an Ameriean anthor of repute (Dr. Shmmard, I believe) has seen reason to think that they were aquatic plants-that the broad leaves were the floating leaves, and the narrow ones the leaves that grew heneath the water. The common white buttereup which looks so gay in spring time on the ponds will serve to illustrate this smposition. Others do not think it quite a true one. To show how near some of these C'elumites approach to the stmeture of ferms, I give here two cross sections, one of a tree forn, taken from Brongniart's work (Fig. IL), the wher of the plant of a C'alamite family (Fig. 12), figured by Dr.

Fite 11.-Scection of tree ferm, mhorsiug the large Jmulles of vessels.

Fig. 12.- Sietion of one of the Calnmite tribe, showing the smaller bmelles of vessels surrounding the jith.

Fiy 13. - Fortom of crima rection magnified.
Unger, in a work on the fossil plants of saxony. Fig 3 shows a prottion of nue of these ernss secetions magnified, the handle of vessels among the cedhular tis ne.

Now then, for stme real solith wooded trees and with these we munt finish-fier the cont-flem after all was a seanty one contrated with living natme. The individuals were abmant enough, hut they were of comparatively few familics of plants.

Fir trees of one sort or another were abundant in the coal-period, and have been so in every succeeding formation. But here, as in every other case, the coal-trees were different from the modern ones. Now we have abundant spruce, and larch, and fir; jumipers, and cypress trees, and yews; and in the tertiary and oolitic times these were common trees. But the Araucaria tribe, to which the graceful Norfolk Island pine belongs, is only to be met with rarely. At least it is confined to a small portion of the globe. In the coal time it was the prevailing form. There is no need to give a drawing of the structure of this wood, for it has been given by every author who has written on the coal.

Wood is made up long fibres, which fibres communicate with each other by pores. The wood of coniferous trees is specially remarkable for the large disks which surround these pores. They are disposed in straight rows, and most of the Coniferce have only a single row. But the Arauctrice have a double row-or more than a double row; and all the coal fir-trees are of this kind.

Again there is a remarkable difference between the coal-trees and their living representatives. In no living fir-tree does the pith show of any size, except in quite the young shoots. After that age it gradually diminishes in diameter, or rather does not increase with the growth of the tree, being pressed upon by the successive layers of the

Coniferous wood (Dadoxylon), with its pith, Stermbergia leaves (Cyclopteris), probably of the same coniferous tree; fruit and seeds (Trigonocarpum) of the same.
wood, till in a cross cut of a piece of fir a mere trace of this substance, so important in the first stages of the young branch, is to be seen. The case is different with the old fir-trees of the coal. Here (according to the excellent observations of Dr. Williamson, of Manchester), the pith is of enormons size, and retains that size during the afterstages of growth, if it does not actually increase. It was long ago known under the name of Sternbergia, and is often as thick as a large man's thumb, or even thicker. I have seen some as thick as a child's wrist.

1ne. Williansom fommed that this pith was imbedded in a wood which was in all rexpecte a true fir-tree and which has been known muder the name of Jhodnaglon. It is not ecriain that all the tirs belonged to this one gemme; most probably they did not. At all events Daduxylon is a biry common coal-fossil.

Here then we lave the wood and the pith; and let me say that any one who is disposed to examine the contents of his own coal sentrle may do so with adrantage, for the charcoal he will find in it shows, moler the microscope, a heantifin tisste like that described above. As an opague objeet it is very beantifnl, and polished sliees sumbtimes show it equally well. l'rof. Queckett, of the College of Sureroms, has distmgnished himself for his researehes into these tisones, and in the wonderfnl " Torbane Hill case", referred to in the opening of this lecture, his skill was largely called into recguisition.

But having got the wood, one naturally wishos to find the leaves and seeds. What were they ?
some years hack a suspicion entered my mind that the leaves commonly called riyetoptreis might beloner to this family of trees. It is true they might be ferms, to which orther they have been usually referred. Sat there are fir-trees, or at least Coniterae, which have heread leaves wery much of the shape of these smposed ferms. Heartshaperl or fim-shaped leaves, with a shorter or lomger stalk, and the veins so like that of the from, that it is diflemen to distingmish fiagments. These are the sielishmiter. They fure trees well known in ons proves and gravens, and there is a moble specimen at Kew. Let amyone compare a figme of the (yydondoris of the coal with a hat of the living Sullishmite, and he will be struck with the stremer resemblame . The possibility of this has of eomese oecmered (1) those skillent butanists who hase written on coal-plants ; but mone wf them have, I think, leren rash emongh to mall the 'Ifrlopheris the leap of fomberton, or to sugesest, as I do mow, that memy of the leaves
 or less then leaves of the coniferons trees, which we know almunded in these ohle forests.

It is otherwise with the fromit. Professor Hemshow some time latek showed me the fimit of sialisturiu, and compared it with the Trigomer ctipen from the Manchastere rat-samdstone. And Dr. Hooker. by a sorpes of origimal meatroles into these coal-muts (published in the

 like the front of the few. We ell then, if Wadoxylon is the emmmon fir-wode af the conl, and Trigumerapum the eommon coal fimit, we nevel omly put two :and twos together' and if we canmot ronvince the cumtions Iontanisk, I hape I may eonvine my student readers there is a strome probability that the one is the frmit of the other r .
 fetting om. Bat thin is mot quite all. The same distingmished betaniat to whom I have so ofen refermed (who has shown we the
true structure of the Lepidodendion and its seed : and has illustrated the fruit of these old tir-trees), suggested years ago, in the gallery of the Museum of Practical Geology, that the one supposed gluwer of the coal belonged to the fir tribe too.

It is called Antholites, and may, as he admits, certainly be what it was at first described to be-the flower spike of a plant not distantly related to the pine apple! There are some prickly leaves (if they be not fern-stalks) in the coal-shales, which render this possible,-not, I think, probable.

But on the othor hand these

Cscadeons Plant (Pterophyllum), from the carboniferoas beds of the Altai Mountains. so-called flowers have no very regular parts. and are not a bit like any living ones that I know. They look to me, as they did to Dr. Hooker when he first examined them, very like unfolding buds of Coniferæ, with somewhat broader leares than we are accustomed to see in modern firs or larch, but not broader than many of the jew tribe. As I do not know that the author I have named still holds the original opinion, I do not quote him for it ; but only give my own.

Of the Cycas tribe, so abundant in oolitic times, a few representatives occur. They are not characteristie of the coal, and are rare in England. We give a foreign specimen.

And now a few grass-like plants, of whose nature we cannot say much, for want of the fructification, would end the series, had it not been known that they are furgi in the coal! I know butlittle about them, and will therefore say less; but there they are-three species.

Of the animals of the coal I shall have a little to say next month, when I hope to fiuish this rather lengthy lecture. I am not tired of it myself, but our young readers may be.

SOME REMLARKS ON MR, DARWIN'S THEORY.

By Frederick Woblaston Hutton, F.G.S.
-
I sail that " all the years invent ;
Each month is various to present
The world with some development."-Tennyson.

Abrinutar most of my readers will be perfectly acquanted with the theory proposed by Mr. Darwin to accomet for the various forms of life that we see on the globe, yet, for the sake of clearness, I will briedly emmeiate it.

Mr. Darwin first shows that individuals of the same species vary one with another.

He then shows that, owing to the rapirl increase of anmal and regetable life, hy which many more are born each year than ean possibly survive, there is a continual warfare going on among them for food and other necessaries. This he calls the "strugele for life."

Ho then shows that if any animal or plant shomld have, by variation, any organ or property so moditied as to give it some advantare over its fellows in the strugele for life, it will, as a gencral rule live longer and produce more oftipring ; and these offsuring will have a tendeney to inherit the organ or property modified in the same manner: but if in one of these offspring the organ shonld be still fint her monlified, it will give him a like adrantage over his brethren, and his offspring agrain will have a tendency to reprothce the organ in its more modified state; and so on. This he calls "Natural Sclection."

Mr. Darwin thinks that this, together with the minor eanses of habit, use and disuse, climate, de., are sufficient to aceome for all the varions forms of organic life, by the gradual transmutation of one speceies into anotler.

As all maturalists allow that species vary it seems that the difference in the opinions of some of then on this subjeet arise on the grestion of limits. Are these varieties of sperics limited, on are they matimited?

A limiting valne of a variable is a grantity on which the variable may approach exer so ne:ar, 1 ml never reath ; if therefore it can be shown that harere is amiting value to the variation of spreeses, Mr. I arwin's theory embl not he extemted beyond that limit. At present no me has beem able forssign to it any limits at all ; in fate it will be a wry diflendt thine to elo so. for it womld be of no nee to prove that any ome organ of a partionlar amimal could mot change into the ware orean of another partionatr amimal, as it is never supposed that the higher form oflifi has panayl thomerlerery lowe form for the same reanom that the sap which mominles one leal" of a tree has not passed 1heromath all the wher leaves.

The way this yuestion has fromerally decon arencel is, mot by trying t, de fine any une strict limit beyond wheh variation eamot pass, but
by trying to show that there are reasons for believing that a limit does exist somewhere. The following are the most important ones that have been brought forward to this effect.

1. All varieties made by man, if left to themselves, show a tendency to revert to the original forms; while natural speeies do not.
2. All varieties made by man interbreed freely, while natural species do not.
3. Species remain constant for immense periods of time, as is proved by the exact resemblance of the mummies of Egypt, and many fossils, to living forms.
4. Some genera, as Lingula, \&c., have existed with very little variation from the most ancient times to the present.
5. Instead of progressing, some animals seem to have degenerated; as the recent armadillo from the glyptodon, \&c.
6. We have no right to argue on domestic breeds, since they have been chosen on account of their plasticity.
I will now give answers that have been made to these objections.
7. It cannot be proved that many of our domestic animals revert to their original forms when left to themselves; for it has always been found impossible to say what their original forms were: but if this was the ease, a simple experiment would decide. Recent varieties certainly do show this tendency, becanse of the extremely short time during which selection has been going on; and the rapidity, owing to artificial canses, in which the change took place. In a wild state the changes progress very slowly by natural causes, and therefore by the time a variety has changed sufficiently to be called a new species, it has given up all thought (if I may so express myself) of reverting to its original form.
8. "Man can hardly, or only with great difficulty, select any deviation of structure, except such as are externally visible, and he rarely cares for what is internal." Besides, the varieties formed by man have only been in existence for a few thousand years, while natural species have been so for hundreds of thousands; for until they have been formed long' enough to deviate markedly from other species they are only called varieties.
9. The answer to this argument is that they have not yet had time to change, owing to their conditions of life not having been much altered. The mummies of Egypt are perhaps four thousand years old, but Mr. L. Horner, the President of the Geological Society, has shown that man, sufficiently civilized to manufacture pottery, existed in the valley of the Nile thirteen or fourteen thousand years ago. And the same with the fossils; as we go further back in time we see living forms get rarer and rarer until at last they die out altogether. If a form has managed to exist for a long time without change, it is
triumphantly protheod hy the anti-transmutationists; if, on the rombanry, it hats changed in ever so slight a tlegree firon an extinct form it is called anew speceles.
10. Suppose at lape area covered with sea, and Lingmla, de., spread over it. Now suppose a part of this area to be gratually clevated, the lingila and other animals living on it wonld mulergo variation to meet the change of conditions; but those on the stationary area would remain constant. Next suppose the elerated part to sink again: the new forms on it must either die ont or change, and the Lingula wonld again spread wer the whole area; and being better adapted to those conditions. from long residence in them, would kill off', perhapes, some of the new forms. Agath, another part of the area might be raised; and so on. The chances are that some of the Lingme wonld always be on a stationary portion, and thens hand down their offspring with litte variation, for any lenerth of time. It is a fact which strongly corroborates this, that. nearty all the genera which have a long range in time are inhalbitants of the deep sea, and therefore have also a large mane in space.
11. It is not supposed that the armadillo is desecnded from the erlyptodon: on the contrary the latter seems to have beeome cxtinet, and to have left no progens. while some other form may have been the progentor of the former.
Ci. "Wil the contrary domestic breeds show all degrees of variation. as the pigeon. iloge de., on one side, and the eat and gense on the other. Perhaps there is not much difierence of variabsility in amimals, constancy can generally be aecomoted for ; pigeons (:an le mated for life, and are kept in large puantities, and therefore vary mench eats ramble at night and camot be watched, and are kept in sunall quantities: donkeys and pearocks are also kept in small grantitics, and the freediner of donkeys is mot much eared for' frese are only valued for
 been filt for diflerent breets."
Lat ns now sere what reasons there are for supposing that variation is ut fores ut mamited: or, in othere words, that all amimals have deseconded from is common prototype. By almitting it to be true we can canily muderstand -
12. Why speedes have come into the world slowly and suecessively"
-Why 'the families of eath division (of molnses) which are least minlike (Oithmetulitur ambl liet mutith) were respectively the first developed.*
:3. Why speries have not nees -sarily chanced torether, or at the same rate, of in the same degrex: yet in the long run all here mutergone motification to some extent.

[^27]4. Why the extinction of old forms is the almost inevitable conscquence of the production of new ones.
5. Why, when a species disappears, it never re-appears (although this is within the range of possibility).
6. Why groups of species increase in number slowly, and endure for unequal periods of time.
7. Why, the more ancient a form is, the more it generally differs from those now living.
8. Why all the forms of life are linked together.
9. Why there is often great difficulty in drawing a line between two species.
10. Why, as a general rule, in life on the globe there have been "an ascent, and progress in the main."
11. Why the lower forms of life have larger specific existences than the higher ones*.
12. Why the older forms lived unchanged for longer periods of time than the newer ones, \dagger becanse they were more widely distributed.
13. Why the deep-sea shells and those of the land and fresh-water enjoy a longer range in time than the littoral species; for the littoral species being confined to narrow zones in depth are much more likely to suffer from elevation or subsidence than those that live in the deep-sea, or on the land and in freshwater.
14. Why some animals and plants have rudimentary, and sometimes useless organs.
15. Why the homologous parts, so different in the adult, are alike in the embryo.
16. Why the embryos of the higher animals resemble, at different stages of their existence, the embryos of the lower animals. \ddagger
17. Why "in their infancy the molluscous animals are more alike, loth in appearance and habits, than in after life.§""
18. Why the limbs, \&c., of all animals are formed on the same plan.
19. Why the flowers, branches, \&c., of plants and trees are but rudimentary or metamorphosed leares.||
20. Why animals very often resemble in colour and appearance the localities which they frequent.
21. Why in geographical distribution there are generic as well as specific centres.
2.2 . Why typical groups and species are widely distributed, while aberrant forms are usually confined to small areas.
23. Why the inhabitants of islands bear some relation to those of the nearest continent.

* Owen's Palæontology, p. 49.
†Anniversary Address of Professor Phillips to the Geological Society in Feb. 1860 \ddagger Carpenter's "Principles of Comparative Physiology," p. 95.
§ Woodward's "Recent and Fossil Shells,", p. 10.
|| Lindley's "Elements of Botany," p. 351.

21. Why the extinct fauna of a country bears a close amalogy to the living fauna.
-5. Why the proportion of species increases from the oldest formations to the newest.
22. Why species were more widely distributed formerly than now; for as more species were developed, the more local they must have beome.
I know of no answers to these arguments; they are simply facts acknowledged by everybody, except perhaps those for which I have given my authority.

Taking everything then into consideration, 1 think that the evidence is greatly in favour of variation being at present unlimited.*

The sccond argument agrainst Mr. Darwin's theory is that matural selection, although allowed to be a "vera camsa" of variation, is not powerfin enough to produce the great differences that exist among organic forms ; or, in other words, that the cause is not equal to the eflect.

Thre canse may be compared to the power of a machine that has to be inereased or diminished aceording as the time in which it is required to produce a given eflect is shortened or lengthoned. I believe that no one lout a geolugist has any conception of the enormons length of time comprehended in the term " geological period;" and, although all or nearly all of my reatlers will loe geologists, yet I think that it will perhaps be as well to try to get some very rough ikeal of it, cspecially ats "time" has been brought forward in answer to other arguments.

MLr. Dawin has shom that fur long periods of geological time voleanie action has beem pretty regular and persistent beneath Chili, and that the arerage elevation of the const is about three feet in a century ; that in the " l'ampean mme." in which the remains of Megstherimm, Mylodon, de., are found, is sometimes twelve thonsand feet alove the level of the sea ; this wonld make its age four hundred thomsand years, yet it is only of Pleistocene age, and was formed perdaps since man inhalited the erfole. How old then is the Pliocene? How old the Encene! How old the chalk! Tow million years is the least that can represent it ; and yet it is not more than a twenty-fifth part of the thickness of the sedimentary statat of ' ireat Britain.

In such an enemmous time, then, how small may have been the cause of the gramat clange of the lowest firm of life into the highest? meneh less than a struggle for life or death.

[^28]
CEPHALASPIDES OF FORF.IRSHIRE.

Cephalaspis in Mrr. Powrie's collection.

Sir,-The communication in your number for this month (March) from Mr. G. Roberts, in which he carefully conducts the enquiring geologist over some of the most interesting Silurian and Old Red Sandstone districts in England, and clearly points out the places where the remains of these curious primeval fishes, the Cephalaspides, are to be looked for, makes me think that a short notice of what Forfarshire has done towards bettering onr acquaintance with at least one of these fishes, the Cephalaspis, may not be uninteresting' ; for, although, fortunately for geology, Scotland has now no monopoly of Old Red Sandstone fishes. yet so far as I am aware no really perfect specimen of that fish has been found out of this county. In forwarding this notice, I can assure the reader that I am actuated by no desire to have my name in any way connected with " a memoir of the earliest known fish," or "the history of the first appearance of vertebrated life," my sole motive being, by giving so far as I can, a popular description of what is known of the Cephalaspis, to fan the by no means flagging zeal of local collectors to complete our knowledge of this queer fish, and its congeners.

Although tolerably well-preserved specimens of the Cephalic shield which covered the head of the Cephalaspis, are by no means rare, yet it is very seldonz indeed that the body is disinterred from our rocks; and as I do not recollect of more than the head of this fish having been figured in "The Geologist," I prefix a rough pen and ink sketch of a rather complete specimen from my own collection, reduced to one half the natural size.

The very characteristic strong bony shield which protects the head, and from which the creature takes its name (being made np of two Greek words signifying a head and a shield), had been covered exter-
nally hy small hexagonal granoid seales. Near the centre of this shicht two rather alosely placed holes formed the orbits for the eyes. In ane of the heads in my possession the eye-balls are fincly preserved comphesty petrified; between the eves were two ridges having an intermediate hollow or simus extending from the eses backwards. One of my specimens shows that these ridges united towards the pusterior edge of the shidd, forming evidently a strong defence. None of the many heads I have examined show the slightest evidence that this ereature was pussessed of teeth, or a mouth of the ordinary fomm this organ. I believe, being similar to the sturgeon, which myal fish. I have little doubt, had this comparatively small ereature as its representative in these old world waters. Some of the cusps or wharpened points of the shield are very much clongated and toothed (1) the interior of the margin. The bexly as combared with the heal Was but small, very slender, and protected ly homy rings, extending in as slanting direction from the back donwwards, these again being covered by exceedingry minute rhomboidal seales: in this respect resembling the larger number of the fishes fomul in the lower beds of
 In only one sperimen have I ever ohserved these on all seales: hat a pertion of one in my possession shows a very perfectiy preserved ceant of them: its lecteroeereal tail was much produced amid furnished with a wery large and powerfal fin. None of the specimens I have as yet examined show the slightest restige of cither amal or emental tins. 'The existence of a thersal is by momens cestablishent; had it existed it must have ocempied a position very far lack. This creature was, however, further remarkable for having two wery lange membranome pectorals, attacherd immediately unter the cephatic lusekher, seminety of a leathery comsistence, and corered by small sub-eirenlar on hexagrimal scates. "The peetorals were first discovered by me, in the specimen from which the figure is eopied.

The remains of Cephalapis. grenerally associated with phates or
 :ll the places where the grey thastones. genmally knewn in commerve as the Armath pavement, nul which crop ont in so many lowalities in Norfarshime, have been wronght. It has alko heen fomed in a hright
 flaserones, white in me case has the Pherymetus , buyliens beem. up to this time fomm in the sandstome onembinge the shates and flagstones of the Arberath pavement. Attiongh ther ahove-mentimed flagstones are guarmed in so rey many plates in Forfarehime, suything approathing to a comphie sperimen of this lish reer rare iy turns up indect. I mily know of some eifht of tom specimens showing the bouly. having then as sul di-motered from the rocks in which they have an long hat in intomberd. Perhaps the finest of these was several
 Leysmill, and he him preanted to hie Aphomh Musemm. The well-
 Ansemm was tound in a datary near the village of Clammis. There
are three good specimens in the Montrose Museum, one of which was discovered in a quarry near Brechin; another is from the neighbourhood of Friockheim. I have also been able to secure three specimens in tolerable preservation. Two of these were found in a quarry at Legguston, near Friockheim. The only other specimen I know of. a very small one picked up by Mr. Walter McNicoll, in a singularly rich deposit discovered by him in the Sidlaw range, is now in the cabinet of Lord Kinnaird. As already stated the bucklershaped heads are occasionally met with wherever the flagstones are wrought, in some places rather plentifully, as in a quarry on the Tur hill range. about a mile east from the Mansion House of Pitscandly, also in a Red Sandstone quarry near Brechin; yet even there these are only to be had by getting the workmen to preserve them as they turn up. Indeed I may say that the only locality which has as yet yielded these organisms to individual research is mentioned as discovered in the Sidlaws by Mr. Walter McNicholl, one of the most energetic and cousequentiy snccessful of our local explorers. On the same slab on which Mr. McNicholl found the small entire Cephalaspis noticed above, may be seen the heads of some four or five others, some of these heads showing the very lengthened and toothed cusps above described.

Whether these lengthened and toothed cusps may mark a different species from that generally found (Cephaluspis Lyellii) it is not my province to decide : my own impression howerer is that this rather points to difference in age or sex, most probably the latter. Should this be the case it is worthy of remark that only one species of Cephalaspis has yet been found in Forfarshire (in Scotland I ought 1ather to say), where the remains of these curious creatures have been found in comparative abundance and good preservation, while in the contemporaneous rocks of England, where, so far as I am aware, they are both rarer and much more fragmentary, there would seem to have been not only a considerable number of different species detected, but also the so nearly allied genus Auchenaspis. Could it be possible that the above causes, age or sex, should have occasioned this seeming variety of species-fracture and displacement of the parts when first laid down might also occasion very considerable apparent divergence.

Beyond Forfarshire I only know of one locality that has been at all fruitful in these organisms, the well-known den of Balruddery, and this is just on the confines of the counties of Perth and Forfar. One or two heads have also been found in Canterland Den, in Kincardineshire, by the Rev. Hugh Mitchell, of Craig, A quarry in Sheriffmuir, not far from the Dunblane station of the Scottish Midland Railway, has yielded one imperfect head; and two have been got at Langfine, near Muirkirk. in Ayrshire. In no case has an entire fish been found in any of these localities.

In this short notice of the Forfarshire Cephalaspis I hare purposely endeavoured, as far as I could, to avoid all scientific names and phrases, so that my description might be as intelligible as possible to all your readers. I ought also to remark that although the proportions and
position, de., of the fish figmed are as nearly as mary be those of the sperimen from whin it is copied, other specimens show a considerally stomberbedy. 'The scales are of comse restored, only small patelhes of these helng preserved on any of the specimens. The dotted lines meant to show the probable size of the candal and dorsal fins, muless, indeed, that higured as a dorsal had really formed only part of the lurge tail-fin.-1 am, your obedient servant, Jas. Pownte, l.G.S., Reswallic, Forfar.

REMARKS ON MR. ROBERTS' PAPER ON CEPHARASPIS.

心ir,-I venture to send yon a few comments on Mr. George lioherts's paper on Cephalaupis in your last number.

How your corvespondent, Mr. G. K. Roberts, can talk (page los) of the lonwer Lmdow at Leintwardine heing " clearly marked out as at littomal deposit by its "startishes," after his paper in the "GentoGlar" the other day amonneing the discovery of starfish at one thomsand two lomdred and sixty fathems depth, surpurises me much.

Bopally dues it surprise me (exjecially since his comnexion with the (icnlugieal society) to time him talking of the "Tilesteme series pasing inter the mulerlying Silamin," when Sir R. Murchison, in his last edition of Silmbit, hats bail down (though. I confess, with a litule (emfusion) that the heds between the Old lial and the Silumian are to be callad l'aselga herls, and are quite ditherent from his original THilestome, which are clearly L"per Ladlow, being Downton Sandsonce. As lomer ats this inattontion to proper nomemelature is perpetanted. mo one cam muterstand what is writen on the subjeet.

The ehief cathee of error seems to lie in the end of the tenth chapter of siluria, which appears to have heem writen before the probit knowledge on the sulgoet was whtained, and not eomereted In fire smong it to prese. The anther there cortainly speaks of tho 'Tikstones and Pakacre lusk of Kingtom in comexime with Mr. Panks; but these beds at bradmen Rill are manestionably Downtom sumbtane. The? we te formery liy some ealled "Transition beds" (as manhene the change to sands from shakey beds), and were then
 'lik -tomes were afterwards comsidered ly ame of the the same as the P'a sage tuds. whelh, in fand, lie sume distance athow them. There
 knows buth suric of 1neds well, and 1 am sure can sew no similarity

 and the "plare Ladlow, of" which they are the top. In the samo
 "untion gromul betwen the Downtun and the Tilestones," which
puzzles me, as I am not aware of any such neutral ground, the one being always supposed to follow the other consecutively.

Again, he mistakes in calling beds in the quarry in the drive to Downton Hall (at bottom of page) Tilestones. They are unquestionably Old Red beds of thick sandstone, and with the same cornstone as he found at the Devil's mouth, containing Cephuluspis Iyellii and Pteraspis rostratus.

I will take this opportunity of notieing that my friend Marston has made little mistake in his list of fossils from the Old Red near Ludlow. I will venture to assert that no Cephalaspis Salueyi has ever been found in Oakley Park quarry, which lies in the lower beds of the Old Red, probably but little above the Passage beds. It does contain a Cephaspid, but as yet it is unnamed, and the original speeimen of C. Sulweyi came from beds very much higher up, at Acton Beanchamp, near Bromyard.-I remain, dear Sir, yours obediently, Robert Lightbodi, Ludlow.

CEPHALASPIS FRON OLD RED SANDSTONE NEAR LUDLOW.

We think it a rery necessary appendix to the above correspondence on Mr. Roberts' article to give an outline figure of a very nearly perfect Cephalaspis Lyellii, found in the Old Red Sandstone strata near Lucllow, by Mr. A. Marston, who kindly transmitted it to us in October last, with another large and more beautifully preserved head.

Cephalaspis from Old Red near Ludior.
These specimens we have just forwarded to Mrr. Salter, so we may hope for a full and efficient notice of them in the forthcoming monograph of the Gorernment paleontologists on these ancient fishes.Ed. Geol.

FOREIGN CORRESPONDENCE.

On the Silumiun "Culonies" of Jiohemiat. By Mr. M. V. Lipold.

('ertuiy strata of greenstones. graptolite-shales, and concretionary limestones, petrographically and pala ontologically analorous to M. Barmance's "superion Kilurian ctage E" ("Litten-strata" of the geolugints of the Viema Imperial Institute), but appearing in isolated Ienticular masses between the slates and fuartzite-sandstones of his "Lower Silurian étage D," have been pronomed ly M. Bartande to be "colonies." the fama of which, already existing in at distant sea at the period when the strata of the "ćtage I)" were forming on the present Silurian region of Central Bohemia, had immigrated thither under farourable conditions: and had subsequenty dis:upreared, tugether with these conditions, to reappear again and come to it a fill development after the strata of "etare 1)" had been completely depmited at the bottom of the Silurian sea. Prof. Krejes of Pragice having co-enerated as a voluntere with the genlogists of the Imperial Institute in the surver of the entirons of Prague and Beram during the smmer of 1s.9?, has made some objection to the exphamation of the above-mentionell facts ats given ly M. Barrande, ass, aceording to his views, they cond be very well aceoment for hy uhheaval and disturbanes which hatd attiected the mper and hower strata of Bohemia. II. Barrande, having protested against this ataretion, M. Lipeld was cutrusted be Director Haidinger with the dore examination of one or more of Ai. Barraurle's "eolonies." The results of this examination, made in the summer of 1-bio, are given in the present report. M. Lipold rlosely examined the "colonies" named in honomr of MMS. Hadinger and Krejer.* sonthof Pragne, near Gros-kurkel, lyine within the slates and quartzite-sandstomes ("Kïnigshof" aul "Kossonv" strata of the Viema geolderists) of
 "- -cmpulame" :utcontion Prof Kirgeys survey on the somth margin of the 「per Siluriams procenting anth-west ward from (iross Kinckel to the emviroms of Litern, atomer a line of athent fourteen Finglish mike in lengeth. The fiects sated ly this smery are traced on two
 "Kimitshuf" and "Kersow strata" on the somble margin of the "pure silurians, twe the with the "Litten strata," to have nmergembe repurated foldinges and dishocations. Two such foldtings and dislueations of the "Kimngshot" and "Konsow-strata," extemding

[^29]north-cast to south-west, as far as Litten, coming to the surface south-westward in zones gradually narrowing and disappearing near Litten, beneath the Litten strata, are particnlarly conspicuous. On the other hand, the "Litten strata" rery extensive, and totally overlaid by Upper Silurian limestones in the vicinity of this place, begin there to be divided into two stripes, intercalated in the foldings of "Königshof" and "Kossow strata," decreasing in breadth as they proceed north-eastward, and at last totally disappearing between Harlik and Wonoklas.

Isolated portions and zones of "Litten strata," intercalated between "Königshof" and "Kossow strata" occur again in the same northeast direction, near Wonoklas, Cersonic, Kosor, Radotin, and Gross Kuckel (colonies "Haidinger", and "Krejcy") ; so that a connection of both these "colonies" with the abore-mentioned two zones of Litten strata intercalated between the foldings of Königshof and Kossow strata can no longer be a subject of doubt.

The colonies "Haidinger" and "Krejey," where beside the Litten strata appear not in conformable but in disturbed stratification between the Königshof and Kossow strata must therefore be considered as remains of a once more extensive deposit, forced between these last strata by the foldings and dislocations they had undergone. Without the least depreciation of the services which geology owes to NI. Barrande, the sagacions and indefatigable explorer of the Silurian strata in the centre of Bohemia, the facts just mentioned must be acknowledged to corroborate Prof. Krejcy's theory of dislocations being the real cause of the palæontological abnormities comprised under the general denomination of "Silurian colonies." The "colony" named in honour to Prof. Zippe, although at present inaccessible to investigation, may be supposed, by analogy, to afford new facts in favour of this theory.
On the Red Chromate of Learl, and useful Minerals of the Plitippine
Islonids. BY W. W. Wrood, EsQ.

Specimens of the red chromate of lead from the Labo mines in the province of North Carnarines (Isle of Luzon), obtained by Prof. Hochstetter, through Mr. W. W. Wood's (of Manilla) kindness, have been examined by M. Dauber (Academical Proc. No. 21, 1860, p. 21), Mr. W. W. Wood, at Dir. Haidinger's request, gave the following details about this interesting mineral, and the useful minerals of the Phillipine Islands. The chromate of lead was discorered accidently, and was dug out in considerable quantity; the diggings, however, haring been subsequently filled up, it is not at present to be obtained, and little is known about it at Manilla. It was afterwards found again in small quantities near the first locality. A Spanish miningengincer, who risited the Luzon about three years ago, reported it to be rery scarce and to be with difficulty obtained.

There are but very few mines in the island. A rery rich deposit of argentiferous galena, found in North Caranines, is said to be now abandoned after having been exploited for some time by a Spauish company.

The quartz of this province, and nearly all the rivers, are aurifeforons. A gold mine in quartz, drowned by water, lay abandoned low a long time, until a Spanish company tried to make it aceessible hy driving a gallery, but this project was abandoned in consequenco of heary losses.

Exedent iron, worked in a very primitive way, is found in the province of Bulacon (north of Manila). Fine magnotie iron-ore weens also. Grey smplaret of copper is exploited in the northern purt of Lazon, both hy matives (who bine the metal to the const in small shapeless cakes), and by a Spanish company. Nativo meremry not associated with cimabar. ocems in black magnetic iron-sand at Albay (Hast Lazon). Coal exists in the inaccessible localities of North Cimarines, and in the lsle of Leba, north of Mintanao. Platinum is said to ncom in a brook coming fiom the hill of st Mablo, near Mamilla. A Spanish company exploiting the eopper ocenrring in rolled pehbles on the Isle of Samar' (south-east of Luzan), eonk not corer their expenses. As to the red chromate of lead, it had been diseorered by Don Isidro de Baranda, of Madrid. who homert to lingland the finest specimens of this minerad. Its scarcity is accomoted lor hy the circmmstance that the natives near the Leba gather the small erystals of then ernsh them to powder, to strew over newly witten letters.

Nion Pussits from Paduloy and Trioste.

 heds of Radoboi (('roatia) so well known for their ahmotance of finssil plants and insects. A tooth of a lihinoeroter, rlillepent fiom
 ('allouhe has heen fomd in a cave recently discovered near Matterie, two Anstrian miles from Trieste.

Amoner the suonty-two species of molnses (fifty-foum (instemopota amb (ierhtern Arephala), oremming in these beds of the east Alpine rearion, arghteren are identical with the forms kmown from the midelle
 -ightern with German forms, and fortyecight spereies have ment beon dearibed Six speces only wome simmbaneonsly in the (iermam, Apine, and lerench lias: some of then ato atse known to necen in the coneval simata of limetamp.

> sumblury himlis of Pertugul.
 from Portural, has arrivel at the condelnsion that the marine famat wf the secombary rocks in I'ormsal bear a far ervater resemblane to the cormeponding fanue of North-l:antorn Finvore than to that of Sonth Vorope.

'This coal is comberdech in the hasalfie futtof the Monti Bervidi, overy-
 tharee and a half to seron feet in thicknes, ate at present open; both
contain well-preserved specimens of Anthracotherium magnum, Cur., of which teeth or portions of jaws are in the possession of the Vieuma Imperial Geological Institute.

Earthquakes and their comection with Meteorological Phenomena.
A letter addressed from M. Julins Schmidt, astronomer at the observatory, at Athens, to Director Haidinger, gives details of an earthquake felt there on July 4th, 1860, at half-past six p.m.. At the same time a riolent thunderstorm was rising above Mount Hymettus, and low clouds of a quite uncommon form began to cover the top of the mountains. M. Jul. Schmidt has stated the coincidence between atmospheric phenomena and subterraneous commotions of a probably local nature being circumscribed within the geological system of Mount Hymettus. The obserrations of this able astronomer have given the following results :
1852. July 16 th, evening : commotion; strong thunderstorm on Mount Hymettus ; abundant rain ; clouds of striking form on the mountains.
1860. Feb. 6th, morning : commotion ; thunder-stroke on Mount Hymettus; clouds of mucommon form on this mountain, persisting during half an hour.
1860. July 4th, evening : commotion; riolent thunderstorm on Mount Hymettus ; clouds of fantastic forms.

At the date of this letter (July 7th) M. Schmidt was specially employed in obserring the new comet. During May 1860 he joined Prof. Unger of Vieuna in a tour through Euboea (where he measured Mount Delph, or Diphis, one thousand seren hundred metres in height, or about five thousand four hundred feet, Bootia, and back to Athens through Eleusis. Interesting facts concerning the topography and hydrography of Bootia were the result of this excursion. On July 9th M. Schmidt was to set ont for Egina for two days. The Greek gorernment has directed the prorincial authorities to collect evidences concerning earthquakes, and to transmit them to the observatory at Athens.

PROCEEDINGS OF GEOLOGICAL SOCIETIES.

Geological Society of London.-December 5, 1S60.

"On the Structure of the North-west Highlands, and the relations of the Gneiss, Red Sandstone, and Quartzite of Sutherland and Ross-shire." By Professor James Nicol, F.G.S.
The author first referred to his paper in the Quart. Journ. Geol. Soc., rol. xiii., pp. 17, \&c.. in which the order of the red sandstone on gneiss, and of quartzite and limestone on the sandstone was described, and in which the relation of the eastern gneiss or mica-schist to the quartzite was stated to be somewhat obscure ou account of the presence of intrusive rocks and other marks of disturbance. Haring examined the country four times, with the riew of settling some of the doubtful points in the sections, the author now offered
the matured resulti of hris observations. He aggeses with Sir R. Murchison as fiar as the suecession of the western greiss, red sambsone, quartzites, (yuartzite and forend bed), and limestone is coneemed ; but difters from him in mantaining that there is no upper series of an "upward conformable snecession" from the guatzite and limestone into the eastern mica-slate or ganciss-the so-ealled "upper gueis." 'The "upper quartate" and "upper limestone" the anthor believes to be portioms of the quartaite of the country, in some eases separated by anticlines and fants and cropping out in the higher ground, and in other instanese inverted beds with the greiss bronght up a contignous fanle and overhanging them. The latter condition of the strata, as well as other cases where the castern gneiss is bronght mp against the quartaite series, have, aceurding to the athor, given rise to the supposed "upward conformable suecession" abowe referred to. In some cases where "gneiss" is satd fo have been obsemed overtying the quatzite, Irofessor Nieol has determmed that the overlying roek is gramulite or other irruptive rock, not guciss.

The seetions deseriber by the anthor in support of his views of the eastern gheiss not overly ying the quartaite and limestone, but being the same as the greiss of the western coast, and brought up by a powerful fant along a marly moth and somth line passing from White Tlead (Loch Erriboll) to Loed Carrom amd the somet of slean. are chictly those which had been brought forward as afterding the proots on which the opposite hypothesis is fommeded; and in all, the anthor finds irmpuims of igneons rocks, and other indications of fanlts and disturbamere, depriving them, in his opimion, of all weight as evidence of a recrular order of " npward and conformable sucecsion."

Prof. Nichol further arepes that the mote of the distribution of the rocks show that there is through sutherland and Ross-shire a real famlt, and mo owerlat of catern greiss of more than a few feet or yards at most; and that the foe of different strata of the ratartzite series being brought against the greise at dilferent places supherts this view, and perints to a greaf demudation having tiken place atomer the line ut fanll. Thongh the quatzate is here and theme athered by the iguents rocks, yet it is truly a sedimentary ruek. and so is the limentone ; lat the castern guciss or mien-schist is a crystatime rock throughout. 'Thes fact, areording to the :mbler, is immical to the hypothesis of' the castern Fencos owerlying the limestome and quarlzite. It has heen insisted upon, that The strike nithe westerngeis is difterent from that of the ast ; hat the anther remarks that the strike is not persistent in rither arma, and that the great
 affered the whote rewion. With rexard to minerategical chameters, Probesond

 bat no prone of ditlerenere of age in the two cam he obtamed therefrom. The atteration in bulk of the encios in the western area, by the intrusiom of vast
 atmont of crumpling and finlting atone the north and south line of fandt, disituge the wratern from the equern encisa- a fant emmparable with and :mel parallel to that monime from the Woray Fritls to the Dimbe Loch, and to the ene praseing alung the semth side of the (itampiams.

In this paine the amthor attempth tor thew light on the relations of these

 (.ant theoreh the midtle of sembent, fommer an impertant feature in the ge ingey of that romotry. Ln examination of these rockes, as displayed in Bute and Irgylechire, las led Mr. Jamienom to believe that, from the rulartz-roch of

Jura to the Old Red Sandstone, there is a conformable series of strata, which, although elosely linked together, may be elassed into three distinct groups, namely, 1st, a set of lower grits (or quartz-rock), many thousund feet thiek; zndly, a great mass of thin-bedded slates, two thousand feet or more thiek; and 3rdly, a set of upper grits, with interealated seams of slate of equal thickness. Beds of limestone occur here and there sparingly in all the three divisions ; the thickest being deep down in the lower grits. All the limestones are thickest towards the west. The siliceous grits also appear to be freer from an admisture of green materials towards the west. All the members of the series (namely, the upper grits, slates, and lower grits) have a persistent southwest to north-east strike, sometimes in Bute approaching to due north and south. Ther are conformable, and graduate one into another in such a may as to show that they belong to one eontinuous succession of deposits. The materials of which they hare been formed seem to have been derived from very similar sources. The upper and lover grits are very similar in composition, being made up of water-worn graius of quartz, many of which are of a peculiar semitrainsparent bluish tint.

The rocks of the district hare been thrown into a great undulation, with an anticlinal axis extending from the north of Cantyre through Cowal by the head of Loch Ridun on to Loch Eck (and probably by the head of Loch Lomond on to the ralley of the Tay, at Aberfeldy), and with a synclinal trough lying near the parallel of Loch Swen. The autielinal fold is well seen in the hill called Ben---happel, near the Tighnabruich quay in the Kyles of Bute. Southward of this ridge, wlich is composed of the lower grits or quartzite, the thinbedded greenish slates and the upper grits succeed conformably; and the lat ter are separated by a trap-drke from the Old Red Sandstoue of Rothsay. This section the author deseribed in detail ; also the corresponding section to the north of the anticlinal axis, towards Loch Fyue, and along the west shore of Loch Fyne. The lower grits extend as far as Loeh Gilp, and are then suleceeded by the green slates and the upper grits, whieh falling in the synclinal trough are repeated through Knapdale towards Jura Sound, where thie green slates again form the surface along the eastern coast of Jura, lying on the quartzite or grits of that island. Throughout the synelinal trough and the neighbouring district (that is, from Loch Fyne to Jura Sound) the grits and slates are intimately mixed, with numerous intercalated beds of greenstone, some being of great thickness. Mr. Jamieson pointed out that this feature of the district has hitherto in great part been misunderstond, and that Macculloch was in error when he denominated these roeks "chlorite-schist."
The probable relationship of the rocks of the Islands of Shuna, Luing, and Scarba to those of Jura and Butc were then dwelt upon; the greenstones of Knapdale, \&ce., and their relation to the sedimentary roeks, were described in detail; and the limestones of the district hriefly moticed. As no fossils have hitherto been found; palrontological eridence of the age of these rocks is wauting; but the author, regarding their general resemblance to the quartzrocks, limestones, and miea-selists of Sutherlandshire, thinks them to be of the same date as those rocks of the north-rest Highlauds.
2. "On the position of the beds of the Old Red Sandstone in the Counties of Forfar and Kincardine, Scotlaud." By the Rev. Hugh Mitchell. Communicated by the Secretary.
In Forfar- and Kincardine-shire, south of the Grampians, the Old Red Sandstone is dereloped in the following series, with local modifieations:-lst (at top) eonglomerate; 2nd, grey flagstone with intercalated sandstone (about forty feet deep at Cauterland Den, one hundred and twenty feet at Carmylie); 3rd, gritty ferruginous sandstone, with occasional thin layers of purplish flagstonc. Of the last, one hundred and tweuty fect are seen at Cauterland Den;
it ocenm adon at Fery Dun, de. The flagatone of this third or lowest member of the croup siohts riphlemanks, rain-prints, worm-matkings, and crustacean track (oft meveral kinds, larere and small). I'ation decipiens hats been fomed in tho lowest grits: and fiphuldenpis in the sandstone at Prechin, immediately malur the grey llagstomes.

In the aerond member, namely the grey flags, fish-remains hatre of late been foum! more or less abondanty throughout dar distriet, fogether with ernstacean fusils. Cephalnspis Lypllii, Ichthyodomblites, Ieanthodian tishes, P'tery-
 decipions, and vegetable remains are the most characteristic fossils.

The anthor pointed out that some few genera of tish and ernstaceans were preme both in this zone and in the Cpper Silurim formation, and that still fower links existed to eomect the fauna of the Forfarshire flags with the ()ld ked sandstone north of the Grampians, with which it appears to have, in this respect, almest as little relation as with the Carboniferons system. With the Ohd Red of Inerefordshire these flams appear to have sone fow fossils in common; but of about twenty species found in Forfarshire, only about four could be ruoted from Herefordshire.

In conchasion, the author motied the vast vertical development of the whele serics and its ereat gengraphical extent; and patieularly dwelt upon the distinctness of the fama of the flagstones of Fortarshere, as giving grod gromeds for the treatment of the Ohd Red fama as peenliar to a sepatate groberieal pervent, both ds distinct from the Silurim system, and in some degree as divisithe into fwo of enote members of one group:-there members, if the urner
 Cromerts and taithoses, and the lowest or Portarshire beds be eomed - eparately: but wo, if we regard some of the ()ld Red beds north of the lirampitmi is equivalent in time to those on the somth.

Itrumar!! !!, I vil.-1. "On the Distribution of the Corals in the Lias." lis P. 1B. Brodie, M.A., F.. ©.S.

From whervations made by himself and others, the anthor was emablerl to Give the following motes. In the 1^{-}puer Lias some Comals of the genera Therencyuthus and Trucorywhus oecour. 'The Middle Lias of Northamponshire and somersethare has yiclded at frw corals. The uppermest band of the Lower
 derovem, contans an modescribed conal at ('heltenham and Homeyburn in (ilonember-hire; and a 1 Inmllirallia in comsideralde abundanee at Hown

 bow - 1 bed of the Lenwer latas, natuly the Whitr Lias with Ammomiles plan-

 wishaliere amether cont has been nui with.

 othere marals here refored to.
 rater and Itereford Railway, and the interveming haine uf Railenal." liy the

In this papir the entlors geve ater aremont of the dilliment satata expesed by the enttime of the Wioremetor and Hereford liailway (illnstrated by a carcfully

stone (on the east of the Malvern hills), the syenite and greenstone (forming the nucleus of the Malverus), and the Upper Llandovery beds, the Woothope shales, the Woolhope limestone, Wenlock shales, Wenlock limestone, and Lower Ludlow rock on the west side of the syenite, followed by some beds of the Old Red series, violently faulted against the Ludlow rock at the west end of the Malvern tunnel. Then the open railway passes over Upper Ludlow rocks and some lower beds of the Old Red series, here and there covered by drift, until the Lower Ludlow rock is again traversed at the east end of the Ledbury tumnel, and is shown to be much faulted and brought up against Upper Ludlow shales and Aymestry rocks. The Wenlock shales and the Wenloek limestones are then traversed; these are much faulted, the Lower Ludlow rocks again coming in, followed by Aymestry rock, Upper Ludlow shales, Downton saudstone, and, at the east end of the tumnel, by red and mottled marls, grey shales and grits, purple shales and sandstones, with the Auchenaspis-beds, forming the passage-beds into the Old Red Sandstone, as described in a former paper (Quart, Journ. Geol. Soc., vol. xvi., p. 193).

In a note, Mr. J. W. Salter, F.G.S., described the great abundance of Upper Silurian fossils found in these cuttings, and now chiefly in the collection of Dr. Grindrod and other geologists at Malvern and the neighbourhood.

Jonkary 23, 1561.

1. "On the Gravel Boulders of the Punjâb." By D. Smithe, Esq., F.G.S.

In the Phimgota Valley (a continuation of the great Kangra or Palum Talley) the drift consists of sand and shingle with boulders of gneiss, schist, porphyry, and trap, from six inches to five feet in diameter. Some of the boulders, having a red ritreous glance, occur in irregular beds. This moraine-like drift lies on the tertiary beds, which, here dipping gently towards the plains, gradually become vertical, and are succeeded by variegated compact sandstones, gradually inclining away from the plains ; next come rarious slates at a high angle, aud gneissic rocks lie immediately over them.
2. "On Pteraspis Dunensis (Archeoteuthis Dunensis, Roemer)." By Prof. T. H. Huxley, F.R.S. Sec. G.S.

The fossil referred to in this communication is from Daun in the Eifel, and was described by Dr. Ferd. Roemer (in the "Palæontographica," vol. iv. p. 72, pl . 13) as belonging to the naked Cephalopods, under the name of Palcoteuth is Dunensis (changed to Archeoteuthis in the 'Leth. Geogn.') ; and in the Jahrb., $155 S$, p. 55 , Dr. F. Roemer described a second specimen from Wassennach on the Leacher See. Prof. Huxley, reproduced. with remarks, Dr. Roemer's description of the specimens; and after observing that Mr. S. P. Woodward had already suggested (Manual of Mollusca, p. 417) that Roemer's fossil was a fish, he stated his conviction that it was really a Pleraspis, agreeing in all essential particulars with the British Pteraspides, though possibiy of a different species.
3. "On the 'Chalk-rock' lying between the Lorrer and the Upper Chalk in Wilts, Berks, Oxon, Bucks, and Herts." By W. Whitaker, Esq., B.A., F.G.S.

The author lias more particularly examined the band which he terms "Chalkrock," on the northern side of the western part of the London basin. Here it has its greatest thickness (twelve feet or more), to the west, gradually thinning eastrard. It is a hard chalk, dividing into blocks by joints perpendicular to the bedding; and it contains hard calcareo-phosphatic nodules. It contains no flints, and in the district referred to none occur below it, whilst there is often a bed of them resting on its upper surface. It seems to form an exact boundary between the upper and the lower chalk, being probably the topmost bed of the latter. In this case it will often serve as an index of the relative thickness of these dirisions, or as a datum for the measurement of the extent of the demudation of the upper chalk.

Nurth of Warlhorough, where it is thiek, the chalk-rock appears to have given rise tol 1 wo esearpunuts (an upper and lower onv), in the ehatk range.

Fowils arr nsually mare in this hed ; but Mr. J. Veans, F.G.E., eollected anctal from it near Boxmoor: and amonest them is the gemus belusephie (hitherto kuown omly as tortiary): l'aculitus, Sirutilus, T'urvilides, Solurium, I-we coms, I'trasmilien, and I entrientites ane here represented; and the follow-

The fussils mostly have a hewer-chalk character. 'Two speces, Lillorine nemitiforn, and Myaciles mandibutu, have not been notieed in England above the Lper Cremsand.

Parmury (i, Infil.
"()n the Iltemed Rocks of the Western and Central Tichlands." By Sir R. 1. Nurehison, R'R.s., V.P.(i.s., and A. (icikie, Eq., F.G.S.

In the introduction it was shown that the objeet or this paper was to prote that the elassifieation which had bern previonsly established by one of the anthors in the county of sutherland was dpplicable, as he had inferved, to the Whate of the Econtish llightands. The structure of the commer from the borders of Sutherland down to the western part of Ross-shire was detailed, and illustrated by a large map of Scolland coloured acending to the new elassication,
 porat that an wher geneis, which the anthors called " Laurmim," was overland memformably bed Cambram samblones: thear again merntomaby
 presimuly shown in the t?pigat disare of Asont. From the base of theer
 the terisame rocks. Which is mon whemater brame or any smilar rock.

The fraet between the Dhantic and the Great Cikn comsists, aceereling on the
 atong the lime of the Gireat (iten, the materlying yuartzose series is brought nop on an antichal axis. A probugation of this asis probably exists along part of the west const of lalay and dura, two islands whel cxhibit a mand dewlopment of the lowere or quartane pertion of the altered silmian rocks of thr Hichlimeds.
trom the line of the (ireat (ile a menth-cast ward to the Highland border, the
 curses, whereby the same seris if altered rochs which wemer on thic nerth-
 direvtion anems loch Lesom. 'Tlie antielinal of quartzose rewhs that rises

 upper sirnat, and the limestonce and quart\% rock conm up again in amother antachint as is correxpentrite whth the dimetion of Lerly 'tay. The contimuty of thace lime of an is was ramed lowh to the merthe ant ind somth-west.
 reduetion to order: that the same folls amd rurses combli he traced in them as

 lar and hematiful simpliecits.

which were intended as corrections of his own. He concluded by affirming, that, through the aid of Mr. Geikie, the proofs of the truthfulness of his own sections, showing a conformable ascending order from the quartz-rocks and limestones into crrstalline and micaceous rocks, had now been extended orer such large areas that there could no longer be any misgivings on the subject.

Felruary 15, 1561. - Amual General Meeting. Leonard Horner, Esq., President, in the Chair.

The Secretary read the Reports, and the Society both as to numbers and flnances was stated to be highly satisfactory.

The President announced the award of the Wollaston Gold Medal to Professor Dr. H. G. Bromn, of Heidelberg, Foreign Member of the Societr, for his long and snccessful labours in aiding the progress of geological science in general, and more particularly for the assistance he has afforded to the progress of Palæontology, as erinced in his "Index Palæontologicus," and especially in his work "On the Laws of the Derelopment of the Organic World." The President then announced the award of the Wollaston Donation Fund to M. Daubrée, of Strasburg, to aid in the progress of synthetic experiments similar to those of which he had recently giren an account, and which he had intimated his intention of continuing, with tae object of throwing light upon metamorphic action.

The President then proceeded to read his Annirersary Address, and commenced with biographical notices of some of the lately deceased Fellows of the Society, particularly the Rer. Baden Powell, Dr. G. Buist, Lient. Gen. Sir H. E. Banbury, P. J. Martin, Esq., Sir C. Fellors, Prof. J. F. L. Hausmann, \&c.

The Ballot for the Council and Officers was taken, and the President, Leonard Horner, Esq., F.R.S.L. and E., was re-elected.

Februaly 20, 1561.

1. "On the Coincidence between Stratification and Foliation in the Crestalline Rocks of the Highlands." By Sir R. I. Murchison, V.P.G.S., and A. Geikie, Esq., F.G.S.

Allusion was, in the first place, made to the early opinions of Hutton and Maculloch, who regarded the gneissic and schistose rocks of the Highlands as stratified. Mr. Darwin's view of the nature of the "foliation" of gneiss and schist were then referred to; and it was insisted that this condition was not to be found in the rocks of the Highlands ; the so-called "foliation" which the late Mr. D. Sharpe had described in 1546 as characterizing the crystalline rocks of that country being, according to the authors, really mineralized stratification. It was then pointed out that, as Prof. Sedgwick had previously insisted on the wide difierence between "foliated" or "schistose" and "cleared" or "slaty" rocks, and as Prof. Ramsay had in 1545 recognised interlaminated quartz as being parallel to stratification in the Isle of Arran, "foliation"should be regarded as coincident with stratification, and not with clearage in the Scottish Highlands.

After some observations on the occurrence of clearage in slates at Dunkeld, Easdale, Ballahulish, and near the Spittal of Glenshee, the authors stated their belief that all the "foliation" of the crystalline rocks of the Highlauds is nothing more than lamination due to the sedimentary origin of deposits, in which sand, clar, lime, mica. \&c., have subsequently been more or less altered, and that the "arches of foliation" described by Mr. D. Sharpe (Phil. Trans. 1552) correspond in a general war with the parallel anticlinal axes shown by the authors in a former paper to exist in the Highlands. They remarked, that the synclinal troughs, however, are not expressed in Mr. Sharpe's figures, and that he has omitted the bands of limestone which they refer to as an important evidence of the stratification of the district. They also pointed ont the acknowledged difficulty which the quartzites presented to Mr. Sharpe, but which readilly fall into the system of undulated strata that they have described. One of the
quatyites hwing yielded an Orthoceratite, and pehbles heing present in one of the schists of ben Lemment, these faets were adduced is further evidences of the real stratal condition of the schists and quartzites of the Highlands.
\therefore. "()n the lineks of portions of the llighlands of Sentland South of the ('alcotomian ("anal, and on their equivalents in the North of Ireland." By Profewor R. Harhness, F.R.N., F.G.N.

The anthor having had the opportunity of examining the geology of the nowh-west of Senlimd in the year l-a! , and more especially the arrangement of roeks deseribed by Sir R. Murehison as "fundamental gneiss, Cimbrian grits, lower guartz-rock, limestones, upper quartz-rock, and overlying gucissose thag," applied the results of his ohservations during last summer to protions of the Ilighlands lying south of the Caledonian Camal, and to the North of I relamd. beseloped ower a larep portion of these distriets ane masses of gucissose rock, uf varyug mineral mature, and sometimes putting on the aspect of a simple Hasery rook. Where these pheissose masoes come in contact with photomic masses, they exhibit that highly erystalline aspeet whieh imdured Maeculloch and others of the seoteh geologists to regard them as osempying mextremely low position anong the sedmentary series, and to apply them to the Wernian term "primitive." Many of Macenlloch's deseriptoms, however, show that this assmed low position is not the true place of this gneiss among the sedimentary rocks which make up the Ilighlands of Seotland.
ln a seetion from the southem tlank of the Crampians to Loch barn (and in other direetions from Loch Earn to I oroh Tay, from Dunkeld to Bhair Athol, in the Ben y (ioc Mometains, in Glen Sher, de.), there is seen a serpenee which indientes that this gueise is the lighest prortion of the series of rocks, with mad rlying fuartz-ruck and limestone.

In the commt of Domegal, lreland, a like sequenee is seen. A sretion from Inishowen Ileail to Malin Hrad, along the cast side of Loeh Foyle, presents us with gurissose rocks ablowe limestone and quartz-rochs, exartly as in scotland. In no portion of scotland south of the Caledonian Canal, une in the North of Irelam, did the author recognise alny traces of the "fundamental gineiss."

 of the committere, and to deed the council and ollients for the ensming session. The repref dwelt uron the eont inned suecess and prosererity of the Assuciation, and stated the legacy left ly He late Mr. Brown, of shaway, had been funded; that members desirnus of exclangeing fossils had been placed in eome
 purehand, towards the formation of a library ; that the collection of fossils in
 Thedome, and ('larlton dorine the past sear had aftomed sreat satisfaction to the members, it was intended of follow the satue course during the coming summer, and hold two or three similar fild levenres, of which timely notice would be giselo.

Jiapers were read the sme exeming "()n the fienology of the Isle of Shepers, hy the lies. R. Binghan. 'The muther, speaking of the divisons of the Tretiary beeds, ailuded to the wand of sherpery being an ontlier of the strab forming "the London liasin." He then premecded to dwell "pon the pherical aynet of the localits: and gave much interesting information in

 tacen - shlent witnese of the wintence of n group of spire-islands in tha wighburhord in ares lomer anterodent to whe historie period.

ham during the excaration for the Effra branch of the Great South Itigh Level Sewer." By C. Rickman, Esq.

Tarious details connected with the open cutting rmming through Peckhan Rye to New Cross, and the tumel at Dulwich, having been given, attention was drawn to the remains of leares, of shells (scremil of which have been fignred and described in the last volume of this magazine, page 210), bones, and insect wing-cases, which have been found in soft and indurated clay by Mr. Erams (see page 39, rol. iv.) during the progress of the work. Twentrone species of shells, it was mentioned, had been discorered at Peckham, and nineteen at Dulwich.

Archeological and Efinological Societies-On the 19th of February a vers important joint meeting took place in the rooms of the latter society, in St. Martin's Place, Trafalgar Square. We lay stress in this case on the term important, becanse this is the first instance of a joint meeting of any of the learned societies for the express purpose of discussing a particular subject:the result was an entire success.

The flint-implements from the drift have attracted the earnest attention both of geologists and antiquaries, and on this occasion Mr. Thos. Wright, F.S.A., who was, we believe, the promoter of the joint-meeting, opened the discussion by an oral description of the collections exhibited, and gave a general account of the history and uses of stone implements by ancient and modern peoples, concluding by recanting his former opinions as to the natural character of these fossil implements, and admitting his subsequent conriction that they were really of human manufacture. Amongst the collectious exhibited were that which M. Boncher de Perthes presented in 1517, the rear previous to the prblication of his "Antiquités Celtiques," to the Ethmologieal Society, and those of Mr. Erans, of Hemel Hempstead, the Rer. Mr. King, of Hoxne, Dr. Hunt, of Hastings, Mr. Edtrard Tindall, of Bridlington, \&c.

Mr. Evans described the condition of the strata of Abberille, Amiens, St. Achenl, \&c., and stated the occurrence of Cyrence in the implement-bearing and mammaliferons drifts of the ralley of the Somme.

Sir Roderick Murchison exhibited specimens found on the beach near Herne Bay, and supposed to have falled from the gravels on the surface of the London clay and Tertiary beds there.

The Rev. Mr. King described the deposits at Hoxne, and stated that a mammaliferous stratum occurred in the bottom of the ralley of the Wareney, which must have been deposited subsequent to the excaration of the ralley of the river.

Mr. Pengelly made such very important remarks on the Brisham cavern that we gire his specch in full.

Mr. Peugelly said that there were reasons before the conchsive evidence obtained from the Bricham cavern, in 1555 , for conchding that relics of man were associated with those of the fossil mammals. Such had been the case in Kent's Cavern, near Torquar, and from circumstances which had been met with there, it was argued that man was contemporaneons with those great beasts. One hitch, however, existed in the bare possibility that the collection was not original ; but in 1558 a circumstance arose which has caused much light to be thrown on the question. In the Norember of the preceding year, a person residing at brixham purchased the freehold of a small portion of a limestone hill immediately adjacent to the town, his intention being to work it as a quarry and ultimately to erect a few cottages on the excarated site. In January, 15s5, the quarrying disclosed, in a north and south line of fract ure, a hole large enongh to admit of a man's hand. On one occasion when the workmen returned from their meals a crowhar which had been left was missing, and was supposed to have been stolen; but in the course of a few days, as the exeavation procecded,

 san their wissing monbar on a ledere bilow，it hasing been probably thent duwn thromeh the hole in their absence hy some one fond of at pateleal joher．

 been，wo free from the objections of the probable int rabluction and comminglinge， at－ubergu mi perions，of hanam reties，which had been formerty urged against Komt＇（＇isem．Whom the camemmas tirst contered it comsisted of two gatleries，
 the lirst having an horizontal extemal opening at its northerin extremity，but Which was emmpletely chored with fragment of the adjacent limentone firmly whented with tatagmitie matter inte a breenia．Afterthis passare was forent Mr．F＇engelly chtered，and sater at the suthern roud of the north and south sallery，on the stalagite fleme the antlers of a reindeer．So this appared a virgin catsen，it asemed exactly adapted to athend the evidence required to substantiate the pusition kent＇s and other simitar caterns hat，from theit onta state，lated to dr．Acmordingly，Dr．Paldoner－who hed shited it indued the Ceolureabl soriety to take a lease of the eavern，and the Rensal socity sapplied fund for it－excavation．The layers of deposit were carefully remowed none be ome．In the stalagmite there was fomed a fine bome of＂ivens sumperse： below this was the＂bome beel．＂with every home and stone placed with their Ioneres axe recentarly in the phane of the bedinge，and the shomete at right anglos to it，wepert at one spot where they were fond sticking in the mud， inclined in esury diesetion，junt as they hath fithen in from above．lomes of ammaks，with flint－fake implements－some of the lather of a well－mertul character，and manestionably hmon relies－were found at the base of ：he ＂bone hel，＂bating a depth of deposit ower them varying from thiteren inches
 of the exad poxition of every bone and implement in the eawern．The hones a ad implements fomm were ileared carefully ont of the matrix with a hulfe； but，in one instanes，within the spaee of aboit two square feed，there appared on be a creat mumber of bomes togethere，and the whole mass was remened to
 in the pherence of witnesses，proved to be the cutire left hind heg of a cate－hears：

 conten porary with the Cate bear．

 riace from the botom at an angle of twenty degreme and reaches the height of

 lulese；therefore，if the islley wis at the 1 me of the deposit of these bomes， flan－implements，and nodules as ilerp as it is now，the harmatite modules must
have crossed the valley at right angles to its length, first descending a slope of twenty degrecs, and then ascending another of twenty-eight degrees, a gradient of nearly one in two, before they could have cntered the cavern. Hence it appears certain either that the ralley could not then hare existed, or that it had been filled up with gravel which had since been cleared out. In either case the bones and flint-implements would be of such great antiquity as is consistent with the subsequent reduction by natural causes of the valley to its present phṛsical configuration.

Mr. Atkinson, the Asiatic traveller, in reply to some questions on the range of camirorous animals stated that he had seen the Bengal tiger preying on the reindeer in its native districts.

Admiral Fitzroy gare an interesting description of the uses nade by the Fuegians of stone weapons in killing the guanacos (the wild Llamas), with them, when these animals got their long legs entangled in the snow drifts-the stones being fastened by thongs of siner in a split stlck, and the weapons thus formed used like a butcher's pole-axe.

Mr. Blagg, who had found stone-arrow-heads in Battersea fields, thought they might have been in remote times flonded, and that the arrows and slingstones might have been projected from the shore at birds and other objects of chase, and thus have become embedded in the mud of the lakes.

The reply of Mr. Wright, and some remarks from the president, Mr. Botfield, MP., terminated a meeting of the liveliest and most interesting character.

The Glasgow Geological Exmibition. - The Society's exhibition of rocks, minerals, metals, and fossils was held, as proposed, in the Merchant's Hall, in Dccember last. It was a great success, and gave much satislaction to the lovers of geological science. Great praise is due to the members of the Societr for the mamer in which they got up this geological exhibition of plant and animal life that flourished on our globe long ages past. Every formation, from the earliest of the metamorphic rocks to the tertiary strata, was represented. The collection was divided into sections-classified according to their formations; the flora and fauna arranged in the natural order of succession, with printed cards, giving the names, and position of the strata in which they were found. The Scotch palæontologists must have been much gratified to see so fine and numerous a collcetion of fossils collected by the members resident in Glasgow and its neighbourhood. The limestones and shales of the Coal formation must have been well explored to give such rich and varied collections as those of Messrs. Young, Thompson, Armstrong, Crossker, Johnston, and others. The numerons drawers were filled with thousands of specimens, arranged in order, and probably such a collcetion has never been cxhibited by any society of a similar character.

The fossils of the Silurian and Old Red Sandstone formations consisted of specimens of Graptolites, Trilobites, shells, and fish-remains, principally from Scottish strata. There were some fourteen species of Graptolites (exhibited by Mr. Steven) one species of which had been hitherto unknomn in Scotland: these early records of fossil-life were one of the marked features of this interesting exhibition. Dr. Slimon, of Lesmahagorr, exhibited some of his fine specimens of crustacea from the Upper Silurian beds of that district. A rery fine large slab from the upper Old Red Sandstone of Dura Den was also exhibited, and from the number of fish-remains on its surface it excited great attention. The Carboniferous specimens, ranging from the plants to the fishes, were fine and numerous, being the joint produce of several valuable private collections, and occupying the whole of two or three tables, some seventy feet in length. In these collections were many rare specimens from the coalfields of the west of Scotland, several of them being new to Scottish strata, and one or two altogether so to science.

 - wid?. There were some rame specimens firm the Dolite exhibited by the same
 In Wr. Iantell, the orisinal of which is in the Pritish Muscum, was exhibited he me of the emmeil, the lies. H. W. Crosskey:

It the (retaecons divism there were exhbited some fine specimens from the - Wath of Bmeland, cmbracmer a good set of sponges, fish-remains, shells, patatal tath of shaths: and same rare specimens from the chatk of the northeat of scontand.

I artios of Tertiary shells from the Paris basiu. The various divisions of the Tertiary formation were repesented. She colledion of pust-Pleisterene sheth from the Kiles of liute amd one fiom Uddesalla, in sweden, showing well the smikaty between the heck. Recent sholls and phemts, illustratioe of

The metals were well represented, especially iron-, leand, and tin-ores, and som partiontarly fine homatites, cte.

The mindals and rock-sperimens were also very varicel, and from many ditherent hevelites. In adition to the momes atready mentioned as exhibitors,

 sureren ol this whibition.

There wre in all mone forty exhibitors, and amongs them a workine ainer,
 nör (ilangons. 'To and to the interey of this working man's entlection of Peroms, Cahmites, and sigillatia, pines and tecth of fishes, and shells, he had
 mowhed the partioular strata or alepmits where he had worked, and fomed his
 "re. The "ahithiom, in at whe spohe well for the great industry of many wh the 1 ember in colleretine the varienm mamis remans of the west of scotland.

 ercile of of pationlar disurits; an that we maty satils as-ent !hat the cilascom

 of limens, in Frace whi hablad on the inmore of the whibiton.

 jaw if a yome lomitniom Ia liont.

 itwal, ind tho strention Theoe parla are smeended ly a pertion of the

Lower Lias formation. This latter portion is of great interest, on account of the mmerous fossils contained in some of the thin beds of limestone, etc., found there ; one of the lowest beds of the Lias in this section being a thin stratum of calcarcous conglomerate, containing a very great aboudance of reptiliau bones, coprolites, and fish-remains, known as the "bone-bed."

February 12, 1561.--The President read his annual address. After reviewing the progress of the Society, and giving a sketch of the geology of Liverpool and the surrounding district, he proceeded to describe the leading geological and palæontological discoveries of the past sear, dwelling more particularly on the rery interesting facts elucidated in France by Messieurs Lartct, Gosse, De Vibraye, and De Verneuil in comnection with that great scientific question of the day, "the geological age of man."
"On the Geology of the Arctic Regions." By Darid Walker, Esq., M.D., F.R.G.S.

This paner was the result of the author's observations during the royage of the "Fox," in search of Sir John Franklin. He stated that on approaching" the coast of South Greenland, the appearance of the momntains at once shows their igneons origin, being composed of granite, gneiss, and mica-schist, with occasional intervals of quartzose rock. After proceeding along a coast-line of five hundred miles, the volcanic rocks appear. These are first seen at Disco Island, and continue with a few interruptions as far north as the expedition reached. The precise formation of the land between Jones' Sonnd and Lancaster Sound is not known, but from its tabular appearance it is most likely Upper Silurian Limestone, as occurs further westward in Barrow Strait.

To the sonthward of Lancaster Sound, Silurian Limestone appears as far as Possession Bar, when the primary and metamorphic rocks make their appearance. Berond Croker's Bay, as far mestward as risited, the formation is Upper Silurian Limestone; the hills presenting tabulated frouts to the sea, with decp ravines intervening, rendering the hills cone-shaped. The shore of Parrow Strait is also made up of similar coneshaped hills of Silurian Limestone. The west coast of Regent Inlet is of the same formation, but the frouts to seaward are much more elerated than on the north side of Barrow Strait. From Fure Point south to Bellot Strait the clevation of the land fronting the sca gradually decreases until it is seen lring against the granite, which forms a back-bone.

The author exhibited many specimens of the fossils he had collected from the Upper Silurian limestone described-Arctic species of the genera Loxonema, Encrinurus, Spirifer, Atrypa, Rhynchonella, etc. The resemblance of the specimens to those of Dudley and Colebrookdale is rery remarkable. The presence of raised beaches and of Tertiary coal was also dilated upon.

Malterx Natural History Field Club.-The unfasourable weather of last year prevented the appointment of any Field Meeting earlier than the loth of May, when a joint meeting of the Malvern and Worcester Chubs at Eastnor took place. The first move was to the line of the Worcester and Hereford Railway, striking it at the east cud of the Ledbury tumel, where a shaft had been sunk in the Ludlow rocks of the Silurian system, from the spoil banks of which Mr. Stephen Ballard, the engineer, explained the course to be taken by the line, while the geologists broke into the line with eager determination, but neither here or at an adjacent quarry of Aymestry limestone was any thing taken, except a stray Lingula. Since this time, however, the spoil has become much more productive.* The party mosed on to the open cutting in front of the tunnel at May Hill, where the "Passage beds," between the Silurian

[^30]deynsits amit the Old hed are linely displatyed; and Mr. Symonds, F.G.S., the preveden of the Matwern Club, here delivered an oration on the position of the frak and the ir fomil contents.

Nowhere in the world was there, he hought, sueh a fine exhibition of "pawig-heds" as here; and they incontectibly proved that there was a gratdual transion from the Upper Ludlow Rocks of the Silurian system to the Whl kel, and no sudden break with the entire destruction of organic life in the mere ancient system, as hal been formerly supposed. Mr. Symonds then remarked on the peenliar bucklered tish whese manas were embedded in the Grey and reat marls of this section, partieularly the -Iuchenaspis; portions had : Wei been detected of the Plectonlus, Cephalespipis, Pteraspis and Onchus. These were all mow extinct, and their only andorges were to be found in some of the mivers and lakes of North Americat.

Mr. Lees, the Vice-Jresident, delisered the ammal address, and took a review of the chief bouks on scientitie subjeets which had been published during the past year, remarhing on the great tendeney of the aththors to theorise instead off, like ()wern and I gassiz, carefully arguing only from undoubted facts. The former philosophieal observer had derlared that the result of his palaron-- Tologeal studies proved the eontimed exertion of erative energy from the (orlicut to the latest strata that had yidded their osseous remains to his view; but that all past races of anmals belonged to the divisions now hown to noturalints: nor was there any reason to believe that anything would he discoucred that was diflerent in seneral technceal character to what naturalists wore at present acortainted with.

Mr. Lees then louk a scarching review of larwin's recent volume on "The the Urifin "f speeis," and peinted ont what he considered to be the fallace of that writer's biews, which he considered were merely a sariation of the exploded theory of lamarch, who hat supposed the origin of exery organic beiner in land and water from wom nomadie forms. No pactical benelit was gained by supponge that all existiner species were varieties of what had preexisted; and Shat mimute variation now appeatiue and acemmating would in like maner, in a loug perion of time, change overything again.

In conclusion, Mr. Lees stromely ured the avoidaner of all fanciful theory, ant 1 stodily keppine within the bexmb of truthfut observation. If they might mot (6) - W lar as St. D'imen, as to say that he whe hat mot studied nature knew tut what renl cujosment was, yet they would fully agree with Humbuld that in therememplation of her gramder and freedom existed the purest delight that a divhe intelligener bad designed for the anjoment of man.

It this metites the Res. R. R. Ifill was chected Henoram Secetary of the
 tic formation of the elul).

 Court to Samhill, a lid imether, in the valle of Niw Red Sand-tome, which
 relurned theongh the l'ale Comet garders, by permionom of Mr. Dowderwell,

 the I) rutitian thers!

 from dherebtinge, a beore was the efore watic through the rutting of the Wiech t, the shaft on the we tern side of the hills, where large heaps of "spoil" had
accumulated. Little, howerer, was found in them. The club then paid a risit to Mr. Stephen Ballard, at "The Winuings," who presented Mr. Symonds with some "old bones." They consisted of the humerus of Bos primigenins, from a lacustrine deposit on the western flank of the Malverns, together with a portion of the molar tooth of a mammoth, and a rery perfect tooth and leg-bone of a rhinoceros from the Glacial drift, which skirts the eastern flanks of the Malvern range.

Afterwards the party proceeded along the line of railway, striking it just where the tumel emerges into the opon cutting. Here there occurs, just at the point of junction of the Old Red and the Silurian strata, curious mass of a bluish material so tough and leaden in its character as to have been almost impossible to excarate, resisting alike gumpowder and the pick. Hence the party followed the line to the bridge close by Barton Court, where a heap of Old Red has been curiously caught up in the midst of the Silurian.

The Winds' Point was the next object in view, where Mr. Symonds called the attention of the members to some large masses of Llandovery sandstone raised upon the flanks of the Sycnite at the back of Mr. Jobnson's house, and at least one thousand feet abore the level of the sea.

After dimer, Dr. Grindson of Malvern, exhibited a beautiful series of fossils, most of which were obtained from the tnunel-shaft on the western side of the Malverns, and the quarries in the immediate neighbourhood of Ledbury. Amongst thesc and most worthy of notice was a magnificent Pentamerus slab from the tunnel-shaft at the Wych, a Lingula Levisii, a L. Symondsii, a drawer containing many humdreds of trilobites-the eyes of many being particularly perfect, and several Bellerophons and other ancient fossils, many of them being new species, hitherto unknown aud unnaned, discovered by Dr. Grindrod.

NOTES AND QUERIES.

Pleistocexe Fossils.--Dear Sir,-I have lately discovered in the Pleistocenc clay of this neighbourhood (Salisbury), some teeth and several fragments of bones of a small rodent, apparently belonging to the genus Arctomys or Spermophilus. I much regret that I possess no recent skulls of either of these genera with which to compare the fossils. Under the head "Fossil Muride" in the Encyclopedia of Natural History, there is a mere nominal allusion to a species named by Professor Kaup Spermophilus superciliosus, from the Eppelsheim sand. Now I am well aware of the many calls upon your valuable time, but hope you will not deem me trespassing too much both upon it and your kindness in asking you to send me any information you may possess upon the following points:-1st. The specific character of Spermophilus superciliosus, with admeasurements of skull, and of any of the long bones. 2nd. Has this species been discorered in any part of Great Britain, or in any other contimental locality besides Eppelsheim.

In event of my fossils proving a new species, I will, should yon deem it worthy of publication, forward for a full description, with illustrations of the most perfect and characteristic bones.-Yours truly, H. P. Blackuore, M. D.

We would refer our correspondent to the following work :-"Descriptions d'ossemens fossiles de mammifères inconnus, jusquà présent, qui se trourent an Museum grand-ducal de Darmstadt, 4to arec atlas in folio. By J. J. Kaup. Darmstadt 1832-1839.
lioperemere on work on fossil mammals of this order will he fonnd at p. D3b,

 also figured hy Gervais, in his Zoolegie et l'akontolorie l'ramegas, pl. 26 and 11.15.

The deposit in which koup foumed the Pippelshem speeimen was first regarded as Mioente, and since referred to the diluvimm by II von Meyer. It was a nearly complete specimen, surpassing the mamot in size. It is the Afeforeys
 and 11. (11!)).
11. (iervais, in his \%ool. et Pal. Frameais, 1'. 20, p. [fo, fiers. 11 and 12, refors to this speries the bones fonded in the dilasium of J'aris, Nient, and Sssure.
 mie de Moseow, 1-31. 1. iii, pr. 3hl), has been found in the raverns of Prussia. It is allied in form to I. bubtec, but its skull shows ton many difterences for the
 France ze sertic, t. i, p. $5!4!$, indicates a marmot from the Suverge allusimm ditlering form the . 1. mimiypuia.
 the dilusime of Messhath and Koestrich. (Ilom. V. Never, Nemes dahrh, 1ら17, 1. 1 い)

The promophits diller from the marmots in their ponelses, and their lighter frons. Ther are fomed in the tertiary and dilusimo beds. The symomphitus.

 = the spectes as that from the beme-breceias of Dombmemer, divers,

 a mine frugivoroma da.

 "From the morth prat" red "firthe wat part" p. "s, line 1 , for clay-stomes"

 13 trom the bobtom, for "ere it" cristala read "grate" erystalh- 1 . 11 t, foot-
 "nlulus" real "endii"

Fragmext ox Subuarine Zones of Distribution.-1. As soon as the main faets of the distribution of amimals and plants into regions and districts, and into zones of eleration abore the sea-level had been generally established, it was assumed that like limitations held good as to marine plants, and (as inseparable from them) to zoophytes.
2. It was thas laid dorn pretty positively that the coral animals could not exist at certain depths; and from these the inferenees that coral formations, per se, could have no great thickness unless submerged whilst in progress by the sinking of the ground on which the animals had attached themselves as a nuclens or basis; and if this progress were carried on slowly the said animals, within "regulation limits" as to depth, could continue their work uprards as before.
2. In Darwin's valuable work on coral formations, p. S5, lie gives ceriain tabulated data of the known depths at which eorals have been found alive. The cxample most to my purpose (for I am unacquainted with "Cellepora" found at one hundred and ninety fathoms) is "Gorgonia, or an allied form," at one hundred and sixty fathoms deep.
4. The pressure at one liundred and sixty fathoms (taking sea-water at about sixty-fire pounds per cubie foot) is four hundred and thirty-three pounds per square ineh; and who that is at all familliar with the exquisite delicaey of structure in the polyp of gorgonia of any kind ean suppose that mere internal counterpoise of water within to water without rould render life possible in such types of all that is tiny, frail and fairy-like? No wood sunk to that depth would ever float on being drawn up to the surface: it would become "waterlogged." Hence it is coneeired that nothing but the mystermons agency of vitality ean give the tissue its power of resisting the above mentioned and very considerable penetrative pressure. Who then is to limit the depth at which zoophyte life is to be found, and coral-reefs to be carried on?
5. Such being the case at one hundred and sixty fathoms, what are we to say to the facts given in Mr. G. E. Roberts' interesting paper-" High and Low life"-in which the existence of Ophiocoma, \&e., is traced to a depth of two miles, or eleven times the said one hundred and sixty fathoms?
6. It was ever to my mind an unproven rerdict (or rather dictum) that laid down such strict analogy between the zones of distribution for terrestrial vegetation, and their assumed correspondents as regards marine plants and animals (especially the latter) ; as if they were the anamorphic reflections downwards of the terraced arrangement of zonal regions upwards, shown on the surface of the sea.
7. In earlier days I was once honoured with a slight, but "free and gentle" passage at arms-a sort of holme-fight-with one of our largest Oxodons, or Cantabnodons (we say not which), fresh from his native fens and reeds, who had taken post on this sandbank position, and in spite of every logieal instinet on the pourquoi non? footing I presume, required me to prove a negative thereon. Strange to say, he was an eminent mathematician. What would he have said on seeing his sunderbund-hypothesis utterly dispersed by the facts of Dr. Wallich and Mr. Darwin?
8. It may be assumed, safely enough, that coral formations may spring from around any suitable nucleus in the very floor of the ocean; though not by any means restrieted from starting their characteristic contours and belts from aronnd the upper portions of submarine hills-working from thenee upwards as from an advanced base of operation..-R. J. Nelson, R.E., Halifax, Nova Scotia.

Skeleton of a Nondescript Animal found at Buevos Ayres.--(Vol. iv. p. 18).-I refer vow correspondent who asks what scientifie account has been given of the great animal preserved in the Madrid Museum, to Dr. Buckland's Esssay in the Bridgewater Treatise. The skeleton which is that of the Mega-
[supplement to the " geologist," No. 40.]
 alan he uen in damemon's "'ramslation of Cuvier's Revolation of the (iloher" The Matrid skeldon measured thirten fert me inch in length, and is senen fied four inelues in height to the top of the baek. It has hern arveral times fienerel. The finest scries of phates illustrative of it are those of Pamder and 1). Item.

The aceomet grisen by the old traveller is amusing enomorh, hat no natualist. rendit have heren a monent in doubt as to the eharacter of the amimal, whel hefones to the Eflentafa (root-raters), sery far remored from the ('aminores.

I append, for the ammement of these whe like quaint zoolugical dereriptions amextract from a 'lexas letser, relating the discovery of a great l'acheterm:-
"The great heal excitement hewe just now is the fart that within the eurperate limits of New Bramfals, within close pistol shot of the residence of our worthe mayor, the bones of an immense mamoth or mastoden have bern diservered. I have uot as yet visited the spot, or big hote in the gromul, where the digging is groing on, but am told that the sperimens so far dug up, promise a sizeable skeden when all are put together, saly thinty odd foet tong hy twenty odd in height. Darmum might make a mex start in the world were lic now here to lake adroutage of this womberful bringing to light of an mdouhted curiosity.
"Ther discosery was first made by some (ierman well-digeger, who fell went a louge shoulder-bone while prosperting undergromul for water. I will give more and fuller purtienlars when they exabate decperough or wide chough to bring the mote "crittur" ont, so that we ean all are him, sher, or it. If there
 right here, where the waters of the heatiful Guadalupe take in these of the more beantiful (onalal." Wre shend liker to how more of has dimd.

But the must valuable book of referenee on the subjer is the splembid "Memeir on the Xeqatherimen of (iant (iromal Soth of Amerisen," hy P'rof. Owen, reprintal with additions from the Phiksophial Tramsartions. A full Noseription of the Madrid specimon, which was fomed "in some exearation on the hamks of the riwer Lasan, which flews rlose hy the fown of the same name,

 (imone: V:。 lionests.
 given in the " Instalian Mail:"-" Viver sinere the sallement of Xew \%atand
 hind of molallie samd along the wome of Neis Plomonth, m Taramaki.
 nem it and taken up asam, the instrument will be fonm thichly coatcol with the eron eramere. The plaere where the sand atomods is along lar base of
 sheme the comat to the depth of many fert, mut has ine a corropmotine heradth.
"The geolengical supposition is that thas grambated metal has berem threwn

 for mimes alomg the sloure. Coptain Murshead, a fentleman in the west of

England, was so much impressed with its value that he went to New Zealand to rerify the reports made to him in this countre, and was fortunate to find then all correet. He smelted the ore first in a erneible, and subsequently in a furnace. The results were so satisfactory that he immediately obtained the necessary grant of land from the government and returned to England with several tons, for more conelusive experiments. It has been earefully analysed in this eountry by several well-known metallurgists, and has been prononneed to be the purest ore at present known. It contains $\$ 5.45$ of peroxide of iron; $11 \cdot 43$ of oxide of titanium, with silica, and only twelve of waste in one hundred parts. Taking the sand as it lies on the beaeh and smelting it the produce is sixty-one per cent of iron of the very finest quality; and again if this sand be subjected to what is ealled the cementration proeess, the result is a tongh, firstclass steel, which in its properties seem to surpass auy other deseription of that metal at present known. The investigations of metallurgieal seience have found that if titanium is mixed with iron the eharaeter of the steel is materially improred; but titaninm being a searee ore, such a mixture is too expensive for ordinary purposes. Here, however, nature has stepped in and made free gifts of both metals on the largest seale. To give some idea of the fineness of this beautiful sand it will be enough to say that it passes readily through a ganze sieve of four thousand nine hundred holes or interstices to the square inch. As soon as it was turned into steel by Mr. Musket, Messrs. Mosely, the eminent cutlers and toohmakers of New Strect, Covent Garden, were requested to see what could be done with the Taranaki steel. They have tested it in every possible way, and have tried its temper to the utmost, and they say the manner in which the metal has passed through their trials goes far berond anything that they ever saw worked in steel before. It has been formed into razors, seizzors, saws, penknives, table-cutlery, surgieal instruments, \&e.; and the closeness of the grain, the fineness of polish, and keemness of edge place it in the rery foremost rank-almost in the position of a new metal. As far as is at present known of this extraordinary metal, it bids fair to elaim all the finer elasses of cutlery and edge tool instruments to itself so well has everything made from it turned out. Messrs. Moseley, in whose hands the sole manufacture of cutlery and edge-tools is vested for this country, have placed a case, filled with the metal in all its stages, in the Polytechnic Institution."
Descriptiox of the Rocks in whicii Diamonds are Found, and the manxer of working them in tie Protince of Mixas Garaes, in Brazil.The grauite-gueiss of whieh the shores of Brazil are composed extends without interruption as far as the Sierra of Montiguera, whieh is sixty leagnes inland, at the point nearest the sea where it forms the boundary between the forest and the plains. In this last region one begins to see this gneiss alternate with granular quartz, and crystalline sehists. Inlaud from the Serra of Ourobianco these last rocks dominate exelusively. To the north they also compose the mumerous mountaiu ranges, and among them the "ehapades," ealled by D'Esehwege the Serra D'Espinhaco
Of the roeks which compose the Diamond region the gramular quartz, whieh is the most important, has been called by D'Eschrege "itacolumite." It is a friable quartz or sandstone more or less coarse-grained, and often contains tale chlorite, and miea, and showing a sehistose structure. It is sometimes traversed by veins of quartz containing pyrophylite-lime as found in the Ouralian monntains. Sometimes, though but rarely, is it flexible. We liave noticed this quality at two places, Ouro-Preto and Monterade. This itacolumite is berond doubt a metamorphosed roek, deposited in the first instance by water. No fossils have been found in it, but traces of wayc-marks have been discorered. Aeeording to Mr. G. Rose, there is at Bissersk, in the Oural, where diamonds are found, 110 trace of this roek which however closely resembles the schistose
grannlar quartz of the mountains near Strehlen to the west of Breslan, and wheh there moldies the quartz alternating with it and vast masses of white taterise schist, and is travered by mumerons veins formerly worked for clear fulartz.

The schist whieh we have called "metamorphic" presents various characters; first of all it contains quart\% associated sometimes with chlorite, or with tale; sometimes with mica: in the latter case it passes into miea-schist. It is not necessary to point ont amphibole, hornblende, and schorl!: among the varieties of this selist worked in scarrhing for diamonds.
sometimes it loses its schistlike nature. and then contains a quantity of oxide of iron. Thhis schist eonstitutes gencrally speaking the elovaled plains called "chapades." It rapidly decomposes as we shall see further on, and on this aceomt the lower parts of the ralley, into which the rivers procceding from the chrpades flow, are of im undulating nature, while their higher slopes are more or less precipitous.

The passages from metamorphic schist to clay-slate and sehists eontaining tale, mica and eyanite are very frequent, and quite insenvible. So on the other hand is the passage from the metamorphie selist to the itacolumite. Near the limit of these two rocks coneretions and bands of specular iron-ore: uften necur. In the Serra de Caraça fraģments of erystalline schist occur as a conglomerate in the itacolmite.

This metamorphie schist comtains also limestone, schistose speenlar iron and itabirite, wheln is simply a variets of specular iron, aceompanied hy guartz and mica. It weeurs in thick beds of ereat extent, which ean be worked as ironstome. When this tabirite is formd partially decomposed (pulvermtente), it goes under the name of "jacotinga." The raluable Linglish mine of (iongrosocer is worked in this jacotingra.

The limestone is well developed, and eontains many caverns in whech bones and ealpuete oecurs. These have been stadied by Dr. I and

The itaeohmite and metamorphic sehits weeir generally in altermate beds. Their outcrop, is parallel to the mountain-range, mamely north and south, and they dip to the cast. They hate been disturbed in surh a mamer that they form rusped and abrupt rocks which in the itacolumite are traversed by a great many water-worn chamels.

The schist and itarolumite decompose easily, the latter splitting and crumbling readily to dust, the former undergoing a chemical as well as a physical change in lecalities phat ieularly rich in iron. The hydroxide of that metal when liherated genes to form, with the less deromposed fruements, a breceia, called "lapmonote craga," a variety of which enntaming a greater quantity of sated is fombl in the valless and rivers of the diamond recem.

This dermposition sometines reaches agereat depth; the surface of the roek in the raliny acacen rearmbling a boge in which one simks in in the knees.

It may he thought surprising that deromposition shomble ge on to such an extent in the erepers, is it is mot secomeded by the action of frost, lom it is doubtem havtened by the ferenenes of the tropieal rains, and the disontwing aetien of the water inereased by the temperature. It may abo beobserved that the eropical storms off frequent and reqular oecurrenee charges the atmosphere

It is in the pronlace of the derompraition of these rochs, and in the reeront lapmhenemga that the diamomed and momerous rate minerals ocenr. Amoner
 blach ore of titamims, transparmot andalusite, cuclase, and chrysoberyl.

Pixprit nee has tampht the mimers that diamonds are to be fomme 'in theres

" grurgulho," which presents different characters in the Serviço do Campo, and Serviço da Serra. In the former it is the produet of itacolumite, formed of pure quartz sand, fragments of itacolumite and quartz. It fills the cavities resulting from the distruction of certain beds of itacolumite, which are called by the Brazilians canaes corrumes.
The method of washing is deseribed by D'Eschwege, and with the diamond as residua are obtained rutiles, oxide of irou and oxide of titanium. These minerals which occur more or less with the diamond are named the "formation" (formaçao), and their nresence in the gurgulho is considered as a sign that diamonds are not far off.

But on the Gurgublo de Serra these minerals are to rare that it is impossible to recognize them without a previous washing, and even in certaiu beds they are almost entirely absent.

Of three mimerals mentioncl as constituting the formation in the itacolumite we have included rutile and oxide of iron; black tourmaline also, perlaps, shonld be mentioned, but no one has met with it.

As the minerals associated with the diamond are found in the itacolumite, it is natural to suppose that the diamond comes from the same source. The presence of diamonds in rivers rising in mountains of itacolumite is another evidence of this fact which Pohl and D'Eschwage had amounced as probable, and Helmreicher has placed beyond doubt ; for at the Serra Grao Mayor at Corgo dos Bois has proved that diamonds can not only be obtained from the washing of the gurgulho, but also from the fragments of a rock of itacolumite, which mode is not followed up because the washing process is easier and cheaper.

The Gurgulho do Campo is so called because it occurs in the plains and tablelands; it is formed by the decomposition of metamorphic schist of which the products are more or less mixed with itacolumite. The washing of the Gurgulho do Campo gives-firstly, blackish-grey grains and cyanite. Secondly, a bluish-blaek rock, sometimes ferruginous, sometimes quartzr, and allied aceordiug to M. Damour to schorl-rock. Thirdly, hydrophosphate of alluminum, hydroxyde of iron. Fourthly, hematite iron, red hematite, and perhaps titanic iron. All these substances are derived from the metamorphic schist. As to the quartz, rutile, amatase, sub-oxide of iron, they proceed equall from that and the itacolumite. The ensemble of the minerals associated with the diamond is called the "formation;" but here these are so abundant that it is often easy to distinguish them without a preliminary washing.
The Gurgulho do campo is met with on the surface, near the separation of the two great basins of the San Francisco, and of the Jequitnihouta, at Dattas, at Quinda, and at San Joao do Barro. As it does not appear to have been deposited by water one is forced to admit that it has been formed in situ by the decomposition of the nnderlyng rock, sometimes, however, it has been water-borne some little distance.

As long as diamonds were found in the Gurgulho of the surface, they were not sought deeper ; but about the year 1550 at San Joao do Barro the underlying schistosc-rock was by chance submitted to the washing-process, when it Was found to contain many diamonds. From this time a course of deep-mining has been pursued with the best results. The rock is so soft that it can be extracted by means of hoes: it is then thrown into the "cradle" and washed.

When the rock is examined in situ a selistose structure is perceired, which however has entirely disappeared in the gurgulho ; the solid and heary particles alone remaining.

The schisty roek found underlying the gurgulho is called "barro." It is of a very rariable colour-white, reddish, dark grey or black. It is soft to the toueh, and sometimes sand is obliged to be added to it to enable it to undergy the washing process. Between the gurgulho and this "barro" occur also
varion- approvimbins to an arthy mass, which also eontains diamonds, and Which is di isumed "torma," 'The "harro" and "terrat" are so decomposed and sofern n that the holes worked in the chay are tilled in during the night. It is onty in the dey season that the deep mines in the barro can be worket; the wathing is carmen on, on the contrary, in the rames season.

Thu venct surneture of the haro at once tells of itsorigin in the metamorphic onhis, a fact contirmed by the following remarks. The sehists lie nearly umeth and somth and dip fowards the cast at an angle of thirty degrees. Wesides nuterneath the "harre" a hed wif granular itacolumite is met with called "Jizarro," it is easy to prove that this bed is interealated in the sehisis and that its direction and dip) are the same. (on the other hand foncections are furmed in its neighburhond, as is the case at the termination of the metamomphie sehist. Pimally, the residac of the wanhing of the baro and the grarentho do (empo is evactly the same. We have, henides, examimed the sony framents which are found in the "barro," and have proved that ther have been derived from the metamorphic selhist in difterent stages of decomposition: some fracment, were so unchonged that we eoudd not for a monont dondt their origin.

It is rety true that hamonds have not yet been fombl in the metanomphe selist, but that is rasily und rstuod as it has been so little worked. St the time that the barro is worked it is very soft and fill of water: it haretoms howeser on exponire' 'The diamomeds it contains do not detach themselves at first, athe in the washing we haw heen fortmate enomgh to oblain, at Dianantina, a Syecinen of buro which still contaned a very large dianmen: it also showed vers elcarly the origin of the roek. We heve also seop it similar sperimen
 an I Diatumtina.

Althomech there are many workinst of the grugentho at sim doan, that in the barosince 1 h. 5 has sielded richer and more recrular products, and while we wo the the peparation were being made 10 open another. Near Qumbathere are many working of the grmgulho in whed the moderlying bed is also washed; but this bed has mot the wemed strmeture of that at Fion Inate, and is mued
 romatin many diamoms, as it is never waslord.

Oberration has shown that the schists most riels in diamonds are stronely ithnecrated with rexiche of irom, and that they hase a gres or hasekish eolomir. The :rwien do lion emoprises the sarehes made in the heds and on the hanks of risers. 'This mode of diamond hamiage, mome common than the of her m-thoek, is meal to seek theon when wa-heof from thoir original sitmation. As
 in more than thirty leneatition from ("idade de serron in almos all the water-

museum at Rio Janeiro a fragment of pure quartz two or three inches in diameter contains two caritics, which are both filled with small fragments of quartz and oxide of iron, which are tirmly cemented by a clavey cement; in one of the cavities a diamond is secu in the middle of the conglomerate. Wre have also been assured that uear Diamantina diamonds have been found among the stones composing the little cylindrical tubes which certain wormlike insects of the mountains on the coast construct to protect themselves.

Another remarkable fact which has not been previonsly noticed, is the discovery in the cascalho of small fragments of quartz having a form like an anvil. They have clearly been polished, and have therefore been constructed by the Indians, who used them as carrings. At Grao Mayor, M. Daniel Casimer Pinto-Coelho gare us one of these; the cascallo in which it was found had never been worked or disturbed in any way, and formed the bed of a water-course nearly dried up; it was even covered over by more than six yards of regetable mould, on which beautiful palm trees were growing. The polished quartz ormaments are accompanied by other cut objects, principally arrow-heads; bones also occar, of the nature of which we have not been able to pronounce.

These traces of human industry met with in the virgin cascalho prove it to be of comparatively recent origin, consequently also the red race must be very ancient. It is to be loped that the researches of Dr. Lund on the bones found in the neighbouring caverns wlll throw some light upon this important question.

We will point out two or three more names in common use. The cascalho of the old water-courses is called "Gupiara;" that accumulated at the heads of the rivers "Tabuleira;" lastly "Corrido," is the name given to the halfrounded pebbles found in the present rivers.

Itacolumite and metamorphic schist are, beyond doubt, the beds in which the diamond and all other precious stones with which it is found originate. Nerertheless, these gems are not necessarily met with, any more than the green toumaline of Campo Longa and the realgar of Brimenthal are secn in all the dolomites of the Alps. The diamond is found in the mountains of itacolumite of Grao Mayor, also in the numerous streams which flow therefrom; it exists equally in many other mountams of itacolumite, but it is too rare to be scarched for with advantage. Thus, in the Serra do Cipo, in the basin of the San Francisco, we have seen four diamonds which have been found in a small stream near the upper part of this Serra. On the other hand, the mountains of itacolumite do not necessarily contain diamonds, and in that of Itacolumi, which gives its name to the rock, diamonds are not found. To the present time the metamorphic and decomposed schist of San Joao or of Quinda is the only one in which the diamond has been observed; but the large tract of the gurgulho do campo shows that this schist is very extensively spread, and it ought to contain diamonds in various localities.

The following are some remarks that we liave made on the distribution and associations of the minerals which accompany the diamond.

The anatase is sometimes so pure and transparent that one is tempted to mistake it for the diamond. It is, besides, associated with the sub-oxide of iron, and with rutile as well as brookite.

The euclase is always found with the topaz, and in many places to the south of Ouro Preto it is in a kind of whitish clay, which seems a product of decomposition. There is also specular iron-ore and rutile, like that of Saint Gothard; beautiful black tourmalines, hyaline and smoky quartz. These minerals are found, too, in the barro of San Joao, so that the latter appears identical with the whitish clay met with in the working of the topaz. The euclase is much rarer than the topaz, and as they no longer search for the latter for jewellery,
it is become inponsible to procure it. At times the topaz is decomposed, and then it is hown muler the name of "ronten topaz."

The ores of tellurium are met with at Saint dozé d'Elrei, mud mear Saint Vincent, between Curo Preto and Marro Velho; moreover, there is some nat ive brimstone in a wein of quartz near Saint Inzé.

The erystalline schists of Morro Velho and of Sabarra contain fine errstals of carbunate of lime, of arragonite, of magnetic iron-pyrites, of eopper-pyrites, of manemese-ore; in those of Cemgonhas there is chromate of lead.

Arsmical prrites are obsersed in the quartz at Ouro I'reto, Morro Velho, and Antonio I'ereira.

Scorodite, pseudomoryhs of hemonite after the seorodite, and scorodite after arenical iron, are fonm in the crystallime schist, and in the "tapmboacangs" of l'asurem and Antomio Pereirat. The ancthyst forms in vens in the crystalline shist and in the gness.

The chersolite, eymophane, eseen and tramsurent tommaline eollect in the cascallo of the rivers which traverse the erystalline sehist near Kalihan.

The Americin river and the lianhy seen to be the richest; the first is no homer worked, but for twent! leagues adoner the road to Kalihao it seems to have been cone inely excavated; it is in the riser Piambe that the chrysolite is found, which is comployed in clock-making and in jew chlores. The trimsparent andaln-ite is abo bronght from one of these two rivers. Among the various minerals that are found in the eascalho of liazal, we eam mention, as does also M. Dimome, disthene, felspar, precions gamed, hydrophopphate of alumimm, phosphate of yitria, pure and titanferous, diaspore columbite, Baicrine, oxide of penter, cimuathar, and eraphite.
(iohl is everyhere fommet in the region of the diamomel-)earinge schits, and there is also phatiomm ; these metals remain upon the vatere with the wher ores that the washingesparates from the diamonds.- 'framslation of a leaper read before the Gerotorical Suedety of Burlin. Iiy MSI. Ch. Mrusser and fi. C'lare\%,

 there" was a notier of "Surray's Hanthook fore south W^{2} aldes." In the notiece of phaces of ecologic intorest appended to that hook there is an omission I should like 10 supply. I slone time cince I was residine at C'arditl', on the borders of (ilmoreanhime, and in my walks ahout the neighburbmod discovered a guary in what seemed to me to be the Uprer silurian formation. This quarry is sithated on a hill-side about two miles enst of Cardiff, at a place ealled l'en-r-lm, and from the month of the guarry there is a leantiful siew of the Jirison Thamel and the epposite eroast. "Fracing the eomese of smane hrows in the ne ghbourhowl. I fontal the came kind of roek catended for some distanere romed the sde of the hill. The equerry I fomen to be vers full of fossils. shells were

 (erels alto were in abmulthere, thengh met so much su as shells ame tribhites:

 I'haris' cambilu) Irmi, and I'hac pestoknai, and a luad and tail of ('heirurus lumandeulue.

I leve aleos ont of the some gharry a large head of Phuempsemulatus, in one

lielime ing din the nlowe wide wer the ruck in guestion to be siburian, I was

 an! at his requet sent him m! forsil, when after they had been examined hy
himself and Mrr. Salter, he determined the rock from which they came to be "par excellence" of the Wenlock age.
Thinking that some of your readers when passing through South Wales might like to risit the spot has induced me to trouble you with this note. I may also say that the bone-bed crops out in the Blue Lias between Penarth Head and Lavernock, near Cardiff. I have a slab of the bone-bed from this place, the finest 1 hare ever seen, literally full of small reptilian bones, coprolites, fish-scales and fish-teeth.
Hoping this commumication will not trespass too much on your valuable space, - Yours truly, Normar Glass, Kensingtom.

The Geology of Athlose.-Dear Sir,-In seuding you a brief account of the Geology of Athlone distriet, but more partienlarly of the Monntain Limestone formation so amply developed in this neighbourhood, I shall have to depend almost entirely upon what I heve seen, and deal only with what I have thought. In my inrestigations here I hare had but little help from books, less from men. When I came to Athlone in January, 1S59, I cane from the chalk1.ills of Hampshire, aud all the knowledge that I possessed of the Mountain-limestone and its fossils, and of the Carboniferous system generally, was derived from a casual reading of Hugh Niiller's " Old Red Sandstone," and Page's "Introductory Text Book of Geology." However, when I had settled down and begru the study of geology in earnest, I set myself rather a difficult task, to find outunassisted by books or friendly counsel - the fossil wealth of the limestone beds in this locality. I can assure you this has been to me a very pleasant occupation, and eaeh new discorery has given me an earnest of what I may expeet in other places.
In drawing your attention to the fossils of this distriet, I shall dwell more particularly upon the Mollusca of the Mountain-Limestone than upon ought else. These I have found in abundance, and specimens of almost every species and genera named by Darid Page in lis " Adranced Text-Book of Geology," as common to the Carboniferous limestone are to be found in any small eollection. Of the Brachiopoda I have several species of Productus, Terebratulu, Spirifera, and Oithis. Several speeies of Lingula and Mytilus; Euompholus and Bellerophon; together with two or three species of Orthoceras, and others that 1 am mable to name. About fifty or sisty species in all, represented by numerous specimens embraeing varieties and peculiarities, is no bad collcetion from one locality! That the Mountain Limestone formation is eminently fossiliferous there cain be no doubt, but of the several beds I shall allude to in this letter only one had yiclded me these treasures.

Within a short distance of Lough Ree, one of the principle lakes of the Shannon, but in different directions, there are three large quarries opencd, in what I am iuclined to consider are the upper, midde, and lower beds of the Carboniferous limestone. For convemience of reference I shall name them according to their several peculiarities. Beginning at the bottom they will stand thus:
I. "Eucrinital" limestone,--Kil Toom, county Roscommon.
II. "Productus" and "Spirifer" limestone,-Coorsun Point, co. Westmeath
III. "Black" fissile and "Italy" limestone,-Ballykerron, co. Westmeath.

Although these beds have but one appellation there is a wonderful difference in their composition. The "Enerinital" limestone of Kil Toom is almost wholly "made up" of jointed stems and branches-indurated by some process -of these extinet echinoderms. "These singular animals- the representatives, perhaps, of others norr equally abundant, but of different appearance-were provided with means of secreting stony portions, which, when fitted together formed a moreable stone column, thickly ringed with branches similarly produced, and terminated by a cap, made atso of stony plates fitting together, forming a stomach partly closed by a proboscis ; also defended with innumerable arms, widely extended in a complicated fringe : this mass of living stone seems
[supplement to the " geologist," No 40.
to linve served as one of the sembengers of the deep-removing and assimilating the hald decompered amimatmatto that would of herwise hawe proved injurions.
"While the l'entacrinite thas flated or waned about . . the orsters of that tine were plamting themselves at intervals; and the Terebratula and Apinifrs . . . appear to have form ample food in these seat swarming with hic."*

The stony skeletons of these Enerinites lie ahmost always parallel, erosswise to the !ines of bedding: ant the sucesseive "foresis" seen to have spread their ronts down and anong the dead and deraying masses of a hygene
 future generations lived. As in a fores of pines, where the underwod grows at will, we see many a diminntre phat spring ap only to die belore its matural t rm of existenco is complote-crushed by the grosser and more rapid debelnmenent of the underwond-so in that ancient sea the forests of towering Bacrinites would tolerate an undergrowth of smaller species ; but below these was no maturity for the miltions who beran to live, but were forced to yeld before the groiss and rapid growth of their tather meighbours. 'I heir dead remains in the riemity of the full-grown enerinies tedl a lale not to be mismderatond: they speak a laugnage to the geolugist; may be a langrage he alone is privileced to interpet.

Is the limestome ties in its natural position in the quary, you may observe eertain interseetions parallel and perpendicular to the lines of beddins. The verbiew ones tilled with calde, so regular in its "infillings." that one eould imagine that it forned a part of the stone in its oriceinal bedding: the others with a dath brownish clay, which is nothing mome than the debris of the argillaceons compenents of the stome cansed lyy comtimed dempmess. The last are the "b,ltumb" of the fuarrmen, and when the tabular masses are merned up and "xperel to the action of the weather, the strueture of the enerinital stems is ditibety wishle: a ealemeons stem, jointed with rine-like bavers about the sixteenth of an inch in thirkness. Barh of these thin hayers are marked with reys, which branch, wein-like, as they recede from the centre. I know nothing more beantiful or perfect than these line rays on some of the larger stems of the enerinite. In all earbmiferons limestome distriets they have arrested the attenten of exen the mes carcless whervers. The quarrmens and stonebreakers hate fold me that these markings have recemed mome notiee from
 (spirifies and prenturfi) so frequenty med with. Is it itrange that these shomll have attracted the notiee of the early Retions, so fomd an thes were of
 nems of landiaferne cell the hrohen stoms of the emerinite the beads of st Cowhert, and cople themowith his memony ; and sont has shown his nsual temmen in sciking the incidut for a pieture in his " Mamom."
" Pion fin in Hilda's mans would hearn If orn a rowh lay lomidureme
 Thr". mithothat hear his name. such tala had Whilhy's tillurt mid.
 Amf hair hie serit smmil.
A deaten+al alem, a homase thin form,
Atw lat and band, whon wathering storm

[^31]On the upturned blooks I have examined thousands of these jointed stems, some eight, ten, and twelve inches in length; and though I have been able to detect what appears to me to be the roots, in situ, I have never yet been fortunate enough to obtain a specimen of the beautiful "cup-like" body of Cyathocrimus, or the more ornamental Eucrimes monilifurnis. There are several kinds of sea-lilies in the Mountain-limestoue; aud they range throughout the greater part of the paleozoic and secondary ages of our world's history. Their entombed remains form a large portion of the solid-work of our globe; and palaces, castles, churches, and huge bridges are being, and have been constructed of the rocks formed of their stony skeletons. The works of man, alas ! are puny and insignificant compared with the mountain-accumulations of the Eucrinites of the ancient seas.

The Mollusea of the Kiel Coom bed differ in no respect, so far as I am acquainted with them, from the Molucca of the Mountain-limestone generally. I will not, however, speak positively on this point. Terphichlule, Spirifers, and Product io I have seen in situ; but specimens are rely difficult to get, owing to the hardness of the stone. There are other fossils besides those I have named.

Mountain Limestone, Kil Toom. The stone crops out on a level with the road. Strike north and east. Dip east. Angle about 28 degrees. Depth 50 feet.

The next quarry of any note in the vicinity of Athlone is situated at Coorsan Point, on the eastern border of Lough Rec. There are two roads leading to the quarry : one by the river, through the village of Coorsal ; the other by a, house called - from a peculiarity in the architectural design-" Weligan's folly." The geological tourist should take the latter. Between the town and the lake many interesting sections of rocks belonging to the Drift-era will be observed on either side of the road. Huge boulders of Mountain-limestone, several tons in weight, lie scattered over the plains on either hand. At one particular spot, about midway between the town and the lake, it would be no u profitable study if the tourist halted for an hour to examine the position of those boulders, how they rest upon the stratified sands and gravels, and how the atmosphere has made sad havoc with their exposed surfaces. These boulders may at one time have belonged to the Coorsan bed; but of this I should not like to speak positively.

In several of the smaller boulders I hare found Oithis resupinate, and Euomphalus perturgulata in company with Syringoporic reticulate. Now I have

 other © pused rock of Somitain-limestone finther morth.

I hase so maned the "Productus" and "Spirifer" limestomes on acenunt of the

 and ace fore me the hure rach in which the ememite is hardy a protominat ing

 fir the no shlases :me more munerons here than chewhere.* How is this? bomerem the enplosite side of the same lake, with at dipent ward, and as strike borth ad sumb the eame dip and strike remenber, of the stratum hefure

 Wheh, bitmmins, and shaly, almon dmatuce of limsils: ant, acomating to the

- 1 ,

 Q

Shall the wit of man erer dirine, or will he ever approaeh to cven a proximate ealculation: Iudeed. no! It is not br years, but by indefinite ages and eöns, that the geologist alone can speak of the progress of life in time.

Mountain Limestone, Balleykeyron. a, rolled boulder of Mountain Limestone, probably from some bed further north. b, drift boulders and clay. c, quarried stone and shales.

When I began this letter I had many a question to put, but these I must leave for the present. I have looked upon these now familiar rocks for the last time for many years to come, and I will keep mr questions to ponder orer in some netr locality. Should these " notes" induce any wandering geologist in Ireland to spend a few hours or a ferr days in Athlone, I would adrise him to go direet to the quarry at Coorsan Point, with hammer and bag, and should he use his eres as well as I have used mine, he camnot fail to find good specimens of the following fossils.
The fotlowing is a List of Fossils to be met with in Athlone. Those marked with asterisks are common; the others are more rare.

Clisoplyylhum
Amplesus corrolloides.

* Enerinites, of several species

Hemitripa Hibernica
Feuestella
Terebratula saculus

* ". hastata†
* Athyris Rossii
* ", | launeilosa |
| :--- |
| subtilita |
| ". |
| plauosulcata |
* Rhỵnchonella pugnus
* ", pleurodon

$"$,	flexistria
accuminata	

* Orthis resupinata Micheliui

Lithodomus, two species
Spirifera striatus
ellipticus [Coorsan and Kil *
Euomphalus pentangulatus
Toon] W " Dioussil
Waticopsis Philipsii
* Turritella
* Loxonena constricta

Melania constricta (?)

* Goniatites truncatus
+ And what I am inclined to regard, after what has been said by Mr . Davidson as several varieties of hastata.

The folluring are occasionally met rilh at Conrsan.

Trilubite (Girifithide.) longiceps strophomene analaga
Lucina E:qertoui

Pleurorlynchus hibermicus
minax (:')
Georee Robert Vine.
 As our knowledge of the geographical distribution of the Oolitic Eechinodermata is tery inperfect, the following list of species collected lyy medf and others in the neighbourhood of Oxford may not be maceeptable, as temding, though but in a amall de gree, in add to our stock of information on this point.

Cilluris Smithii, Wright. With the jaws preservell, in the Coralline Oolite, Bullingdon, where the spins are alon oceasionally fomme.
Cithir-is. flurigomma, Plillips. In the same quarry with the following (opposite the phay-ervound belongies to Cowley selrool), where I hare fomed the test : the spinies are profusely rommon everywhere in the Coralline ()olite:
(ithuris. Bralforthonsix, Wright; Plates and perfect spines oceur in the Islip Corilleanh
Ifmivilurris inhtimetlie, Fleming. Coralline Oolite, in several quarries on Bullingden, but rare.
Ifrmencillaris Sholessii, Wrieht. Stonesfied slate, of Stonesfield. Fomud by Mr. C. stokes and Prof. Phillips.
 momesraph.
 dom. In the same fomation at Firmodem it is much meme cemmon.
/hrmipmerlimu Wherchummens, Wright. Lower caleareous grit, Marchan. Discowised there be the Ilom. R. Marsham.

I' lime Shimithii, Forles. From the Islip Cornbrach. I have procured a single eomplete specimen from this speries, the only one known.

Stomerhinus inlermerlins, Agasciz. Two specimens have occurcel to me in the Killinetom Combrash, nue with several spines in siln.
 Onhlite, stonesfiehl, and Kirtlinerom railway-station.
 near Kiddictom; Mr. Wominicke Rerowne." I have not met wit! it mesself"

 Ion the les. I' D: Dirome.
 frespunt. Stone lie hl slate, of stonafield, according to Dr. Wright.

Clypeus Nulleri, Wright. Great Oolite of Emslow-bridge, and of the railway cutting near Stonesfield.

Pygarus Michelini, Cottean. Cornbrash, Islip; but not common.
Pygurus pentagonalis, Phillips. Coralline Oohte, Bullingdon; very rare.J. F. Whiteates, F.G.S.

Starfish in tie Deep Ocfas.-Sir,-In the article on "High and Low Life" by Mr. Roberts, the following passage oceurs: "The enormous pressure of the opposite element (water), which in the homes of these starfishes must amount to at least a ton and a half on the square ineh, is so greatly at rarianee with our belief, that we are confounded at the very outset of the inquiry." Why camot the possibility of a starfish existing under such enormons pressure be aecounted for on the same principle as the fact that our orn species exists under a pressure sufficient to erush us to death? Myself and a fellow student having discussed the point without arriving at any satisfaetory eonchesion, we shall feel greatly obliged if you will kindly enlighten us.- Iours, \&c., G. H. and J. R. B.

Os Lomer Lisis Sub-Ditrsions-A German sub-division of the Lotrer Lias is into zones named after their leading fossils. The beds lying consecutirely under the Ammonites oxynotus bect, are called by Oppel, one the "Obtusus Bed" (Ammonites olitusus), the other the "Tubereulatus Bed" (Pentacrinites tuberculatus), The beds in England said to eorrespond with these have been recently, in accordance with the German method, named in the same way, except that the latter name is rejected in farour of an ammonite, A. Turneri.

The correlation stands thus:-
$\left.\begin{array}{cc}\text { Zone of } \\ \text { Germany. } & \left.\begin{array}{c}\text { Englaud. } \\ \text { A. Orynotus. }\end{array}\right\} \text { Amm. Obtusus Bed } \\ \text { Zone of } & \text { Amm. Obtusus Bed=(A.) } \\ \text { A. Bucklandi. }\end{array}\right\}$ Pentac. Tubcrculatus Bed= $=$ Amm. Turneri Bed $=(\mathrm{B})$.

Now all this rigid zone-diriding looks well enough within doors, and I ferrently hope it may be found equally to correspond with nature's pages, remembering that a bad index to a book is worse than none at all. But that is not the subject of my present inquiry. I wish now simply to question the correctness and adriseduess of the abore partition, so far as the Lower Lias in England is eoncerned. It must be admitted that if a bed be named after a leading fossil which prevails therein, the fossil selected for a key-ward to the bed should be distinct and characteristie, else it is of feeble service for the purpose of nomenclature and classifieation of strata. To come to particulars:-If, in a bed $(A+B)$, the upper part of the bed (A) contains any number of x 's, and the lower part (B) any number of y 's; then if $x=y$, or if x differs from y by an almost inappreciable difference-it, of course, follows that for all practicable purposes $A=B$: that the berl $(A+B)$ should not be split on such evidence, but be regarded as one zone.

Such is the case with the abore beds, the "Obtusus" and the "Turneri." The above reasoning is applicable; and before the sub-division of the bed marked A. B. be accepted, let the palæontologists first settle the question of their guide-shells. It will be of service then to put the query does A. obtusus differ from A Turneri? Rather does not Amm. Turneri $=\mathrm{A}$. obtusus $=\mathrm{A}$. Smithii $=$ A. stellaris?

If the latter is the case let us reject \mathcal{A}. Turneri for a name yielding us a more distinct guidance: or call both dirisions the "A. obtusus Zone."

Pastecapt to Mlr. Powre's Letter on Cbphabanpla.-The following

 hue, only yestertay, been able to add to these alreaty noticed amother Seotish locality which promises to be moderately rich in remains of this fish; having disenceral at few imperfect heads in a puarey opened in a wooded hill a little morth of Westerton honse, near Bridge of Dhan, in Perthshire. I would not hase thomelht this dearring of notice had I not in the same place found two heats, mudorbedly of the nearly allied gemme Peraspis, being so far as 1 am aware the first specianen of his tish recornised in Seothad. I am not sutficiently aequanued with the English sperimens of this gemus to be able to say whether the two I hase found are specilically the same with any of these, wi whether they maty form an entirely new species."-J. Powres.

REVIEWS.

ond Bomer ; of, Notis for Fowng Valuralists. liy Rev. WV. S. Symonds. London: Hardwicke. lsti].

Ohd Bones amonget omr fore-fithers were of litale value indeed, but modern mounfacures and chemistry hate made them a valuable commodity. (icolngista, luo, have fomel a ralue in ohd lones beyond ant ideas of manfaedmers or domesties. From the old homes of ammats that lived in the vastly remote perionts of (erendegial History the paleontologist develops the ideal forms of beinge long sinee extinct and perished from the fare of the carth. These he menally rlonhes anew with mackes and with Ilesh, and furnishes ns from those dried and stony relies with beal accoments of the habits and matures of the bemsts amd reptilen, tinh and birds of lands and seas the ege of man merer gravil on.

We all hunw Atr. Symonds' other pupular little books. and thi will be mot
 Wre womly say that they are julicionsly soldeded, and that their rexention is
 in wirh the illustrations vartly hate any pretemsions to truhful or artistic merit.

The thethen? wildely Inurnal of Simer Eitited by the Rev. S. Haughton, M. I. F゙.K.s. Duhlin: Mrfilashan and Gill. I 4 fil.

Alitomeh our space th is month is ervatly reatricted, and we are still fobligend

 doubthes will be attaimed under the able direstion of I'rofessor Mianghton.

THE GEOLOGIST.

MAY, 1861.

A LECTURE ON "COAL."

By J. W. Salter, F.G.S.

(Continued from page 131.)
There is less to be said about the animals found fossil in the coal than about the plants. And for this reason, that the vegetables formed the coal ; the shells and crustaceous creatures, and fish, and reptiles, were but visitors : or if they lived upon the spot, bore no larger proportion to the stately jungle that sheltered them, than the denizens of our own forests now-a-days do to the trees and undergrowth which give them food and habitation.

Still, animals are far from rare; and the common ones are chiefly bicalve shells and worms. The truly land animals are but ferr. A rare insect or two has been fonnd in our own country, Dr. Mantell discovered the wing of a fly not unlike the dragon-fly, and supposed to belong to the American genus Corydalis. This insect is figured in Sir R. I. Murchison's Siluria,* and is now in the British Museum. And one or two beetles, or rather what have been supposed to be beetles, have been found in Coalbrooke Dale. Cockroaches and crickets have left their wings in tolerable plenty in the coal-shales of Saxony. \dagger No doubt they were welcome there amid the coal-solitudes, and put a little life into them. They are far from welcome now. I recommend all who may live in the neighbourhood of the coals to give a little time to hunting for the relics of these old

> * 2nd Ed. 1859 , p. 321.
> + See Dunker and Ton Meyer, Palæontographica, rol. iv
rol. IV.
insects, ife. They will probably be rewarded by finding some wingcases of Orthopterons tribes, and it will be their first discovery in Britain.

Arachuida (that is, spiders and seorpions) were probably not mare in the enal-periond. A fossil scorpion was fornd at Prague: and mules. I an very much mistaken, I have seen relics of more than one large spider from ('oalbrooke Dale, in Shropshire

In those celebmated trees described hy Professor Dawson and Sir Chanles Lycel.* and which were foum in the sambstone of Nora Scotia, millepedes (Ayluhius), or at all events some members of the myriapod group, were found. They were associated, in the same hollow stmups, with unmerous small litnd-snails. These were somewhat like the little Prpa, or chrysatis shail, so common on moss-grown
 trees, in the deep woods of Old Eingland. But I shall never believe that eonalforests were like the wools of onr own times. fur reasons whels will immediately appar.

One word, thongh, abont the other land amimals fomend in these trees, for Prof. Dawson in his last commmication
Fies 1.- to the Geologieal Society, \dagger makes it extremely probable that Prepuctuadie. there were land lizands to feed on and restrain this insect-life within due bomeds. They may have been amphibioms lizards-the larger species (Iemerorputen - Aectientme), found in the comalmeanmes. certainly was an - yet the nature of the teeth of another (the I!ylmumus), and its scaly armons, look too mola like those of living land lizands, to allow mes rendily to helieve that it too was a Batrachian reptile, modified for and adapted to this sort of life. We must wait for more complete information.

Aud now, with all these proofs that the creatures of the land lived and died in the chld coal-forests, why should we refuse to believe that these grew upon dry land?
'That dry land was not far ofl', I must, of eourse, admit. The maddy seliment ind sand that form the mass of the cond-measnres were derived from land ; and minst have been formed, as sand and and are now formed, by the washing away of rock and carth-the daily action of the tides and rivers.

Bat the question is, whether the plants grew on the lamel, and were then submerget; or whether they grow in the water, and so were mixerl with the "spuils of amimals, savage and tance" that lived in the water.

The ermmonest fos-il in the conal mensures-the one which juer frrellom, is "the coal fossil" - is the Influmensim, or Unio, as it used to be called.

This is a livalue shell with clasell valres, looking not at all mulike the common ' 'nios of our streams, but never stowing any of those peentiar wrinkles alont the beak, which living Conies ahways exhibit.

* Quart. Jonrn. Cimol. Socinty, wh. ix., p. 58.
\dagger Ibill, vul. xri, 1. 275.

The hinge, when the valves are opened-they are rarely so-does not present the usual teeth of Unio; but the binding ligament of the hinge has nearly the same position. Morcover, the Unio shell hasbesides the scars left by the two great muscles which close the shell -a smaller scar (or even two) next to the front muscles; and this is absent in the fossil. Professor King, of Galway, a close observer of the insides of " auld warld" shells, established this fact, and distinguished the fossil from Unio by means of it. He called the coal-shell Anthrecosia, a very appropriate and even classical name. I heartily wish all palæontological names were so!

Fig. 2.--Anthracosia (Unio) acuta, Sowerby.

Fig. 3.-A. ovalis, Martin,

And I find, on carefully looking over a number of specimens, that every now and then one shows the whole surface of the shell wrinkled, not the beak merely, but the broad surface of the shell itselt. This also is a character not found in the true Unio ; but is common to all the mud-burrowing tribes of the myadæ or "gapers;" and to this tribe I would refer the shells in question.

The more so, as another shell often accompanies the Anthracosia, which clearly belongs to some family of mud-burrowing shells. It has the surface strongly wrinkled; and

Fig. 4.-Mya tmencata, with its rough tube (Woodward).
Fig. 5.-Anthracomya senex, with its tube and foot restored. these wrinkles are of such a shape as to indicate the existence of a rough strong envelope to the tubes of the mantle, like those of the Mya. Here is a sketch of the living Mrya or "gaper," as it stands head downwards in its muddy home; and side by side with it is the shell I have referred to, called by me Anthracomya. These really are the principal shells throughout the greater part of the coal-measures. And, so far as we know, all such shells must have lived in salt-water,--though I am bound to say that an eminent man who has lately written on the shells of the coal of Germany, considers that some of them are like the freshwater muscle Dreissena. I do not beliere
it, hat I heliere he thinks so, and it is a very excellent suggestionfor the shape is very like.*

But in the lower part of the coal-formation, and in one or two beds also in the upper portions, there are none bat truly sea-shells. It would take long to enumerate them; but I need only mention one or two familiar names. Acicula, or rather a shell between Avicula

Fig. B.-Aciculopecten papyraceus, Sow.

Fig. 7.-Guniatiten Listeri, Sow.

Fig. \%-Productus semircticulatus, Martin.
(the pearl nyster), and Pioten (the scallop), and therefore called
 to the natilus. The namilus itself is common enough. Niucula, a true sea-shell, is with them: and, to nane no more, the Promluctus (fig. :3), which is fimmed everywhere in the momtan limestone, must hare been chposited in sea-water-and ilecep sea, teno-for it is fonnd with momaln and tish, sea-fans and sea-lilies; and belongs to a group of shells which never ynits the open sea.

Perhapis we need not dwell upon the shells any more; suffice it that those uf the lextom of the coal-measures are all marine, and those of the top parts are not much like freshwater ones, and from the company they keep, were probably marine too.

* This anthor, Ratolph Lutwig (Dunker and Moyer"s Jalanntographien, wol. 8, pl. iv., v. ; und wol. 10,11 . Ixxi., Ixxii.), in his papers on the "Naiaders of the

 the little shell which goes mater this wame is the sipirorbis, mentioned furthor on.

For with these shells, and attached to the plants that lie among, and above, and beneath the shell-beds, is found abundantly a little sea-worm, or rather the spiral case of a sea-worm

Fig. 8.-Spirorbis carbonarius. (Spirorbis, fig. 4), which is as well known now upon sea-wrack and kelp, as it was upon floating leares and plant-stems in the coal-period. It is called Sp. carbonarius from its habitation in the coal.
And there were sea-crabs-not, it is true, like English ones-but like the king-crab (Limulus) of American waters. And shrimps though rare, were not quite absent. And sharks swam in the water; for we find their teeth and fin-bones. And other strange uncouth fish, more like the bony pike of America than aught else. This is a freshwater fish, and tells rather against my opinion; but all I can say is, that if the coal-fishes were not saltwater fishes, they had no business among saltwater shells and crustacea, and they must take the consequences.

But how reconcile saltwater and its inhabitants with lofty trees, and a thick jungle, and delicate ferns; and colonies of insects, and spiders, and scorpions, and lizards?

No doubt this is a difficulty. Most authors who have written on the coal have taken it for granted that it must have been formed in mighty swamps at the mouths of rivers, with only frequent access of the sea; with much dry land in the neighbourhood to supply the ferns and firwood, and permit the growth of a thick underwood such as certainly must have formed the coal.

But others, and amongst these I must name Prof. Henry Rogers of America, and our owu Mr. Binney chief*, have not shrunk from the supposition that the Sigillaria grew on the sea-bed itself.
"Only one particular process," says Prof. Rogers, " promises to explain the occurrence of these thin and uniform sheets of material, of which the thickness is often less than a foot, while their superficial area is many hundred square miles. I cannot conceive any state of the surface but that in which the margin of the sea was occupied by vast marine savannuts of some peat-forming plant, growing half-immersed on a horizontal plane, fringed and interspersed with forests of trees, shedding their leaves upon the marsh. Such are the ouly circumstances under which I can imagine these regularly parallel, thin, widely-extended sheets of carbonaceous matter could have been accumulated."

The smooth surface of the underclay formed a fit nidus for the young plants, and as the deposit went on, they struck their roots far and wide into it, and grew to their full stature. These trees formed the bulk of the coal-forest. The interstices were filled with the reedy plants, Asterophyllites, Calamites, and sedges, with many a Lepidodendron and coniferous tree; and as the decaying leares and

[^32]hranches fell off in myriads, with firuits, and catkins, and seeds, they formed a matted mass in the sluggish water.

On the stmmps of the decaying trees the ferns wonld grow, and I have seen markings on a Sigilluriu which induce me to believe this was really the case; and the hollow trees would form a safe retreat for such wingless insects, smails, or lizards, as the forest possessed.

Lest this should be thought a wholly amomalous state of things, we have, as an instance, the mangrove swamps of tropical countries, where, in the saltwater lagnons, whole forests of trees grow, among whose roots fish and crustacea find protection, and sea-shells are abumlant. A species of oyster is commonly attached to the stems and the submerged branches. And if the l'niu, of the coal must be regarded as an Unio, there are even kinds of this genus which live in these putrid swamps.

For it mnst not be supposed that the trees grew in an open sea. Shallew 1 racts, slint ont from the main ocean by spits of sand and sandbanks, and scarcely, if at all, subject to tides, are the state of things that prevail in many a lagoon now; and in all probability such was the case in the coal epoch. In such loealities it might be expeeted that we shonk find creatures admimably adapted to their habitation, but unlike the ordinary denizens of sea or lake. The quantity of decaying vegetation wond give a black colour to the mud, and coal shales are very black indeed: oceasional currents wonld bring sand from seaward, and sandstones are common things in the coal-formation. If the ocean got free entry for a while, we shombl have colonies of true sea animals (the Comintites and Ariculn. before mentioned), and such do (every mow and then ocen. But the ordinary inhabitants of these delichitfin mudly ereeks, half smothered in a thick forest of water-loving plants, wonld be the shells and crustacea suitel to the locality, i. c., the Anthreconsin or I^{\prime} nin and the Limulus. ('rowds of minute water-lleas (f'ypmis and Cythere), sheh as live in stagnant waters now, are fond in the coal-mensures. Thousands of worms, of all sizes, burrowed in the silt, and revelled in the ferast of fat things that were putrifying there.

1 believe this pieture gives the true aspect of the dank and luxuriant regetation, flombishing in a sullen steaming atmonphere heary with miasmatons vapours; uncheered by the song of hirds, searecly musioal with the hum of insects, and viried by no dowers, no trees yichlding fruit, whose seed was in itself! Such a hathitation was unt fit fior man- not even for the quadrupeds he delights to call his own. It was the grount-phan and first outline omly of a pieture, to be filled up during suceceding geologic times, and expuisitely finished before man was placed upon the earth.

What effect monst all this mass of vegetation hare produced on the surrounding air and water? Plants, we know, are chicfly formed of carton, takem into their substance from the nir and water, under the form of carbonic acid. They have the power of secreting the carbon from it, and they set free the oxygen for the use of amimals. So that an atmosphere in a confined spot is actually purer-more
oxygen, less carbonic acid-after a plant has grown in it than before. True, they give out carbonic acid at night, but not so much as they take in. All the plant (except water) is so much gained from this carbonic acid. Hence, the air is purified by plants.

Now coal being of regetable origin, it is calculated that for every pound of coal, all this carbon, and at least two pounds of water have disappeared from the atmosphere. And if we consider the millions upon millions of tons, fixed in solid black masses in the crust of the earth, we must see that we are living in an atmosphere far purer, and more fit for the respiration of the higher animals, than it could have been without the aid of coal.

- It may have been, as the sagacious De la Beche observed, that this enormous supply of carbonic acid was due to the ejections from mauy volcanic mouths, which we know breathed forth their fiery exhalations in coal times. It is also true, as Sir C. Lyell has said, that these gases so readily mix with the atmosphere, that little appreciable difference would be made by any quantity of volcauic action. But look at the subject in any light we may, there was the carbonic acid in the air, and there it now is, for our benefit, in the earth.

This rank vegetable produce, then, of quick growth and soft tissue -constantly wet, fermenting as soon as covered up-its heat kept in by a blanket of wet sand or clay, with pressure for ages, gives us all the conditions necessary for the production of lignite, brown coal, jet, and pit-coal ; and when volcanic heat had driven away its gaseous parts, and left the carbon pure-even anthracite.

As this month's communication has extended to an unreasonable length, I will not now euter into the question of the different qualities of coal, or its uses, but defer what little I have to say on those subjects till next month.

SOME REMARKS ON MR. DARWIN'S THEORY.

By Frederick Wollaston Hutton, F.G.S.

> (Continued from page 136).

But there are other causes that have tended to modify animals; such as habit, use or disuse of any particular organ, food, climate, \&c., and these together with the fact that a variation which appears in the parent, at any period of its existence, tends to re-appear in the offspring at the same period, will enable us to account for the metamorphoses of insects, the differeaces of colour in the young and the adult, the horns of sheep and cattle, \&c. If to these we add that of "sexual selection,"* we can sce why sexes differ in organs and pro-

[^33]perties. In fact most of the faets in matural history can be explained by this theory: but there are a few which at present camot, such as the colours of certain larva, which are asexnal. Eren these may perhaps be the effects of the mysterious and monnown haws of correLation of growth and sympathy between different parts:

We must remember that the theory of natural selection is subordiuate to, and totally distinet from, that of the transmutation of species; and that if the former should be fom wanting it would not eflect the latter in the least degree.

The third great argument urged against the theory of transmulation of species is the geological one; and may he divided into two heads.

1. The almost entire absence* of the remains of the numerous conneeting links that must hare existed.
2. The sudden appearance of groups of allied species, particularly in the lowest known fossiliferous formations.
The answer to the first is that the geological record is extrumely imperfect. There are reasons for thinking that most sedimentary strata have been formed during subsidence. Besides the ditficulty of aecounting for the very thick ones in any other way, we must remember that during subsidence a newly-formed deposit has the advantage of remaining quiet until it has had time either to harden or to be covered up. When land is rising, on the contrary, the looso deposits will be continually washed further and further away from it until a period of rest or subsidence frives them time to consolidate; hut while subsidence is going on the land and the inhabitable part of the sea will be lecreasing, eonserpuently there will be much extinction and litto rariation. When land is heing elevated the contrary will olitain, therefore, most of the intermeliate varieties will not be preserved.

Most sandstmes and clays have been acemmlated near land; for the finest mud or sand mnst sink before it can travel very far. liven in the exceptional ease of the month of a great river, sediment has never heen detected more than thee hundred miles from the land. If rolled along the bottom by a current it would be stopped by the first valley it came across, which womld act as a puritier to the enrent in the same way that a lake ines to a river. Limestones may certainly be formed at any depth; but we have pronfs in the organic remains of whicla they are gemerally full that must of them were deposited in mot very deep water : and althongh some, like chalk, may be forming in the mislde of the recean. yed I hink that the purity of deep water in most placess as proved by its blue colour, tis a sufficient, gharantere that mon deposition is going on : and that this is true is

[^34]proved by the small horizontal extent of the various deposits which make up a formation, and which generally extend further in proportion to the fineness of the sediment of which they are composed. I think, therefore, that even taking into consideration submarine volcanos, we may safely conclude that no deposition is going on now over at least one-fifth of the area of the ocean.
In the present state of the globe about one-fourth of its surface is land : if we add to this one-fifth of the ocean we have two-fifths of the surface of the globe on which no deposition is taking place; and when we think that deposition could never have been universal, but that there must always have been large areas of denndation, we may feel sure that this is not very far from the truth. We may therefore conclude that the periods of repose in any one area are to the periods of cleposition in about the ratio of two to three.

We now know that the deep sea is inhabited; and if we suppose that on equal areas the average number of the inhabitants of the shallow sea are to those of the deep sea as eight to one, and to the inhabitants of the land as one to three and a half-both suppositions may, I think, be safely made-we find that the number of the inhabitants of the areas of repose are to the number of the inhabitants of the areas of deposition as three is to two. It therefore follows that at least one-half of the amimals and plants live in places where their remains can ouly be very rarely preserved. And this calculation will apply also to the ancient world ; for if the present ratio of land to water, viz. one-third, should not be the average we should still arrive at very nearly the same conclusion; for if it should be greater, it is evident that the ratio of the inhabitants of the areas of repose to those of the areas of deposition would be increased ; if, on the contrary at should be less, the land would be more divided into islands, with of course a larger coast line and larger areas of shallow sea; but the supply of sediment from the land would also be reduced and many parts of the shallow sea, which if near a continent would be areas of deposition, will near an island be areas of repose, while at the same time they will be, perhaps, more thickly inhabited.

But eren where deposition is taking place, the burying of organic remains in all deposits but limestone is perhaps the exception, and not the rule. For if the deposition is rapid regetable life, and consequently animal life, cannot flourish. If on the contrary it is slow, all bodies must lie for a long time uncovered on the bed of the sea, while there all the soft parts will either be eaten or decay, and the rest, subjected to the action of the tides or currents, which are generally found where deposition is going on, will often be broken, worn down, and destroyed.

From these considerations we must infer that the number of organic remains imbedded bears but a small propoztion to those that have lived. But even after having been safely imbedded, the chances are much against a fossil ever finding its way into the cabinet of a collector. If buried in sand it is almost sure to be destrojed by the percolation of water, and all trace of it removed; and in any case it YOL. IV.
has to stam its chance of hemerg olbiterated by heat, or washed awity by water.

Is all sedimentary strata are deposited from water, it follows that for every enbie yard deposited a cublic yard must be demaled from some other pulace and as the sedimentary rocks are much more common at the surface, and generally sufter than the igneoms ones, the burden of supplying the sediment falls chietly on them. We may therefore feel sure that during dny one period nearly as many fossilifirons strata are obliterated as are formed. In fact the power of demulation is so great, that Mr. Darwin and many other geologists think that only deposits formed during periods of subsidence are thick enonerh to resist its force, so that many species, and even genera, that hau but a limited ramge may have been swept away, and all record of their existenee destroyed.

This denndation added to the periorls of repose will make tho intervals between strata represent collectively far more time than tho stmata themselves, and we have many pronfes that this is trme in tho numerons foreign strata that are intermediate in age to some of ours, in unconformability of stratification.* and in the abrupt change in the orqanic remains of conseentive formations.

Three-fourths of the globe are cowered with water, therefore threefourthe of the shata that remain are hidelen from as; and the other fourth has to be divided among all the formations that have as yet been recogrased, for we can but examine the surface. Of the fonth that is acecessible, mot more than a difth has heen geolngically explored ; \dagger and that omly where sections. happen to exist. We must also remember that large traces of conntry, shown as Silurian, Devonian, \&e., on our maps, we covered so deeply with drift and alluvimu that they never have been, and perhaps never will be examined.

For all these reasons the geologieal record mimst be very imperfeet, and when we examine it we find such to be the ease ; for we have no reason to smpose that the erfole was less thickly inhabited in old times than now: on the contrary, when we find fossils at all they are generally in great abumdanee; yet the momber in any one formation is almost as mothing compared to the mmber of living ammals and plants.

Mr. Wirwin has justly observed "o that in orter to get a perfeet gradation between two forms in the upper and lower parts of the same fomation the deposit must have gone on acommlating for a vay lone periol, in orter to have gisen time for the slow process of variation, home the deposit will grompally have to he a very thick one; and the species undergones modifieation will have had to live on the same area thronghout this time. But we have

[^35]seen that a thick fossiliferous formation can only be accumulated during a period of subsidence; and to keep the depth approximately the same, which is necessary in order to enable the same species to live on the same space, the supply of sediment must nearly have counterbalanced the amount of snbsidence. But this same movement of subsidence will often tend to sink the area whence the sediment is derired, and thus diminish the sapply whilst the downward movement continues. In fact, this nearly balancing between the supply of sediment and the amount of subsidence is probably a rare contingency; for it has been observed by more than one palxontologist that very thick deposits are usnally barren of organic remains, except near their upper or lower limits"*

We cannot, therefore, ever expect to fill up the gaps between different species and genera; still, in point of fact, there is nothing like "an entire absence of intermediate forms." All the fossils yet found are intermediate; and more than this, the older a form is the more it usually differs from living forms, and the more general is its structure. Trilobites, for instance, are more like the larve of living crustaceans than like the crinstaceans themselves. "Owen has shown that the more generalized structure is, in a very significant degree, a characteristic of many extinct, as compared with recent, animals;" \dagger and Mr. Woodward remarks "that the last developed groups are the most typical or characteristic of their class.' \ddagger

Next, with regard to the second part of the geological argument, I think that, remembering the imperfection of the geological record, it is very rash to affirm that " because certain genera or families are not fond beneath a certain stage, therefore they did not exist before that stage," an argument that is being disproved almost every month. The progenitors of these genera may have lived long before, during the intervals that exist beiween the different strata, and were most likely developed during a period of elevation, and consequently when no record was kept of the event; but when the land became stationary and the conditions of life more fixed they would multiply rapidiy, without much change, and spread far and wide: when a period of subsidence came their remains would be buried, perhaps in large quantities throughont the whole of the area over which they had spread. Mr. Darwin has also remarked "that it might require a long succession of ages to adapt an organism to some new and pecnliar line of life, for instance to fly throngh the air; but when this had been effected, and a few species had thus acquired a great advantage over other organisms, a comparatively short time would be necessary to produce many divergent forms, which wonld be able to spread rapidly and widely throughout the world."§

It was shown long ago that different fossils came from different formations; and now, acting on this, if forms differ ever so little, or

[^36]cren if ther are positively ilentical, so long as they come from different firmations they are clased ly some palarontologists as separate sprecies.

Migration too, must have played a very important part in the sthen uppearauce of speciecs. And with regard to the first nppearsnee of life. if wen any of the remains of the oldest fossiliterous fommation should still exist in that quartur of the globe which we can alone examine, it seems to me, whan 1 think of the very small extent of comber that has been geologically explored. extremely manh to infer that we have already formen them.

When we take all these things into consideration we cam, I think, rasily accome for groups of speceics coming apparently inter the world at once; and lat owing to the extreme imperfection of the geolugical record. we camot iver expect to timet atl or most of the comnecting links betweon species, or even feel surprised at their being ahanent. I therefore see no reason for disbelieving the theny on genlugieal groume: on the contrary: as we find that ath the fussils yut bronerht to light are intermediate to living forms, they seem to iny mind strong ingments in its favomr.

I have, then, taken for granted that species rarro and have shown that mot only has mo limit beem put as yet to hat variation, hat that the wright of the evidence is in farour of its extemsion.

I hase taken for granted that matural relection is a "rema camea," and have. 1 think. show that it is suflicionty powernh to produce the ereatest differn nees that exist among organie firms.

I have shown that there is no real gromed for disent. because we have not yet fond the mising connecting links, or hecense groups of species appear suldenly; but that on the contrary the geological argumem is in its farome.

Therefore when we see that we can explain. hy the transmutation of one species into another, mealy all the facts in the sefonce of binheres, we are I think, entithed to look nown it as a very probable hypothesis-more probable than any other ? c hrough forward-and one that, by the clar and eompernenisive views it give of orgmic life, will lead tor great discoveries. I do not winh on go finther. I do not wish any one to "mistake the seatiold for the pile." I know that it rests at present oin presumptioc. widence alone, and that there are many "dilemma" to he orreome before it can be acerpted as true; Lome, in the werk of sir doln Howelnel. "are we to he de terred from framing lypmothee and con-t met ing theoriss. herance we meet with
 "udoubtedly not."
This is the my=1, ry
Of this womderful li, tory,

[^37]
DISTRIBUTION OF CEPHALASPIS AND PTERASPIS.

(Geol. rol. IV', p. 10.2 ; Ibid., p. 140)

Sir,--Before I trouble you with a few remarks in elucidation of the apparent difference between the views of Mr. Lightbody and my own, permit me to express the pleasure I feel at seeing his name so prominently in your columns. No man has studied with such untiring: zeal the range and sequence of those interesting deposits which make up the Ludlow promontory; and I am glad to find that my own investigations, carried on independently of his, and at a distance from the field of work, have provoked so slight a bill of exceptions, and a few interesting notes, which I am sure every reader of "The Geologist" would be glad to see continued.

The head and front of my offending, as I learn it from my friend's comments is this:-I have called the "Passage-beds" Lower Tilestones; and out of this some confusion has arisen in minds which associate the word "tilestones," upper or lower, with those originally so-called, but known by Sir Roderick Murchison now as the Downton-beds. To make the position of Mr. Lightbody and myself quite clear to your readers, I will refer them to my section on p. 104. They will see that abore the "Downton Sandstones" lies a zone which I have called "Lower Tilestones," and which is marked out by the number and rariety of its fish-fossils. These beds are the "Passage-sluales" of Murchison, which have been so industrionsly worked in their exposures in the Ludlow district (the chicf of which are in the railway cutting near the station, and at the Tin Mill, about a mile distant) by my valued friend, Lightbody.

But now followeth my reason for not, in my humble sketch of ancient ichthyic life, retaining a name which has such high sanction. I rejected the term because it appeared to me to have less value as a designation for a special zone of deposit than the one I employed. The horizon of a "Passage-bed" must necessarily, from the character of the powers employed to deposit it, be a shifting one. True, that no name or term of designation we can apply to any rock, or zone of deposit, will be cosmopolitan in its value ; but "Passage-beds" so called, have nore troublesome equivalents than deposits nearer to the centre of a system, and in any endearour to sketch out the range of life-remains, the term seemed to me peculiarly inappropriate. Upon this view of the case, I included all the beds beneath the "Upper Tilestones" of Trimpley-and as I still think of the Downton Hall drise quarry-under one name, as Lower Tilestones, representing them as resting upon the Downton series of sandy and "tiley" rocks. One good characteristic of the "Upper Tilestones" is their possession of an intercalated plant-bed, with good evidences of terrestrial regetation. This, it must be remembered, is quite a distinct thing from the Downton plant-bed, which contains the earliest land-plants. The
"wutral grouml hetween the Downton and the (U'per) Tilestones" would have been clearly moderstood, had I introduced the bracketed worl.

As regards the littoral evidence given by star-fishes, it cortanly is not so stronge as it wats prior to the discorery of ecreain forms in the deep-sea : lme the whole facies of the liferemans trom the Lower Lutlow. beds is imblicative of a shallow seazone. The Plertyotus with its great succoulent horly, whose remains are met with above and below the Starfish-bed. conld not have heen a deep-sea creature: and other, but smaller, shimp-like forms are met with associated with Bryozans, and what appear to me to be tran linci.

Thene are matters of much interest : and I am pleased to find that the torel of searel 1 have kimelled in the pages of "The Gentogist," to oxplore the dim haunts ol C'oplalatspis, and lis kinsman Itemanis, is not likely to be soon put out. Chicily will it be kept alight ly contributions from men, like my friend Lighthorly, who are familar alike with the creathmes themselves and the far-ofl kingerlons they inhabited.-I am, Air, yours very truly, George li. Lonerts.

ON N゙EW HRACHIOPODA, ANW ON THE WENELOMMENT

(Cenlinued from rol. iii., paye 45.)
In ardition on the Prachopodat motied in this japer, 1 am possessedt of varions minute specimolns, which difler frem any despribed speries. sumb of these may he the yomge of Branhiopenta that recerne in the beals in which they are fommed lut motil their passages
 to fierue or deseribe them. 'Tlore examples of' wrll matred and [ersistent forms are prosisimally named :and given below.

$$
\text { Spirition mícimn. Nowse. Pl, ii., figs. l!, } 20 \text {. }
$$

Shell microsenpie, offen whe sided on mas mametrical, slightly

 somes spemimens the shell prose ma : maformly flatloned surface, Whist in the majority the onter surface of the -maller value possesses mosial folds, ant in the larger valo at (antral simes.
 Alfhemgh motermb eharactera have oet been notied. there serms
 perfectly distitet from a little shell fomme with it, desoribed by me in the Fomersch-hire Jrocecdings for 1ait. We lave thus evidence of
the presence of two species of this genus in oolitie strata, althongh in both instances they have become very degenerate in size. No larger specimens of the genus have yet been found in the same beds to which these diminutive shells can be referred.

$$
\text { Terebratula (?) minuta. Moore. Pl. ii., figs. 21, } 22 .
$$

Shell very small, smooth, inequivalve, longitudinally oval, with large triangular deltidium; valves equally convex; hinge-line straight. The dorsal valre is usually square, and its inner side possesses a broad flattened septum, nearly the length of the shell, and dividing it into two equal portions.

Obs.-I have been unable to determine the form of the loop of this shell ; and until this has been seen it will be doubtful whether it be a true Terebratula. Should it be such, it will be the smallest known species with which we are acquainted. It is from the coralline bed of Hampton Cliffs, Bath. It differs entirely from any other Terebratula found in the Great Oolite ; and although so small, appears to present the characters of an adult shell.

Rhynchonella (?) coronata. Moore. Pl. ii., figs. 23-25.

Shell small, smooth, rounded ; ventral valse rather convex ; dorsal more flattened, and with a slight sinus ; beak produced, with a large triangular deltidium, bordered by a narrow area, from which spring two raised lateral ear-like processes, which again fold over upon the area. Under the abore the valve possesses strongly marked hingeteeth.

The shell is from the Upper Lias of Ilminster, whence I have nine examples. The lateral ear-like expansions give to it a very peculiar appearance. With some little doubt it is referred to Rhynchonella, though the shell-structure appears to agree most with that genus.

In addition to the foregoing new species, the observations recorded in this paper show that the vertical range of other previously known Brachiopoda has been extended beyond the zones to which they were supposed to be confined. My friend Mr. Davidson, to whose kind hints I have always been indebted in my study of the Brachiopoda, has shown the continuity of some species in the Carboniferous and Permian eras; a fact which has since been more fully noticed by Mr. J. W. Kirby, in the Quarterly Journal of the Geological Society for November last, and in the same number may be found the interesting conclusions arrived at by Messrs. Jones and Parker bearing on this point, and having reference to the extraordinary range of some of the Foraminifera.

The range of specific forms is a question to which the attention of palæontologists should be especially directed.

The fullowing table gives a list of new genera and speeies I hare within a few years leem snceessfal in adding to British Brachiopoda, all of wheh are liom the secondary beds of somersetshire, exeept the The cidrum ornutum and T '. p'y!nueum, which are from Wiltshire.

TABULAR TIEW OF ADDITIOXS TO BRITISH SECONDARY BRACIIIOPOD. DISCOYEREO BY THE AUTHOR, WITH THEIR STRATIGR.A. PIIIC.AL DISTRIBUTION.

TABULAR TIEIV OF ADDITIONS TO BRITISH SECONDARY BRACHIOPODA DISCOVERED BY THE AUTHOR, WITH THEIR STRATIGRA. PHICAL DISTRIBUTION, (Continuer.)

EXPLANATION OF PLATE II.

Fig. 1. Thecideum ornatum, Moore. Exterior of perfect shell enlarged.
2. -. Interior of rentral valve, showing raised oval processes and septum.
3. --. Interior of small ralve, much enlarged, showing the serrated septum and the delicate loop for the support of the branchial membrane.
Fig. 4. Thecideum pygineum, Moore. Perfect shell mach enlarged.
5.

6. - Interior of dorsal valve, ditto.
7. - - Profile of perfect shell.
8. Crania canalis, Moore. Exterior of upper valve somewhat enlarged.
9. - -. Young shell before possessing spinose expansions.
10. -. Enlarged restoration of interior of ralre, showing the muscular impressions and the grooved form of the spines.
1I. Crania Saundersii, Moore. Exterior of shell.
12. -. Interior of valve, giving the position and form of the muscular impressions.
13. Crania Ponsortii (?), Eug. Deslongehamps. Exterior of valve.

I1. - Interior of ditto.
15. Discina Dundriensis, Moore. Enlarged exterior of shell.
16. - orbicularis, Moore. Exterior of valve enlarged.
17. - - Interior of ditto.
18. _ Block, with specimens of natural size.

YOL. IV.

$\because 4$ ．－Bxterine of the ventral valve．

20．—————uterior of dorsal valve．

$\because 1$ ．——— Interior，showing vent mal angect．
25. Exteriur of ventral valve．

ドOREICNCORRESPONDEN゙ぜ．

Lumari rlulions af Euthupathes．
M．A．Pardey，in a papere read bofore the Frenel Aeademy on the lixe pueney of eathumakes during the latter half of the lsth century－relat－ tively to the age of the moon，and of the frequeney of the phenomenom at the time of the monn crossing the merictian－furnishes a series of faets worthy of the highest considnation．Referming to his previons lahours on this sulyeet，he proints ont that，in the present prper，in contradi：－ thetion to his formere methot，if an earthynake has taken place on the same lunar day，in lifterent parts of the earh withont the intermediate district lexing ulleoted，that day is entored as many times as enth－ ynaken hate taken place．In this way he has fommel that from Ehol
 five days．with a marked prepomberamee at the sy\％gries．

If the mean lanation of eng ais days be divided into eight erpat parts the earthruakes will not be fommel to distribute themselves equally．hut will show a preponderence at the hesiminge，the middle， and the end－the emver representing which will take a wave－like form，with two maxima and fwo minima．

Eniting the mmbers of the first and last cierhethe of the lamar month，the smm will express the monthly ferpueney at the new monn； the eceond and third eombined wive the frequency during the first grarter：the fometh and fifth at the finll mome while the sixth and seventh show the freyumey at the last puatere．

Agan mombining the realts for the two sy\％gins and the two

$$
\begin{aligned}
& \text { At the symgies } \\
& \text { At the (inadrature ..8.8. } \\
& \text { Differener in fivom of syzygies............... 147. } 36
\end{aligned}
$$

Shocks of Earthruakes．

Afler some further referenecs to his preeding memoirs，M．Perrey

 we have arrizal at from onf researehes of 185 ？is now proved to be
applicable to a whole century. But this law, true for a century and a laalf century, will it holk good for a quarter, or say a tenth, of a century?
"I have divided the latter half of the eighteenth century irto two portions of twenty-five years each; and calculations similar to the above have led to similar results: so also for ten-yearly periods. I lave also divided it into ten periods of five years: the numbers mot being great in this case, the irregular and perturbating canses it might be easily imagined would regain their sway, and mask the differential action of a continnous influence. Nevertheless, in eight of these ten periods the preponderence is with the syzygies.

These results, however, of which the concordance is very striking and demonstrative of an influence connected with the movement of the moon in its orbit, are not the only ones to be mentioned. M. Perrey has fonnd that the numbers of times the days of perigee and apogee with the tro days preceeding and following have been marked by shocks of earthquake, are as follows :-

> Days of shock.
> Apogee .. 465
> Excess at perigee 60
> Or, counting only the day before and after:-
> Perigee .. 313
> Apogee .. 278
> Excess at perigee 35
M. Perrey concludes by referring to journals kept at Monteleone, Messina, Calanzaro, and Scilla, at which places in every instance, the shocks felt with the moon on the meridian exceed those felt at other times.

This paper was followed by one by M. Gentili, "On the cause assigned to Earthquakes, founded on obserrations made at different times at the summit of the Soufrière, a volcanic mountain in Guadaloup."

Capillary Infiltration of Water in Rock-strata.

This journal was the first to call attention in this country to the important researehes of M. Danbreé on the metamorphism and chemical conditions of roeks.

Another contribution to our science, under the title of "Experiments on the possibility of a capillary infiltration through porous materials, in spite of a strong counter-pressure of rapour," has been recently presented to the Académie des Sciences, by this eminent experimentalist.
"Every day," he says, " in the great phenomena which make
manifest to me the internal activity of nur globe, immense bodies of water, in the form of rapour, are disengaged.

* One naturally asks if the supply of this water is not kept up partially, at least, from the surface, and, if so, by what means?
- It is clitlieult to imagine this supply produced by a fire cireulation; for the way open to the descending water would form a means of escape which would matmally ofler itself to the ascending vapour. Now the immense pressure of this vapour in the volemme districtsa presure great chongh to Corec columas of lava, about three times demser than water, to vast heights above the sea-level-proves that these sifity-valves do not exist.
" I have therefore heen led to eximine whether the water cannot penctrate into these deep and hot reservoirs not hy fissures as previnusly imarrined. hut in virtue of the porosity and capillarity of tho intervening beds."
M. Danbree then refers to the experiments carried on by M. Jamin, showing the intluence of capillary attraction in changing the rondithons of equilibrimm between ditlerent pressures by means of a column of liquil. fund prints out that the greologral problem requires a variation in the temperatmre not introlneed by It. Jamin,-in fact the liguid in one part of the conneeting column imst be reduced to a state of vapour, in which, perhaps, it will be governed by dillerent laws.
M. Danbree then proecels to desmibe his appamatus as follows:-
- I have therefore constructed ann anmonement. of which the prinripal cond is to join-loy means of a partition of prorons sandstone of a fine clase grain-on one side a closel chamber, in which the pressure oft thesteam - one seven-eighthatmospheres, ant on the other as space in direet commanication with the external arr, half filled with water, which suon was heated tos the boiling point: in the latter ehamberof conrse, beiner open to the atmosphere- the ordinary pressme was not exceeded, althongh the thickness of the sandstone partition was but two centimetris. 'The result of' the experiment proves that the Wither is ant driven back by the eonnter-presinre of the vapour: the diflerence of the pressure on heth sides of the partition does not prevent the liguid from pronetrating tion the region eomparatively cold to the recrion comparatively loot, by a kind of (apillary attraction; fivonred alon ly the rap in eraporation roing on in the latter."

If. Danlere promise furtherexperiments with a thicker partition, which will enahle the sapeur in the first chamber to be raised to a higher tomperature.

The results he has almeady mrived at prowe that eapillary attraction, in abletion to weight, ean-in spite of very stomg interior counter-presulure-force water to penetrate from the superficial ant cold regions of the globe into the interior. where, hy reason of high the temperature and presonre, it, in the shape of steam, is capable of producing great moelianical and chemical results.
 114 accquanted with the main-spring of voleanic action and of other
phenomena generally attributed to the generation of rapour in the interior of the globe, as, for instance, carthquakes, the formation of hot springs, the filling up of metalliferous veins, as also the various cases of the metamorphism of rocks.
" Without excluding the original water, which,element like, is generally supposed to be incorporated with the interior melted massesdo not these experiments show that the infiltrations descending from the surface act in such a manner that the interior regions are continually being replenished and exhausted; the replenishment being effected in a way the most simple, though vastly different from the srphon and ordinary sources of supply.
"Thus a phenomenon, slow, continuous, and regular, becomes the cause of sudden and violent manifestations comparable to explosions and losses of equilibriam."

Note on the New Mineral Foumelite.

M. Ch. Mène, in order to establish the chemical formula of the mineral found by him near Beaujeu (Rhônc), has made several analyses of specimens of different densities furnished him by the proprietor of the mines: the results fully confirm those previously arrived at in September last.

The average percentage of the components-learing the quartz out of the question-is as follows:

$$
\text { Copper .. } 320
$$

Lead .. 19. 0
Sulphur ... 23.0
Iron ... 3.0
Arsenic .. 8.0
Antimony .. 22.0
$100 \cdot 0$
Whence the following symbol is derived:-

$$
3 \mathrm{Cu}^{2} \mathrm{~S}+3 \mathrm{Sb}^{2} \mathrm{~S}^{2}+\mathrm{Pb} \mathrm{~S}+\mathrm{Fe} . \mathrm{Ar}^{2}
$$

Chemical Characters of Combustible Minerals.

M. E. F'remy, who for a long time has been carrying on chemical investigations on the tissues of regetables, has laid before the Academy of Sciences of Paris the results of his recent researches "On the Chemical Character of Combustible Minerals," in which he has also sought to inquire if the substances which compose them present any analogy with those which form the unaltered tissue of plants.

Admitting with other geologists that peat, lignite, coal, and anthracite have been formed under different circumstances, and belong to rocks of very different ages, he has endeavoured to trace in these

Virlitios of eombustihles, the degree of atteration of the organio 10-2lle.
'Thestudy of the peat has presented really no new fact. Resides the mathered chementary orrans which are med with in such great gramtities in the fibrous peat, he has fomd aceording for the state of afteration of the combustible, variable proportions of those bown compumbls-mentral or acid, azotized or non-azotized-which are deximated under the general title of ulmic eompomads.
'The presence of these borlies, which hate heen already studied hy M. Payen, nevertheless goes to establish a very clear distinction between the peats ame the maltered organie tissines. The ehemical examination of the lignites oflers more merest.

In these resenches distinetion has been marle between the lignites presenting still some wooty structure, and those which offer the aspect amt compactness of ewal. The first constitute the xyloid lignite or fossil wood: the second furm the compact or perfeet lignite.

In respert to chemieal eharacters, all the varieties of lignite may be pheed in one or other of these classes.

Although the xyloid lignite may sometimes have the tenacity and the alpearance of ordhary wood, he has recognized that in that (cmbnstible the woody tissue has experienced a great modification. It is reducille to a fine powder ly trituration; and submitted to the action of a weak solntion of potash it yiehs to that alkali a considerable quantity of nhmic aced.

The two bollowing Je-actions teme to establish a well-mathed dithemee between the ordinary wood and xyloid lignite.

When the azotic ateid reates at athigh temperature on the wood it disubles a part omly of the dibres amd mednlary rays, and leaves the r- llalar matter gnite pure, which dissolves withont coloration in conerontrated sulpharic acold; and posisusios all the properties that M. f'ayon has studiad with sumely precision.
©̈uter the same circumstances the xy hid lignite is attacked with great enorgy and tmoformed into it yellow resin, soluble in alkalis athel in sun cxeron uf azotice aceicl.

When wool and xylod lignite are companatively submitted to the action of hypuchonitos very marked differnees hetween these 1 wo shlatanese are likewise established. Tho hyperdmites exercise 11pont the wow a resetion, which, perhaps, may be compared to that of the satotio acod; they disanse mpinlly a part of the fibres and medullary mys, and latae the cellabose mater in a state of purity.
 de-olved mealyentirely hy theserefotives ; and lawes only imponderable traces of tibre, amb colomele mednllary mys.

It finlows form the precereliner facts that when the worly tissues hase survent at that sate of modifieation which romstitutes the raloid lemite, wall preareine the appearanee of wood, they have
 then divert bu priaciphe ananderizal by their complete solne bility in azotic ackil und the hypochlorites

After having determined the chemical characters of xyloid lignite, it was interesting to inquire if the compact lignite-whieh presented no longer the texture of the woody tissues, which is black and shining like coal, and which often offers such analogies with this latter substance as to put at fault the most experienced engineers-would preserve the chemical character of the xyloid lignite, or would ally itself with the coals.

In a geological point of view this comparative study of the xyloid lignite, compact lignite, and coal appears to possess a great inportance. If there really existed a certain affinity between the state of alteration of the combustible minerals, and the age of the rocks containing them, one comprehends it would be of interest to geology to possess a chemical character-independently of those pointed out by M. Cordier-which would permit the exact appreciation of the degree of modification of the organie body, and the determination of the age of a rock by the state of alteration of the combustable mineral found in it.
M. Fremy has applied himself, then, to find a series of chemical reactions acting differently on the combustible minerals, and permitting him to arrange the series of their varieties according to their degrees of alteration, and the chemical characters they would thus present. The reagents he employed were potash, the hypochlorites, sulphuric acid, and nitric acid.

Having pointed out the difference between woody tissue and xyloid lignite, he goes on to show in what this latter differs from conpact lignite, which laving lost all trace of its original organization is only liable to be mistaken for certain varieties of coal.

The manner of burning, the reaction of the volatile products of combustion upon litmus, and the colour of the ashes form in themselves well-known distinctive elaracters, which chemical reagents enable us to judge of with the greatest exactness.

When, therefore, a compact lignite is submitted to the action of strong potash the solution sometimes turns brown, and a small quantity of ulmic acid is held in solntion; but generally this is not the case, which fact immediately establishes a distinction between compact and xyloid lignite.
M. Fremy is of opinion that the lignites which resists the action of potash are those nearest the coal-measures.

The compact lignites, which in their brilliancy and blaekness rescmble coal, are entirely dissolved in the alkaline hypochlorites, and are immediately acted upon by nitric acid, producing the yellow resin before mentioned.

These characters, then, render it easy to distinguish between lignite and coal, as this latter mineral is not dissolved by the hypochlorites, and is only slowly acted upon by nitric acid. On the former of these tests M. Fremy lays great stress.

Coal and anthracite, although resisting alkaline solutions and hypochlorites, dissolve readily and completely in a mixture of concentrated sulphuric and nitric acids: the liquid becoming of a dark
brown colours and holdinger in solution an ulmic compound, which is emily deposised ly the addition of water.

II Fremy states. parmhetically. that in conncetion with this subjeet he has exposed woody tissite to a temperature of two hamberd derrers (Cen.). for several days, and has noticed several modifications suctesively take place producing substances quite comparable to these fonnd in the lignites - the first changes resembling the xyloid; the latter the compact lignites-resisting the alkalis, and yielding readily to the hypochlorites.

1. Fremy then sums up the results of his obscreation as follows:
2. The chemical characters of the combustible minerals suljected to the reagents pointed out are effaced ly age ; and the organic matter resembles graphite the more as the rock from which it is taken is older. An exception, howerer, must be made in the altered rocks. This result is entirely in accordance with the observations of the celebrated Regnault unon the sulject.

2 . The first degree of alteration of woody tissue, represented by peat, is chameterized by the presence of uhmic acid, and also wondy fibres and the rells of the mednllary rays, which can be purified and cxtracted in great quantity hy means of azotic acid and the hypochlorites.
:3. The secont demee of modifieation corresponds to fossil wood or xyloid limite, which is in part soluble like the preceding body in the alkalis; but its alteration is more marked, for it is dissolved almost entively in nitric aceid and the hypuchlorites.
I. 'The third stage of alteration is represented by perfect lignite, which the reagents tell us alreaty partakes of the nature of coal,in consequenec, therefore, the alkaline solntions gemerally do not act npon it, athongh it is completely soluble in the hypochlorites and nitrie arict.
\therefore The fomrth degree of modifieation enrrespomds to coal, which is insoluhte in atkaline solution and the hyprchlorites.
(f. The fifih state of alteration is shown hy anthracite-whel widentlresembles graphite-resisting the reagents which ated upen the prewdinge combustibles, as we have seen, und heing attacked but slowly by nitric acid.

From this it will lee seen that the chemical reagents employed by M. Freme conlimn the elasification of combustible minerals recognized hy emolugisas

In comedutinge Wh Premy expreseas an opinion to the effeet that the sultaneta which we have heots com-dedering are far from being the maly molifientions which the organic mateer mulergoes in its changes to the combanthbe mincrals: he thinke that there are intermediate tram-formations of the oreanie tissues, whech correspend to the diflerconera which are netiershble in the different kinds of emal and lignite

The gnestion whether the wagents are sensible cumegh to elaracterize these variedies in the difli rent kinds of coal, or in the same bed eren, X. Fremy properes to examine in a future communication.

Palcontological Researches in Grecce.

From a communication on the researches in Greece, by MI. Albert Gaudry, we extract the following interesting remarks:-
M. Gaudry states that in superintending the excavations which the Academy had placed under his care, he was struck not only with the size of many of the quadrupeds disinterred at Pikerimi, but also with the numbers of the different animals which were found together. There were numerous remains of antilopes. The bones collected by him in 18.5 and in 1860 attest the presence of more than a hundred and fifty of these ruminants. It is probable that formerly some of these species lived together in large herds, as in our own time. All the zoologists who have lately given themselves to the study of the antilopes have agreed to divide them into several genera. Mr. Gray, in his catalogue of the Mammals in the British Museum, admits nearly thirty-seven genera derived from the old geuns "Antilope." Most of the fossil kinds found in Greece cannot be classed in any one of these divisions; and to conform to the modern nomenclature should be arranged in new groups. Nevertheless, to these groups M. Gandry only gives the title of sub-genera; for antilopes form a tribe in which, with few exceptions, it is difficult to determine true generathat is to say, groups which separate themselves one from the other by an ensemble of special characters. M. Gaudry exhibited a series of skulls of antilopes which he found at Pikerimi. One of them presenting a strange appearance, its horns being raised upon the front part which forms the protection of the orbits, the region situated behind the horns being very long and narrow, and the occipital crest very straight.

The animal to which such a skull belonged cannot be included in any of the sub-genera of antilopes known at present. M. Gaudry proposes to call it Palceotragus Rovenii. After having given the measures of the skull, he goes on to say "Seen from behind the fossil reminds us of the skull of a horse, by its very straight occiput rising in the centre ; but in all the other characteristics it differs from it: it is a true Ruminant. By the lengthened and rectangular form of that part of the skull which extends behind the orbits, the Patæotragns resembles the Helladotherium; but it differs from it by its non-sloping occiput, by having horns, and the molars being more furrowed. The discovery of this gigantic Ruminaut has been already announced to the academy.

The lengthening of the posterior part of the skull, the molars marked with deep furrows, and the want of the lacrymal cavity, admit of some affinity between the Greek fossil and the giraffe, did not the position and form of the horns establish a distinction between them. By its rather confined face, deprived of the lachrymal cavity, the Palæotragus resembles the goat; but differs from it in the form of the teeth and the posterior part of the skull. The spreading of its horns, and their implantation in the orbits, reminds one of certain
kinds of stags, expecially the muntjac, diflering from them in the previnmey of itc homs. Althomeh the Palatragus is very large, there are others fomed in Pikerimi much laveres."
I. Aandry showed two sknlls which proved that in all probability the two speries maned ly N. Wagner Antilepe sperinse, and 1. Petlesii were one and the same.
'This new fossil reminds nue, hy its form, its proportions, and the position of the axes of the homs, of the smb-genus Dermulis ot of H:milton simith, and wen more of the sul)-gemms Ory, of de 13namille. in which. following Ugilby's example, ho inelates the suhberems. Slemertus of Demarest. now called Hippotagus; but it ditlers from both in its dental system.
M. (iamdry has also diseovered the hones of an antilope taller than any of those of which the skeletons are in the musemm at Paris,
 A berge smilat skull, thongh moln smaller, las also been foum by hime. Besides the diflerenee in size the lomes are more masave in propumtion to the size of the head, and fatter. 'This species he has named Pularory premidens.

11. Robsert has prosented to the A emtemy of sobences a supplement To his greohgieal researehes on the substanees, more partienlarly somes, worked ly the primitive inhalnitants of timl.

In his proceding memoir he hat suergented that the enormons blow of stome fomme surpended, as it were in the contre of theviatile depmitc, conkl only have grot there hye mans of ieebergs at the time
 primitive Frame

It supportal of this npinjom that all the latinamthors agree in stating that the elimate was very cold at the time of the eongmest, sume that the rivers were often sufliciently foran orem to allow the Gands to mose catily from phace ter place, whener one cent inler that when the dhaws arrivel, weandons were limenthed to the litarated bee to carry boulderas aloner with it.

As stated in that previons momoir, M. Robert affirms that the
 hase heen formed by the water which previonsly filled the valleys.
 whicls cover the Coltic ransins, shows that a very long period has elaped anee their depm-it.
11. Kobrert dow a mot sumit that the firat men in Finmpe were confempromems with the ereat perhelerins, the clephant, mastodum,

 the ammed, harae, ife, are sith diflionlty distingmished from thone of the preacent day.
"It is probable," he continues, " that when the peoples of Asia emigrated westward on the look out for fertile countries, still retaining their fondness for stones, whether as a custom, a religion, or a sign, we know not, they established themselves naturally in the valleys, then deeper than at the present time, and watered by rivers which offered them, witl resources of all kinds, a milder temperature than could be met with on the elevated plains. It is probable that oftentimes they were obliged to evacuate their habitations in consequence of considerable floods: hence the confusion of the remains so precipitately abandoned; flints, with rolled stones of every kind, and real fossil-remains washed from the real diluvium, mixed with the bones of the animals, domestic or sarage, drowned in the inundations."

In the sand-pits at St. Acheul, near Amiens, hatchets have been found, which, though coarsely worked, appear to belong to two epochs; some formed out of chesnut-brown-almost yellow flint, and with very round edges, apparently coming from a long way off, being much water-worn; the others in bluish-black flint with white spots, more or less sharp, with very flat edges, do not appear to have been rolled at all. The angles in these last are as sharp as when they left the hand of the workman; and one would say they had been fashioned on the rery spot in which they are found. In fact, it is rery easy to find rolled fints from which precisely similar hatchets could be made.
M. Robert has in his possession the largest hatchet found in this locality; it is thirty centimètres long, and weighs one thonsand eight hundred grammes, and has, evidently been made from one of the cylindrical flints which there abound.

Although the bed in which these celts have been found is forty metres above the level of the Somme, the greatest rescmblance exists between it and those at Prècy-sur-Oise, and near the Seine at Paris. Like these last the lower strata are composed of rolled stones, which contain in their cavities white sand and rery delicate fresh-water shells (principally Lymnea), which would inevitably have been reduced to fragments in a strong current. The upper strata consists of a thick deposit of yellowish sand.

One finds also at St. Acheul boulders of sandstone, which, howerer, are smaller than those at Prècy on the Oise, which in their turn are smaller than those of the Paris basin. In fact, the size of these boulders is exactly proportional to the transporting force, whether ice or current.

The nature of these worked flints may throw some light on the localities in which they are found, where all other means fail us.

In the Commune of Gouvieux (Oise) there is an abrupt eminence, called Toutvoyes, where exists what is generally supposed to be a Roman camp. MI. Robert attributes it to the Gauls, the first inhabitants; for on carefully examining the locality, which was admirably chosen as a strategical position, he found spread upon the limestone soil a considerable number of hatchets, arrow-heads, and darts, formed out of flints obtained from the neighbouring chalk, or the fluviatile
deposits which emvelape the foot of the hill, in all respects similar to the celtes fomme at Mconden.

The only hatehet which did not belong to the locality was a milky white polished one, similar to those fomm at Bregy.
M. Rubert contimes:
"'Tostrengthen my opinion that the deposits which line the valleys thaversed by water-conses, have been formed hy those water-comes, and comsequently have nothing to do with the diluvimm; the boullers, rolled pebldes, the sand, and even the mud, have been derived from the lands washed he the rivers and their feeders.
"I applied myself some time agot, before I studied these Celtic remains from a geological peint of view. th the collection of the roeks and tussils to be found in the fluriatile deposits of the Paris basin. Without enumerating all, I may mention having collected the following: -

1. Representatives of almost all the rocks which enter into the composition of the Paris hasin.
2. Rocks of Lat hante Bourgoagne, principally a redalish quartz-like forphery: which is rather common, and granite rocks.
\therefore Nerina. Terebsatule, Madrepores, de., belonging to the secondary formations.

It is as well to remark that these coljeets have always heen pieked up along the rivers in going towarils their heals, hat newer above the smposed situs be fere having her neamed by the water. We have, therefore, stronge presumptive ev idence that these same water-courses have tramsported all the materials which enter into the componition of the thuriatile deposits in which the Celtic remains have been embedded.

> Fonssil Ful at Chiriqui, in Firagua, in Frinade.

During the summer of 180.5 , the Thited States goverument sent to ("hirigni, inthe hope to discover a favomathe fine for a railway across the isthmus, an expectition to which Dr. Erans was nttached as gecologist.

He diseovered in the Encene Tertiary formation of that country an extemsive and thick dejosit of lignite of excellent quality, and ex. tremely bituminons. M. Jules Marron has refered the fossils of this
 Nimente, which belonge the age of the "Calcaire grossiere" of Paris,

The collemise thickness of the hedse of eonal is nearly seventy-four feet, and six are sor near each other as of form a mass thirty feet in thicknens, eapahbo of being worked ly the same gallery. The localities were it is seth are ('nltivation erock, Blaneo river, 'theinshik oreck, Poper's laland. There are mmerous deloris of plants in the clay. 1 mieroseopic examination of the coal shows that it is formed of cellulose plants, the strecture of which may be seen both in the cinders and in thin slices of the coal.

What is very remarkable is, that these Tertiary coals are exactly like those of the coal-measures proper, whilst the fossil fuel of the same age found in Oregon and Washington is non-bituminous.

It would appear that we have in the coal of Chirigui, formed in the Tertiary clays under the tropics, a modern instance of the conditions in which the coal beds in the coal-measures have been produced, thence results the resemblance of these Tertiary coals with those of the coal-measures proper, which, beyond a doubt; were formed under a tropical temperature.

An interesting geological fact is that the coal-measures have not yet been traced in South America. All the beds there observed belong to the Tertiary epoch.

On a means of recognizing the Shores of Ancient Seas.

M. Marcel de Serres, in a recent letter on a means of recognizing the ancient shores of the seas of geological epochs, after referring to his studies on the boring-mollusca, points out a locality near St. Apolis, in the neighbourhood of Pézenas as very interesting. There the cretaceous rocks, which run parailel with and adjoin the Mediterranean, are full of thimble-shaped carities, the work of these mollusca. On the north side of the mountain nothing of the kind is seen; the rocks thus perforated are not elevated above the level of the soil beyond the point at which they have been bored, and the miocene beds rest on them.

Knowing as we do that the boring-mollusca are to be found in the ricinity of the coast-line, are we not justified in looking upon this spot as an old sea-shore? M. Marcel proceeds :-
"I am now endeavouring, by the consideration of similar facts, to determinc, by means of the rocks attacked by these animals, the localities which mark the extent of the ancient scas, and I believe I have succeeded in a locality now well known in a geological point of riew-I meau the basin of Neffier. There the palæozoic beds are bounded on the south-east by the tertiary marine formations; these are composed in certain localities of masses of polyps of the genus Astrea, pierced by a great number of Modiolæ and Petricolæ, and others.

As these different species recede but little from the coast, and the polyps occupy the same position as they did in the same sea, they seem to represent its ancient margin ; a fact confirmed by their position relatively to the Mediterranean, near which these beds are situated.

On the Tertiaries of Bigorre.

M. Leymerie has communicated to the French Academy a note on the Tertiaries of Bigorre, principally studied in the valley of the Adour. From this note, which is very interesting, we extract the following description of the locality mentioned:-
"The 'lertiaries of Bigorre ennsist entirely, in the valley we have named, of a latustrine deposit. formed at the loot of the Premees after the last rising of the land; and do not ofler at any point the smalles imblication of an upheaving fore
"This deposit in the first instance formed a table-land exfending from the fout of the mountains; but this has since been divided by the diluvium streans into strips, as it were, now fonnd separated by the valleg of the Adoms, and numenons dales.
"In the region which occupies us in the present priper, the tertiaries follow the bend of the hill between Bagneres and Lonides, and an nutlying prominence, whuse clevation was too great for the tertiary waters to cover.

* For this reabm, on either side of this hill, we see the tertiaries commence by two beds which rover and level the eretaceons sedhats and overlying beds, pierecd and diversified by granite and ophites, which never, however. reach the smblace.
"One of these beds begins at Bagneres, but nuly on the right side of the Adome, whenee it extends to the east to join itself to the phan ot Sanumemezam.
*The other commences not far from Lonriles to the left of tho valley of Ade. They leave hetween them the hill above mentioned, valach is antirely meoremed by these deposits.
"A little to ibw morth of Wontgaillard (Viaille Ossmen). near the pain of Tarles, one sees the omtliers of the l'yenese represented by the conglomerate of Jalasson, dipumber the ter haries in such a manner that liom this limit all the hills in the valley are composed of it."

1. "On the Sucersion of lieds in the llatinge Sand in the Northern
 surses of Cireat Pritwon.

Has ing firt referred to the disicion of the Wealden heds hy former anthors
 and the sil Hosisi ni if the "Mastimen Saml" by Dr. Mantell into "Horated

 Mr. Wrew premedel th dhemble, tirat, the seseral bods in ther meridian and vemity of I unkribe Wills. The Weald Clay is at last six humdred feet thitk in the datrent, and is mederlad by sands and sandutomes, lemed by the
 there. Thia subleri ion is about ene humered and cighty fent thiek, and was 1) erobed in detail: an ingurtant frature being the "rock sande" or matsice samblone forming the picturorquenatural ruchs of that neighbuurhood, 'The
shales and clays umderlying these sands form the "Wadhurst Clay" of the author, and are at places one hundred and sisty feet thick. This subdivisiou has yielded much ironstone in former times. It is underlaid by other sand and sandstoues, more than two hnndred and fifty feet thick, also yielding ironstone. These are termed "Ashdown Sand" by Mr. Drew, on account of their forming the heights of Ashdorn Forest.

Eastward of the meridian of Tunbridge Wells Mr Drew has found the same sequence of beds, and he belieres a similar succession to oecur around Battle and Hastings. Westrard of Tumbridge Wells, as far as East Grinstead the same beds occur, but beroud that the Weald Clay and 'Tuubridge Wells sand alone are exposed; and the latter is here divided into upper and lower beds by shale and clay (termed "Grinstead Clay" by the author), which thicken westward to fifty feet and more. It is the "Lower Tunbridge Wells Sand" that forms natural rocks near Grinstead. Near Horsham the Weald Clay contains, at about one humdred and twenty feet from its base, bands of stone known as the "Horsham Stone," nsed for roofing and paving.

The author then explained at large the grounds on which he proposed to replace Dr. Mantell's term "Horsted Sands" br "Upper Tunbridge Wells Saud," that of "Worth Sands," by "Lowrer Tunbridge Wells Sand," and that of "Tilgate Beds" by "Wadhurst Clay"; and his reason for proposing the name of "Ashdown" for the next lowest bed of the "Hastings Sand."

The paper concluded with a description of some of the chief lithological characters of the clays and sandstones of the W ealden area under notice.
2. "Ou the Permian Rocks of the South of Yorkshire; and on their Palæontological Relations." By J. W. Kirkby, Esq. Communicated by T. Davidson, Esq., F.G.S.

The author, after defining the area to be treated of, first noticed the results of the labours of former observers in this district; and then suceinctly described the sereral strata, referring to Professor Sedgwick's Memoir on the Magnesiau Limestoue for descriptions of the physical geography, and rery much of the lithological character of the country under notice. The strata treated of M r. Kirkby recognizes (in descending order) as 1, the Bunter Schiefer, about fifty feet thick; 2, the Brotherton Beds, one hundred and fifty feet; 3, the smallgrained Dolomite, two hundred and fifty feet; 4, the Lower Limestone, one hundred and fiftr feet ; 5, the Rothliegendes or Lowrer Red Sandstone, one huudred feet. These were then compared and co-ordinated with the Permian strata of Durham, where the three limestone members are thus represented:1. The Upper Limestone by the Vellow, Concretionary, and Crystalline Limestone (two hundred and fifty feet). 2. The Middle Limestone by the Shelland Cellular Limestone (two hundred feet) and 3. The Lower Limestone by the Compact Limestone (two hundred feet) and the Marl-slate (ten feet). The orer- and under-lying sandstones being much alike as to thickness in the two areas.

After some remarks on the probable geographical conditions existing in the Permian epoch, the author proceeded to treat of the Permian fossils of South Yorkshire in detail. These belong to about thirty species, and are nearly all from the Lower Limestone; three species only occurring in the Brothertou beds. With three exceptions they occur also in the sereral limestones of Durham ; fire of them are found in the lower part of the red marls of Laneashire; and six of them are found at Cultra and Tullyconnel in Treland. The distribution of the species in the several beds at different localities having been fully treated of, the Permian fossils of Sonth Yorkshire were compared; first, with those of Durham ; next, with those of Lancashire ; and thirdly, with those of Ireland. Remarks ou the distribution of the Permian Fauna in time coucluded the paper.

1. "()n a Collection of Fossil Planks from the Nagpur Territory, Central Iudia." Bis sir. ('. Buhbury, lart., F'.K.s., F.(i.s., de.
The speetuens examind by the athor were eollected by the Rev. Messms. S. Hislop and K. Hunter, and presented to the Geologisal Society in 14.5, and since. The vequetable remans deseribed in this paper are - i. Glossopteris brourniuna, var. Ansfolasich, Ad. Brong. Very few specinens from Bhanatwilla, and at the font of the Mahadewa Hills. \vec{f}°. Brorniane, var. Indien, MI. Bremes. By much the most abundant plant in the eolleetion, with many subvaristes: spermens rery fine, may of them in froctifation. Silewadia. 2. (i. masfuliu, sp. nor silewada am hampti. 3. G. leptonemrn, sp. n. Kampti. 1. Vi, streta, sp. n. Silewádí and Kampti. 5. Pecopteris, sp, sonnewhat re-
 dhmenides, Il (lepland (\%), kampti. S. Filicites: possibly a citossopteris.
 Bhratawállá. 11. Pholluthert Indien, sp. n. Bharatwálai, Bohára, Kampti,
 hruriu, and probably roots. Tonkahriri, Kampti, Barkoi, and Mahádewa Hills.
 Mameali. 15. Part of a stem, somwhat sigillarm in appearamee. Sildwada. 14. J'art of a lager stem with a sear. Silewada. 17. Fucriles (:). Kimpti. The fruits and seed are reserved for further examination. On a general surver of all these plant-remains, the anthor for the present eonsiders the faries of the: fossil thomanoder motice to be Mesozoic rather than Palieozoie, hit he regards the guestion as an open one, and requiring much further light for its perfect rlacidation.
Z. "On the Age of the Fossiliferons thin-bedded Sandsones and Combloeds of the Province of Naspur, Contral Ladia." Jyy the Rev. Stephew Mishop. Commomiented by the President.

The author first pointed ont the plases near the eity of Nagpur where the plut-lowring sembstune has been bent stodied (Silewa/a, Kampti, Pukhlara, Tondahbeiri, \&e.) ; alow other places as far distant as twenty miles weat, thirtytive miles nothterast, and dightr-five miles somth (Chanda. He nest notiered the earbmaceons shales haderlying thick samdstones, at the foot of the Mahadown Hills, and the coal-stanis of larkon, near Limret, righty miles and more morth-went of Nagpur ; and puinted ont their relationship to the plant-bearing samhtome near Nagrur, as shown by the (iftossmitois, and other fossils fomm? in cach loesaly. Reforemee was then made of the author hating presionsly correlated the abose-memioned sambtones, shales, and eoal, with the enalbearimgods of Wenteru bengal, where the same gromp of fossil phants are found.

It Dangali, between fifty and sixty miles south of Nagpur, dark red sambst mes are foumt, rich with Rolhr ria, and contaminer rematins of plants, Gamoisl
 thinks to be of the wame aze as thoose of Nagpur and (Itatata. Still further Sonth (ome hambeal and abouty miles froms Nagpor), at Kola, there are (wader
 A.hmotus ant Ifribtue, Tolemsurian remains, Coprolites, fossil Insects, Ggprtle, and titherif, with abmeure phant-remains. These beds are also regarteal by the muthor as equivalent in agere to the plant bearing sambsones of Nagpur: whilat she ambanes abowe them may be eepual to the sandatome of the latood wos: aut the red elter hometh then may be the same as that of
 lites hase beinf fand in abumdonee.

Whether any bels equivalent io the Rajniatial (upper Damuda) serics of Weatorn bengal occur in the Nispur diatrict, the author is not quite certain

These are particularly characterized by the abundance of Cycudaceece. They may perliaps be found near Kampti, not far from Nagpur.
Mr. Hislop theu compared in detail, 1st, the fossil flora of the coal-fields of New South Wales with those of Central Iudia; 2nd, the fossil plants of Western Bengal with that of Contral India; and 3rd, the fossil fauna of these two regions; and cane to the conclusion that, on the whole, they probably represent the Jurassic (or possibly the Triassic) period,--at all erents some portion of the Lower Mesozoic epoch.
3. "On the Geological Age of the Coal-bearing Rocks of Ners South Wales." By the Rer. W. B. Clarke, F.G.S.
The author first referred to his report, in 1S土7, of the occurreuce of Lepidodendron, Sigillaria, and Stigmaria in the coal-fields of Australia; aud adranced proofs, derired from colleetions and publications both by himself and others, of the occurrence of Lepidodendion (Puchyphlous (:), Goeppert) over a regiou extending from twenty-three degrees to thirty-seren degrees south lat., and at least one thousand miles long. After some obserrations on the association of Carboniferous and Devonian fossils with the coal-beds of Australia and Tasmania, Mr. Clarke stated that in 1559, at Stony Creek, near Maitlaud, Mr. B. Russell, having sunk two pits in seareh of coal, found four or five coal seams lying between beds contaiuing Pachydomi, Spiriferi, Orthoceratites, Conularia, ice.; and beneath them a shale containing Naggerathiu, Glossopteris, Cyclopteris, \&e. From this and other evidence the author is induced to believe that the beds are of palæozoic age, in spite of the "Jurassic" appearauce of the plant-remains.
4. "On some Reptilian Remains from North-western Bengal." By Prof. T. H. Huxler, F.R.S., Scc. G.S.

Some bones, found by Mr. Blaudford in the uppermost portion of the "Lower Damuda" group of strata in the Ranigunj coal-field, and forwarded to the author by Dr. Oldham, hare proved to belong to Labyrinthodont Amphibia and Dieynodont Reptiles; herebr affording new and interesting links with the fossil fauna of the Karoo-beds of South Africa, and largely increasing the probability that the rocks in thich they were found are of Triassic, or perhaps Permian, age.

April 10, 1561.

1. "On the Geology of the country between Lake Superior and the Pacific Ocean (between fortr-eight and fiftr-fire degrees parallels of latitude), explored br the Gorernment Exploring Expedition, under the command of Captain J. Palliser (1557-60)." By James Hector, M.D. Communicated by Sir R. I. Murchison, V.P.G.S.

The paper gare the geological results of three sears' exploration of the British Territories in North America along the frontier-line of the United States, and westward from Lake Superior to the Pacific Ocean.

It began by showing that the central portion of North America is a great triaugrlar plateau, bounded by the Rocky Mountains, Alleghanies, aud Laurentian axis, stretching from Canada to the Arctic Ocean, and divided into two slopes by a watershed that nearly follows the political boundarr-line, and throws the drainage to the Gulf of Mexico and the Arctic Ocean. The northern part of this pliteau has a slope, from the Rocky Mountains to the eastern or Laurentian axis, of six feet in the mile, but is broken by steppes, which exhibit lines of ancient deuudation at three different levels; the lowest is of freshwater origin; the next belongs to the Drift-deposits, and the highest is the great Prairie-lerel of undenuded Cretaceous strata. This plateau has once been complete to the eastern axis, but is now ineomplete along its eastern edge, the soft strata having been remored in the region of Lake IV inipeg.

The eastern axis sends off a spur that encircles the west shore of Lake vol. III,

Suprior, and is composed of metamorphie rocks and granite of the Laurntian serms. To the west of this fullows a bett where the Howe of the phatean is exposed, comsisting of Lower silurian and Dewonian rocks. ()n these rest (retaceons strata, which prewail all the way to the liocky Mountains, overlad here and there by detaehed tertiary basins.
'Thr lineky Jinmains are composed of Carhoniferons and Devonian limestones, whimassive guartates and conghmerates, followed to the west hy a gramit te tact which ocenpies the botom of the great valley betwern the Rocky and the Cascule Monmans. The C'aseade cham is valeanie, but the voleanos are now inactive; to the west of it, along the Pacilic eonast, Cretaceons and Tertiary strata prevail. The deseription of these rocks was given with eomsiderable detail on aceome of their containing a lignite, which for the first time has been determined 10 be of Cretaceons age. This lignite, which is of very superiur qualits, has been worked for some years past by the Ilndson Bay ('ompany, and is in great demand for the stemm-mary of the Pacilie station, and fior the namuacture of gas Extomsive lignite-deposits in the Irnirie were also alluded to : and, like that above mentioned, were eonsidered to be of Cretaceons age; but, berides these, there are also lignites of the Tertiary period.

The eneneral conclusion was that the existenee of a supply of fuel in the I-hads of Formose and Japan, in Vancourer's 1sland, in the Cretaceons st mata of the western hores of the Pacifie, but principally within the British territory, and in the plains alung the Sakkatehewan, will exarcise a most important inthenee in considering the practicability of a rome to omr easteme pessessions thromgh the Canadias, the l'rairios, and' Shitish Cohumbia.
2. "On Elerations and Deprewion of the Larth in North America." By 1)r. A. (icuner. P.(i.S.

Staer some ohacervations on the differereses between roleanie uplifts of the land and the slow upwat and duwnward shiftings produced by changes in the position of great paralled areas during long periods of time, the anthor proceds (o) mumerate cidenes of local eleration and sulsidence that he has obsersed alone the conit from the mothern pate of Latbrador to New terser.

In the south-castern part of New Jerser, at Nantucket, Vartha's Vinerard, and I'orthand, submergenee of the land is proceeding, loeally at the rate of probably four feet in sixty rears. In New Rommek, at st. Aoln's the land has heeen revated; at the Cireat Manan l-and and the ereat 'Tamaman Marsh there has been suhsidenee. At lathury and om the ofposite enat of Lover
 Mine basin, there is subsidene: on the sumbern side, buwerer, there are
 sud in I'rinee Fidward's I land, adso, at C'scmupere, submergenee of the land is taking place.
 Srpare, on Mombly, April bih, the following piapers were read:-
"On the Gerologer of the J-be of Porshome," hy W. Grey, Bisq.

On Tuestlay, the !nth of April, an liremeruin was made in Reigale, mader the gndance of the 'romelem, I'rof. Trmant, and Mr. liensted. The party prorecded to ctanme varmus sertions slow ing the rhalk, greensand, ife. ; mad then viewed a remarkhble lowl of l'uller's Earth, which is worked near that town.

The followine paper was read "(On the l'leistocene formation of the distriet around Liverporl!." Dy George II. Morton, Esy., Fi.G.S.

The author of the paper divided the superficial deposits of the district into two well-marked divisions, viz., strata of bluish clay, with submarine forestbeds, which repose on strata of sand, Boulder-clay, and gravel. If all the members of thesc two divisions were present in one section, they would occur in the following order.
> 1. Drift sand
> 2. Peat bed
> 3. Bluish clar

> Post-Glacial Deposits $\begin{cases}\text { t. Submarine Forest-bed }\end{cases}$
> 5. Bluish clay
> 6. Submarine Forest-bed
> 7. Upper Drift sand

> Glacial Deposits $\begin{cases}\text { S. Boulder clay }\end{cases}$
> 9. Lower Driftsand and gravel.

With the exception of the upper and lower Drift sands (Nos. 7 and 9), all these beds can be seen at Dore Point, on the Cheshire coast.

Beneath the Liverpool Custom-house, an old land surface, with the trunks of trees, exists about forty feet below the level of the ordinary spring tides. A similar bed occurs about two miles to the north, also on the Cheshire side of the Mersey, below the bed of Woollasey Pool.

The different degrees of subsidence in several localities, arises from the varying elcration of the original land above the sea. When the lowest beds were submerged the higher land-surfaces must have been above the level of the sea. The author concluded that the whole district had subsided about fifty fect, but that the greater part was prior to historical times.

Manchester Geological Societr.- At the Ordinary Mecting on the 29th January, E. T. Binney, Esq., F.R.S., the Vice-President in the chair, therc was a very full attendance of members and scientific risitors from the neighbourhood, great interest being manifested in Mr. Dickinson's paper "On the the Explosion at Hetton Colliery," -in which that gentleman minutely detailed the circumstances of the melancholy cxplosion there on the 20th December previous. A discussion followed, in which the Chairman, Professor Roscoe, Mr. Booth, Professor Calvert, Mr. Knowles, Mr. Loveridge, and Mr. Dickinson took part.

The Chairman said that he considered it his duty to publicly contradict any erroncons statement which he saw in print respecting fire-damp. Now this inrisible and intangible enemy is sufficiently dangerous to the coal-miner, often coming suddenly upon him, like a thief in the night, without any misleading as to where it is likely to be present or absent. In a work lately published in America-"A practical treatise on Coal, Petroleum, and other 'Distilled Oils, by Abraham Gesner, M.D., F.G.S.-published by Bailliere -and haring a considerable circulation in this country, at p. 14, is the following - "In mines of lignite and cannel coal, carbonic acid or choke-dump is almost the only gas present." Seams of cannel coal, from being open-jointed, no doubt do sooner allow the fire-damp to be drained from them than from seams of ordinary coal. However, we who are acquainted with the Wigan district, where more cannel is wrought than from any other mines in the world, on the one side, and those of Dunkinfield on the other, know well that fire-damp is sadly too prevalent in them, and accordingly thorough and efficient rentilation, aided by the use of safety-lamps, is or ought to be in use in cannel, as well as coal-mines, if explosions are to be prevented.

NOTES AND QUERIES.

 wheh I pieked up last summer, and which, until I read jome article in "Tue (immonsts," I regarded as :rrow-heads; but as I lind mo exaet representation of them either in your Diagram or "The GLutomist," I an disposed t" think othernise. The thint enriosities I enclose for your inspection I fomm at Ftouber, in the Last liating of horkshire; they are to be mel with lying in situ, assuefated with other thints of our ploneried lands. They are cesily rempuzed by the ereat contrant in apparamee to the manal flints of the uper chalk of nor wolds, which are nemply black, wherean the flists from our chatk strata or sram- pusses a colour much lighter, which you will see from the enchoced; hesides, the black thans show sultiejent evidence of having been chipped by hand for some use or other.

It is well to remark, where these black flints are found by ane in this locality, numerons " dskes" are contiguons (which run in diflerent diecetions), henee it is probiblle they mar have been used as slingestomes by the warriors wha cat up, these lengethe and stupendous carthworks, if it can be prowed that such miniles were nead hy the ancient Britons. Secemedly, it mity mot be amiss to suggest Were these flimts used by the aborgines in obtainine lire? 1 onls throw ont these sugerestions, for the dark-eoloned tlints have peruliaritiss ditierent from one own district flints. and therefore our conclusion is that they mast hase been impented frem some other chath-region, where the tlints are of such darker hae, cither as implements for war, of for producing a lieht,
 up abd ehnidered as eontaniug whin themselses the now lire ; we cem well remmber, in our times, these dierk-tlints heing seateded for to produen lights In fore the invention of the lucifer-matehes. Again supposing these flints -ither to lave heen in use as "sling-stume" or tire-tint: m the days of the aurciont Pritome, it is mot at all improbable that they mat be found some feret beom the surface fit Holdemens, buried there by the sentiments If fi hexecelmery high tides leng previons on the great drainage being werted to hecp the sea-water from mundating that distriet.
last spring we towh a trip to Eprinebank, a phaere men Peyroley, fo see a

 brehen smoking-pije wore brought up by the stom boring apratus, a speci-
 fotel atopper eorrmpendites. A quition mingt atise hou hate these pipes been contedieal on dep in the earth!

In adhition tor the there tomes or freeflints. I have aretosed ome which has

 Ar. lanit. Neнtimer.

 a n w bucalse.

I hase since hard of whe ontlor new sperien of shofles from the Lingulabed, but have nut sut rectird an! - Lours faitlifully, Jashes K. Gimesorify.

Scetion of well at Stourmouth, 163 feet.

Tertlary Beds at Stouryoutm, Kext.-Sir,-1 enclose you a section of a well sunk at Stourmouth to the depth of 163 feet, and you will see that it is interesting as showing the depth of the Thanet sand in this direction. I liave been eugaged in collecting and making dratwings of fossils found in the Beabsbourne cuttings, and should any of them be novel or interesting I shall be glad to let you figure them.

One part of the section I sent you deserted to have been more particularly described in my scctious, riz., the drift-ralley crossing the sections as shown in the Beaksbomme cutting; the peat there mentioned might, perhaps, have been more properly described as a dark loany sand of organie structure and appearance.
This well at Stourmouth was sunk to the depth of about thirty fect br an ordinary well curb, and at the depth of fifteen feet from the surface an irou-sandstone was met with; below this a green-sandyery difficult to sink a well in, from its quicksand mature. Below this the well was continued by means of boring, a four-inch augur being used. At twenty-thee feet pebbles were met with, small and rounded, of a greenish colour. Below this about six feet of shell-marl, the shell apparently exceedingly friable; then we came to a blue clay, varring rather in hardness, but throughout exceedingly tenaceous, so much so as to require much more than the usual appliances to bore through it, and at places rers plastie, and sometimes presenting the appearance of
Flint. septaria. At the depth of a hundred and thirty-nine feet flint was met with having the apparent flat tabulated form of flint in the chalk. This was shown from the difficulty we had in boring through it. After much labour with a large peeler on the boring-irons, a small hole was made which still resisted the passage of the augur, and kept turning the steel edge of it. Picces of black fliut
vere hrought up with the angur, when we eane to chath, through which we piereed to the depth of twenty feet.

It is uberabible that the water which stood at the level of twenty-three feet from the surface, was not at all increased by penetrating this semaceous chay into the dhalk. Soweral wells have been boned in the neighbourhood of Minster throush this strata, and water has risen to the surface; but in every c:are the depth through the chalk was greater, though the total depth less.(i. Dow hik, Stourmouth-honse.
 Sin, - Is I do not think much is known of the genlogy of this part of the commery, I have made a brief stmmary of the chief features of the vieinity of Newpriet l'agnall, wheh 1 hope may be interesting. Just before reaching Wohlerton (the nearest railwny station to Newpurt), the train passes over a bridge built of forent mathle, which is much quarried in the neighbourhood, being used both for road purposes and buildingestone. The limestone abounds in shells and vegetable remains. Wolverton station is sifuated on the Oxford clay, in which, when the entings were being made, many fossils were fumd the nsual forms, such as ammonite, helemmites, gryher, ostrear, de., preponderating. The narreons or pearly shell still remained (antire on the ammontes, whirh were in a grond state of preservation. In some places a thiek laver of drifteclay coseret the subatratmon in this remains of ammonites and echimites, evidently from the chalk and grecusimbl, were fomm.

If the road towards Newport Pagnall be taken from Wolverton, the rillage of Cermat lindford will be passed, where, in diegeing it well, some workmen foumd her bomes of plesionami. But all aromed the lown of Newport Paruall itself, the Oxforl clay is orvally deweloped, and a great many clay-pits have been dug in the briwhedde; in the the vertebar and other hones, tereth, dee, of satrians, and the patatal-teeth of parthagens fibses are frequenty fomm, with manomites, belemites, trigonite, and many hisalie shells; also the remains of comiferons seres and carbonized wood. The following is a section of one of the most productive clay-pits near Newport Parnall.

No. 1 is a layer of light-brown clay, with

Section of cles, 10, Newport Ingud. flints and fragments of a concritionary limestone, in which 1 have oceasionally fommd fossils, surh as protime of Ammonites ('allorimsix, alariar, de., which ate chatacterist ie of the kelloway rock. No bommen fore fome at a leos depth than twelve or fommen foet from ther surface, hata is los saly inly in the clay markeol 1. The laminated ilays is and 1 abomal in ammonites conupreased beiweent the layers. Sepharia are stmotimes fomme in the elay, and ahmolanee of selemite and iron-pyrites, from the derompostiem of which the ersstalized smphate of lime his dombtess procerded by the action of the liherated sulphuric acid or the caleareons particles of the elay.

Fron Newpont l'agnald the ()xford clay takes a merthewot directient fowards ()hery, aind the burdereof lidedomhlime: hot its comse is murh emocealod by beds of alluvial grancle of gerat. thickume, which extrond ower a large tract of country. This gravel is largety complosed for menting the reats, ermsergutinly there are soreral pita dug. It abomuls in fossils (rhicelly nolitio). I have also fonnd
many pebbles of sandstone, basalt, greenstone, jasper, also flints and nodules of chalk, crrstals of quartz, and carbonate of lime. The fossils which I have most plentifully found were Gryphea incurca from the Lias, ostrex, belemnites, ammonites (scarcely ever entirc), tercbratulx, serpulx (three different species very abundant), choanites, and sponges from the chalk; echinites, portions of the stems of encrinites, and pentacrinites, and many shells from the Lias and Oolite*. In some of the pits there are $n o$ fossils at all, the gravel consisting mercly of an aggregate of flints and pebbles, with a ferruginous yellow sand.

The scenery of this part of the comntry around which the Oxford clay is developed, is as uninteresting and devoid of beauty as can well be imagined, the ouly variation to the low flat fields being the distant riew of the Bedford hills. A long and drears raller, through which the river Ouse flows, extends sereral miles up the country, from Gayhurst to Olnes. But on the other side the limestones of the Lower Oolites break into gentle nudulations and hills; in some places the scenery, for a roodland country, is quite picturesque. I have before montioned that forest-marble was much quarried in the neighbourhood of Wolverton; it takes the place of the Cormbrash of the south of England, making its appearance just below the Oxford clar ; it is usually of a blue-grey colour, very hard, and sometimes finely laminated; but the fossils, in which it abounds, are difficult of extraction, owing to the indurated character of the stone. Trigonix, terebratulx, the cones and leaves of coniferous trees, are particularly abundant.

The forest-marble extends from near Lethbury to Gayhurst, near which village we observe the Cornbrash succeerling the Forest-marble. Good sections of this limestone are exposed in some of the quarries.

There is a small stone-pit on the left-hand side of the road, about a quarter of a mile from the village of Gayhurst, in which, besides an abondance of the nsual mollusca of the Cornbrash, I have found good specimens of Echinoderms, principally Clypeus sinuatus, Nucleolites clumicularis, I. orbicularis, and several species of Cidaridx; also palatal tecth of Strophodus mugnus, and traces of fossil wood.

The following sketch will serve to illustrate my remarks on the section displayed in this quarry.

Vegetable soil.

Section of Stone-pit at Gayhurst.
b is a finely laminated fissile limestone, called by the quarrymen "pendle;" it naturally splits into thim slaty plate-like leares, as the Stonesfield slate; but few organic remains are found in it, excepting now and then a fer Trigoniæ. c is a layer of light-coloured clay, abounding in Terebratulæ, Isocardiæ, with many other shells and echinites. This is but three feet thick, and passes into the limestone e, through the medium of an indurated clay marked d, which is also very shelly.

The limestone e is much used both for road and build-ing-purposes, but it is comparatively sterile of fossil remains. In the lowest rock, which is a sandy freestone, Clypeus sinuatus, Clmicularis, Cidaris, \&c.. abound. But few shells are found entire, as they are difficult of extraction, owring to the indurated character of the stone. The Cornbrash extends in a north-mest direction, and is quarried for building stone all around the town of Olney.
The Inferior Oolite next makes its appearance, and is observed near Eckly,

[^38]about a mile and a quarter north-east of the village of Stoke Goddington, forming a ridge of high gromed extending onwards towards Northamptonshire, and having a gentle dip towards the noth-west. There are many quarres in the meighbumbood, where the stone is found of a rubbly oolitic character, very shelly, and in some places merely an aggregate of 'terehratnle, and other shells cemented by a ferruginons sandy limestone. The following is a list of the most characieristic fussils which I have as ret fomed in these beds of Inferior Oulite, Terehmutulae marillata, T. bullatu, lihypnchonella subtetrahedra, Morlioha
 Isuctretia minima, I. concentrica, Ostrea greyaria, O. actminala, Cardium globosum, Pecten glolosum, Lima, de., \&c.

Ilost of the shells are filled with erystals of earbonate of lime; they are casily detachel, and in good preservation. We have now erossed the boindaries of buekinghamshire, and are in the eonnty of Northamptonshire. The country is woodland, and in some plaees very pieturesque. On the west there extends a laree wood called "Salece Forest." It the entrance of this wood there are quarries which onee supplice the whole of the surrounding eonntry with "metal" for the roads. The limestone apparently belongs to the upper bed of the (ireat Oolite ; but on aceount of its exceeding barremess in fosisils it is difficult to determine its exact genlogical position. The satme stone is found at Hantwell, Han-lope, and near Castle-Thorpe, sueceeding the Forest-marble, The only fossils that have been found in these sterile beds are oysters, a few Terebratular, (wor or three Echinites, and slight traces of vegetable-remains. It is remarkahte (hut I belisere frequently the case in the "great oolite") that although the stone seems atmost wholly composed of comminuted and broken fragronents of shells, yet few entire ones are here found.

But in rever to the huferior Uolite, by far the most interesting formation of this neighbourhoot. We find it again at the village of Piddington, oremtring the lias of Northamponshire; an very characteristic shell here is Pholadomya lyoutu. It becomes very ferruginous in places, being of that peculiar colone always indicative of oxide of irom. The top beds on aceount of their rubbly character are of little or no ralue as huildingestone, the only use to which they cen be put is that of mending the roads; but undencath the beds a much harder and more indurated stone is found. This consists principally of T'erehratuke, with a ereat deal of spar or erystallized carbonate of lime. This limestome beromes very weful for butdingessone. The order of the suecession of the lityers in most of the quaries i.s as follows:-

1st. Soil.
2nd. A shell bed, consisting of various shells in an argillaceous and in some places a rubhly matrix.
Brel. Soft grilty limestone, with im ahmmaner of shells, \&e.
Hh. Sudy linmome, whit fen fossils.
Sth. Lower beds, with erystallized carbonate of lime, as above described.
I reerel that my limits will not allow of any further particulars eonecming the epeologe of this patt of lingland. I an alsin sorry that I camot tomeh upom B.te Liasues stratia, whele sumededs the Inferior (holite. But I trust that it will mot be imatrimed that I hate nearly exhansted the sulyeet: while 1 hope that this shore ame rather cursory shetrob may induee othere to visit our mather out-of-the-way rparrixs ; and althomerh they may not be so interesting as theose of The Soulli of Enclamd or of Sorkshire, in print cither of the variety or quant ity of their orcmac remana, there is still a charm in movelty.-I. H. Macabster, moke findingtom, lincks.

Remains of American "Missourium" Assoclated with Flint Imple-mexts.-Dear Sir,-If you hare not seen the enclosed "Description of the Missourium, or Missouri Leviathan, together with its supposed Habits and Indian Traditions," by Albert Koch (London, E. Fisher, 1841), it will perhaps interest you, as bearing upon the flint-implement question. You will find the notice of flints at pages 22-24. The part of the pamphlet about the "Leviathan" is purely a myth, or a puzzle, which any one may accept or reject as he pleases. The account given by Mr. Kock is as follows :-
"This gigantic skeleton measures thirty feet in length and fifteen in height; the head measures, from the tip of the nose to the spine of the neck, six feet; from one zrgomatic arch to the other, four feet; from the lower edge of the upper lip to the first edge of the front tooth, twenty inches; from the front point of the lower jaw to the first edge of the front tooth, eight inches; from the edge of the upper lip, measuring along the roof of the mouth to the socket of the eye, three feet; from thence to where the atlas joins the head, ten and a-half inches. The whole number of teeth is eight-that is, four upper and four lower, not including the two tusks. The two upper fore-teeth are four inches broad and four and a-half inches in length, and are situated in the head in such a manner that they slant towards the roof of the mouth, insomuch that their outer edge is one and a-quarter inch higher than their inside edge. The back teeth in the upper jaw are seven inches in length, and where they unite with the front teeth, they are like those four inches broad, and from thence run narrower back until they end almost in a point (p. 7). * * * The bones were found by me near the shores of the river La Pomme de Terre, a tributary of the Osage river, in Benton county, in the state of Missouri, latitude forly and longitude eighteen. There is every reason to believe that the Pomme de Terre, at some former period, was a large and magnificent stream, from one-half to three-fourths of a mile in breadth, and that its waters washed the high rocky bluffs on either side where the marks of the rolling surges are now perfectly plain : they present a similar appearance to that of the Missouri and Mississippi. It appears, from the different strata, that since the Missourium existed, six or seven diffcrent changes have taken place here, by which the original bed of the Pomme de Terre was filled with as many different strata, which are as follows :- The original stratum on which this former river flowed at the time it was imhabited by the Missourium, and up to the time of its destruction, consisted of quicksand: on the surface of its stratum, and partly mingled with it, was the deposit of the before-described skeleton. The next is a stratum from three to four feet in thickness, consisting of a brown allurial soil: in this all the remainder of the skeleton was contained, and covered by it. This stratum was mixed with a great quantity of vegetable matter, and most of this is in a wonderful state of preservation; but what is still more surprising, all the regetable remains are of a tropical or rery low southern production. They consisted of large quantities of cypress burs, wood and bark; a great deal of tropical cane and tropical swamp moss; several stumps of trees, if not logwood, yet bearing a rery close resemblance to it; even thie greater part of a flower of the Strelitzia class, which, when destroyed, was not full blown, was discovered embedded in this layer; also, several stems of palmetto leaf, one possessing all the fibres perfect, or nearly so. To those Who are not acquainted with the nature of this plant, it is well to remark that it is not found at present farther north than the northern parts of Louisiana. The time when the revolution of the earth took place, during which this beforedescribed animal lost its life, was between the 15th of September and 20th of October, which is proven by the fact just mentioned of the cypress burs being found; from which circumstance it might be readily inferred that they had been torn by force from their parent stem before they had arrived at perfection, and
[supplement to the "geologist," No 41.
wore intolsed in one enan rom ruin with the tress which bore them, these haringe

 was is -ient of indiation of any very lares trees, the cyproses that were dis(abered heing the largest that were growing here at the time. Thengh this stathen rath several beint of iron-me-suthecent evilence of the antignity of this depont. Lmmediately orer this was one of bhe clay, there feet in theknese: the next was ne of gratel from nine to eightren inders in thiekness, so hare compreseal together that it resembled puddingesome; the next was a layer of lieht hinn elay, from theer to fomer feet in thekeness : on this was another strathen of gravel, of the some thekess and apparamee as the one first mentioned: this was sueceeded hy a layer of yellowish myy, from two to three fred in thickness ower this, a third hayer of eravel, of the same appearance and Shekness: and, at last, the present surfare, eonsisting of a hrownish clat, minghed with a few pebhles, iml covered with large oak, maple, and chm trees, which wore as neat as I crmbld ascortain, from rishty to a hunderd years ohel. In the cemtre of the abovememtioned deposit was a latere spriber which appeared 10 rise from the very bowets of the carth, as it was merer afferted by the severest rain, nor did it berome lower hey the longest dronght. Thant two hondred yards from said denosit stands it singularly formed rock, which mot only lenis the appearanes, lmt may be ennsibered as a momument of ereat amtignity, formed hy mature, against whose rongh and rugged sides ean be dis-
 vel it sumait is lull thity feet abovelle present level of the Pomme de Torre. "The reck has the appearame of a pillar, on whase tope rests a table rook fare pmonetinf now on chary side: from the base of the pillar to the thwer edre of the table in thirty fet, and from the bane dewn to the depmsit of the homes is sivern foem makiug, from the stathm on whish the bones were themented to the edere of the table fonty-sis feet. liy a mimute and close exandiation, I fomb that the formation of the sand rock, as it mow appears, was preduced by the lone ace iom of the river agamet and armmel it a fand had the river montinull to act with the same fore for one or two hamdred years lonerer, the pillor wemld heme been as far worm nway, that the tahle mut have fatlen. If mow stambs as an indi-putahle witmes. that the water, at the time these animalasiond, was at leat forty-sid fere in depth It is perfectly true that
 equalle trace that genemally these traditions are fomded on ewents wheh have

 geterntion to comeration: hat in the comme of time, as might. reasmably be

 Is I an ernatrainal in eonfore menerk within vers ciremseribel limits,

 owning io a troditi 11 pricirnd hy them, whieh they stated as follows:-There wat a time whom the Inthen fied Hed their eatoes over the now extensive

previously occupied the country became very angry, and at last so enraged and infuriated, by reason of these intrusions, that the red man durst not reuture out to hunt any more, aud was consequently reduced to great distress. At this time a large number of these huge monsters assembled here, when a terrible battle ensued, in which many on both sides were killed, and the remainder resumed their march towards the scttiug sun. Near the bluffs, which are at present known by the name of the Rocky Ridge, one of the greatest of these battles was fought. Immediatels atter the battle, the Indians gathered together many of the slaughtered animals, and offered them on the spot as a burnt sacrifice to the Great Spirit ; the remainder were buried by the Great Spirit himself in the before-mentioned Pomme de Terre, which from this time took the name of the Big Boue river, as well as the Osage, of which the Pomme de Terre is a branch. From this time the Indians brought their rearly sacrifice to this place, and offered it up to the Great Spirit as a thank offering for their timely delirerance; and more latterly they lave offered their sacrifice on the table-rock previously mentioned, which was he'd in great veneration, and considered holy ground. This ceremony was kept up with the utmost rigidity uutil one of the white emigrants settled in the valley at the foot of the rock, with the intention of making himself aud family a permanent residence on this fertile spot: but he did not long eujor this beautiful situation, for on the return of the Indians to offer their wonted sacrifice, they beheld with indignation and astonishment the intrusion of this venturesome settler on their sacred ground. Soon the eomeil fire was kindled, when the Indians gare their accustomed murmur of dissatisfaction, and immediately the white man was obliged to leare, without the least preliminary ceremony. Some time after this, on becoming better acquainted vith his red neighbours, and haring through much persererance gained their good opinion, atter much reluctance on their part, and explanations and assurances that he would not infringe on their sacred privileges, and mould ouly raise corn and potatos for his family, he was ouce more perriitted to settle on this sacred spot, of which lie retained paceable possession until the returu of some old chiefs, mho had becu for a loug time absent. They in turn were exasperated to madness on seeing the violation of the sacred ground of their forefathers by the cncroachment of the white man, and again the poor farmer was obliged to leave. From that time this spot remaincd in the hands of the Indians, and no entreaty or allurement could be held out to induce them to resign it, until they were removed by the government; it then for the third time fcll iuto the hauds of the original settler, who joyfully took possession of the place he had so loug desired to make his home. After a while other settlers arrived, and as the want of a mill for grinding their different kinds of grain began to be felt, each family having litherto been obliged, in order to obtain a supply of meal, to resort to the laborious process of pounding their corn in mortars, the old farmer resolved on building a tub-mill for the accommodation of himself and his neighbours. Iu order to procure the necessary water power, the aid of the before-mentioned sprung was brought into requisition; and in making the necessary excaration, the labourers found several bones of young mastodons, which excited their curiosity and astonishment; but they suspended their labour on ascertaining that the force of the said spring was not sufficient for their purpose. Soon after this the place mas sold, and the excitement about the bones and the Indians was forgotteu until the summer of 1839 , at which time a young man, who was employed to cleau the said spriug, found the tooth of a mastodon during his labour, mhich occurrence reminded sereral of the old setilers of the former transactions and traditions, and a marration of these induced a few persons residing in that vicinity, out of mere curiosity, to make further examination as to what was contained in the spring. They sncceeded in finding sereral
bones and treth; but the mud and water accumulated so fant, they soon became discomatged with the dillientie's attending the searels, and give it over. Some of these facts eame to my knowledge in Mareh, J V 10 , on my return to S . Louis from an excursion to the south-western patt of the country, when I iumbediately repaired to the spot, and found the facts as I have here stated. * * * It is well known by all persons acquanted with geology, that is admitted as a fact, that the mastodons, together with the generality of antedilavian amimals, existed and became extinct previous to the ereation of the race of men; which supposition was founded on the fact that no evidence of homan existence could be traced back to, or found with, those antediluviau anmals. The positive canse of this I do not know. My opinion, however, is that this want of evidence of in former haman race is, that those relies of the ancient animal workd generally have been found aceidentally by persons who were not aware of the importance of a minute and critical examination of the deposits disintered by them, and therefore the secentilie observer was deprived, no donbt, often of the facts necessary to be known in order to form correct opinions on this sulject. In view of this I deem it my duty to lay before the workl what facts I have been able to gather on this interesting subject, which will be strong evidence in favour of my belief, that there was a human race existing contemporary with those animals. These facts are as follows:- - In Octuber, 1435 , I dismerred the remains of an anmal which had elawed feet, and was of the size of an clephant. This deposit was in Gasconade county, Missouri, on the shomes of the lurbois river. The principal part of this mismal bad been ronsumed by itre, whieh tire evidently had not been produced by a voleanic eruption, but had been formed and kindled mechanically her human hands, as it appeared, for the purpose of destroying the before-mentinned animal, which had been mired here and was unable to extricate itself. The particulars of the transaction are as follows. A farmer in Gasconade comnty, Missouri, perecived for some time a disagreeable taste in the water which he lad used for his househehd. The water was laken out of a clear spring, situated in what is usually called a bottom, near his house. for the purpose of remedring this evil, he dur aromel and into the spring, thas to be enabled to enclose if atterwards as a well. biy doing so, he found several hones belonering to an mimal of an unsuatly large size. Some were whote, and some in traments. Also, at the same time, he found a stone knife and :an ludian axe. 'O lis eirenmstance created some excitement in the neighbourhood; and these transactions were mentioned to me some time afterwards by a Mr. Wasla, who lived in the vienty. On hearing this, I immedintely made arrangenmens to proceed to the place. On my arrival there, in Oevolere, 14:34, I foumed the prosperels rather dull, as the boucs which had been dug ont of the sprine were princelpatly destrosed. They had been remoned fom their phaer of cmbedncent withont Hhe leant care, and were, of conrse, more ore less broken; thrat exposed to the air without any kind of preservation being applied 10 them; and crontatlly what few remained tolerably whole, were hrohen by their eurions visitors, to ascertain if they contained marrow; matil the fiew remaning fragments were colleeted lugether ly an intelligent gentleman, by the mane of Bailey, residing in the neightuenthent, whoperented them to me, and ansinted me in my farther rusareles. I foumed, nine fee benrath the surface, a layer of ashes from six (1) twelve inches in thiekness, mingted with charcoal, large pieces of wood partly burned, toguther with Indían implements of war, ns stone arrow-heads fomatawks, de, dee. Also more than one lumedred and fifty picces of rocks bargine from three 10 twenty-five pounds in weight, whicfi must hate bren rarricil here from the reck! shores of the Burbois river, a distance of three lendred sards; as there was no rock, stones, or erell gravel bear to lee found, and as those pieces of rucks taken out of the ashes were preceisely the sume as
that found on the river, which is a species of limestone; these had been thrown evidently with the intention of striking the animal. I found the fore- and hindfoot stauding in a perpendicular position; and likewise the full length of the leg below the layer of ashes, so deep in the mud and water that the fire had no effect on them. The fore-foot of the animal consists of four toes and a thumb; each toe has five joints, each last joint was armed with a claw, or long nail. The thumb has two joints; the crown of the foot is composed of four bones, joined together, and each comected to a toe. On the top of this is a thin round bone, connecting them with the shin bonc. The construction of this foot shows that it posssessed much power in grasping and holding objects. The hind-foot is smaller, and has also four toes, with five joints, but has no thumb. The crown is entirely different in construction from that of the forefoot. A few of the teeth appeared to have becn broken out by the force of the rocks thrown at the head or the animal, and were carried some little distance; so that they escaped in a measure the violence of the fire, and have all the appearauce of those of a carnirorous animal. The secoud trace of human existence with these animals, I found during the excaration of the Missouri Leviathan. There was embedded immediately under the femur or hind-leg bone of this animal an arrow-head of rose-coloured flint, resembling those used by the American Indians, but of a larger size. This was the only arrow-head immodiately with the skeleton; but in the same strata, at a distance of five or six feet, in a horizontal direction, four more arrow-heads were found ; three of these were of the same formation as the preceding; the fourth was of a very rude workmanship. One of the last-mentioned three was of agate, the others of blue flint. These arrow-heads are indisputably the work of human hands. I examined the deposit in which they were embedded, and raised them out of their embedment with my own hands (p. 21-24)."

I have risited a drift-bed at Aylesford, but have not succeeded in getting any flint implcments, excepting questionable arrow-heads. Molars aud tusks of Elephus primigenius are frequently met with, but I have not yet realized my desires in respect to weapons, even with the assistance of my boys, whose eyes are sharper than my own. I hope, howerer, to do so.

In the Charles Museum we have a flint celt of orthodox type, like that drawn in the "Glologist," fig. 37, p. 19. This specimen was found at the top of the chalk escarpment, abore Kit's Coty House, and was lying in what is termed a "pot-hole," near the surface, and associated with other flints, as they are usually seen, in great abundance. The "pot-holes" I beliere to be caused by the subsidence of the clay and flints into sandpipes of large area. I intend visiting this locality again, and if ansthing worth notice turns up, I shall communicate it.-Yours very truly W. H. Bensted, Maidstone.

Geology of Cadiz.-Sir,-Would you kindly refer me to any books or memoirs in which may be found some account of the Geology of Cadiz?-Yours, \&c., Sebastiay Baggs.

We cannot find any work descriptive of the Geology of Cadiz. This city is situated on the Tertiary beds, which form part of the Guadalquiver basin, as may be seen by reference to either Dumont's or Murchison and Nicol's Geological Map of Europe. It would be adrisable for any geologist risitiug Cadiz and its neighbourhood to compare the rocks aud fossils scen there with the description given of those in Grenada and Murcia by Silvertop ("Geological Sketch of the Tertiary Formation in the prorinces of Grenada and Murcia," \&e. 1836) ; and by Ansted (Quart. Journ. Geol. Soc., vol. xv, p. 585, \&c.).

Errata in "Geology of Athlone."-Page 169, 17 lines from bottom, for "any small, \&c." read "my small, δ ec."-Do., 11 lines from bottom, for "Italy" read "Slaty"-p. 170, 7 lines from top, for "parallel, crosswise" read "purallel or cross ways to"-p. 171, under woodent, for "strike north and east" read
"morth cand sumll"- the same page read "A Neligan's folly." In the list of fossils read ". Iatienpsis Plillipsii," and "Iovomemut"-G. R. V.

EkRata is Huttos's Revew of Mr. Dakwn's Theoks.-Page 13z, line scem from bottom, for "rare" reat " same,"- p. 13t, line 31, for" watched" reat "mutched"-p. 135, line 12 for "have" read "hes"-also, line It, for "larger" read " longre"-p. 13ti, line 29 , for "but in the Pampean mud" read "Gut the Pampron mull."-F. W. 11.
(ienlogy of Clevedos-sir,-Will you kindly answer the following question through the medinn of your valnable "Noites and Queries." 1. What strata are developed at Clevedon, near Bristol. Especially can you inform me Whether magnesian-limestone is one of them. 2. Whist at Ashley, Altrincham, Cheshire, in 1460,1 found the fussil of which 1 cuclose drawingsWhat is it? It was diseovered in a plonghed field on what appeared to me to be drift. 3. Are those echini foum in gravel flint-casts of the interior:J. C. C., Dedham.

1. Clevedon Hill consists of Mountain-limestone, and some sandstone belonging to the Coal-measures. See Mr. 'Trimmer's paper on the gravel hying on Clepeland down, in the Journ. Geul. Soc., vol. ix., p. 242, de., where a section of the hill i s given with much interesting information about the brift-gravel of its vicinity. 2. We camot say what the speemen is from the fighere sent to 11s. 3. Yes.
 Ahout two or there years simee Jrof. de koninck fisened and described these fossils from the original specimens in the magnilicent collection of Mr. Joln (iray, of llagley.

Before deacribing these species, he reviews the labours of patrontulugists with respect to the gemes to whidh they belones.

The gemns (hiton was established by Limatus in I754, for a smull mmber of lising specties, and it remaincl for a long time unrepresented by any fossil forms.

It was mot matit isnet that the first species of fossil Chitom was disenveret by 1) framee, and deseribed by Lamarek in the "Amalles du Musem" (t. I1, 1). 3099), mader the name of cibitun Cerignoniensis This sperifie name, derived from a locelity long fanoms for the abmanec of its fossils, sulliciently proven that speries belong to the Calcaire grossier of Paris, that is to the middle beds of the tortiary formation.

In 14:31, IIr. Conrad notieced a species, C. antiquus, from the tertiary rocks of Dahama.

Abeut In.3g M. Puzus and the Count Whehastel diseovered some renains of (haton in the ('arteniferous limestome of the emvens of 'Tomatys. These re-
 and ligured in 143!!, in the betragesesur- J'etrefahtenhumde (1. p. 54), muder the name of r'hiton priserus.

Tonards the end uf 1410 M . (inido sandlemger annomed the probable
 the same geoberist dearrabed from it twe new speries, muter the name of $($:

Ohe of theo is probably identical with that wheh Mr. Fired Rocmer has con-
 de -ignated in It is is 6 C curiffiontars.
11. We Koming dear ribed, in 14 15 , three new speries of this gemus from the Carbonifaroms lamestome of Betyimit, to which, in 14 \{5, Baron liychholt added

[^39]
some others discorered by him in the same formation. This sarant madic known at the same time the existence of a Chiton in the tertiary rocks of Italy. This species, the knowledge of whieh is due to the researches of M. Cantraine, professor at the Unirersity of Ghent, will be described by him under the name of C. subappeninus, in the second part of his ' Malacologie Méditterranèenc et Littoralis," muless it should be identical with that of the enrirons of Turin, published in 1517 by M. Michelotti, under the name of C. miocenicus.

Before the publication of Baron Ryckholt's work, Mr. King had already amounced the presence of a Chiton found by M. Loftus in the Permian beds of the environs of Sunderland, and described afterwards under the name of C. Loftusianus. On the other hand, M. Philippi had made known two other species C. siculus (Gray), and C.fasicularis (Limmæus), from the tertiary formation of Sicily.

To all these discoreries Mr. Salter, in 18 46 , added another, not the least remarkable, that of a species of Chiton, in the inferior Silurian strata of Ireland. This author proposed on this occasion a new genus under the name of Helminthochiton, destined to receive solely the palrozoic species; but as the proposed genns is not distinguished in any essential characteristics from the ordinary genus Chiton, Prof. de Koninck considers it useless; and at most it could only serve to designate a section from the last.

In 184S, Mr. Searles Wood described and figured in his magnificent "Monograph of the Mollusca of the Euglish Crag," three species of fossil Chitons, of of which one was new C.strigillatus; and the other two identical to species now living in our seas, C. fuscicularis (Linn.), and C. Rissoi (Payr).

About the same time M. Eudes Deslongchamps, to whom science is indebted for a great number of excellent works upon the Jurassic fossils of the environs of Caen, discosered in Bathonienne beds at Langrune the postcrior or anal plate of a species of Chiton, which he dedicated to M. de Koninck. This was the first discorery of the gemus in the secondary rocks.

In 1552 M . Terguem added another link to the chain, which bound the palæzoic Chitors to those of our orrn epoch, by the discorery of another new species, C. Deshayesii, in the middle lias of Thionville.

Lastly, M. F. A. Roemer, described and figured in 155̆.̆, a new species of Chiton, C. lecigutus, from the upper division of the Devonian formation of the environs of Grund ; and figured another, without naming it, and for which De Koninck has proposed that of C. tumidus.

The following is a list of all the fossil Chitons known to this day, with the geological formations and localities where they have been found.

Upper Tertlary.

1. Chiton siculus, Gray. Sicily.
2.——fascicularis, Linn. Sicily, Sutton.
2. ——Rissoi, Payrandeau. Sutton.
3. - strigillatus, Wood. Sutton.
5.-_\{ miocenicus, Michellottti. Turin.
4. suljcajetanus, Poli (ex fide d'Orb.). Turin.
5. - transenna, Lea. Tirginia.

Lower Tertiary.
S. -antiques, Conrad. Alabama.
9. - Grignoniensis, Lamk. Grignon:

Great Oolite or Bathonian:
10. Chiton Koninckii, Endes Deslongch. Langrune,

Lias.
11. Chiton Deshaysii, Terquem. Thionville, Permian. (Sce appendix on the additional Permian species determined in 155S, by A. Kirkby.)

From an inspectiom of this list, not withstanding their relatively small mmber when eompared with living species, the Chitons have their representatives nearly thenmentent the series of sedmentary rocks; and that up to the present it is conly in the cretaccous and jurassie formations that no traces lave been diseovered. Withont doubt, this gap will be snon filled u; for it is not probable that animats, of which the first appearane dates bark, so to speak, to the epoch in which life commenced, shonld have had their mee extimet for two geological pertods, the duration of which was not less than that of most of the others which preceded or followed them.

This list demonstrates, morenver, that next to the fertiary formation the earboniferems depesits seem to contain the greatest mumber of species; and that the intermediate beds furnish the least. Two new species next form the subjeet of a notiee from Professor De Koninek: one he dedicates to Mr. Julm Gray, it discoverer ; and the other to Dr. Wright, of Cheltenham.

Iin Mareh, 1559, Mr. I. IV Kirkhy, of Bishopwearmonth, deseribed some now species of Permian Chitonidar, in a pioper read before the Geological Soecty of L,ondon,* namety, Chitour cordatus, Chitomellus Huncombivanus, and Chitonellus dishortus. He nlon rerised the deseriptions previonsly given of Chiton hoflusi"unus, King, and thiton Ihucsoanus, Kirhliy; nlso of chitoncllus antiqumes, IJowse. sp.

The specimens which supplied Mr. Kirkly with muterials for these determinations were all from the magnesian limestome of the neighborhood of Sunderland, in Dirliam, and chefly from Tumstall Dill.

Mr. Kirkhy allute in his paper (Op. (it., I. fill) to the great similarity that some of the plates of these fossil Chitms have at first sight to Patelle and folyptrion, ind recommends that sperial care should, therefore, always be taken in the determimation of patelliform fossils.

[^40]
THE GEOLOGIST.

JUNE, 1861.

PROJECTED EXPLORATION OF ICELAND BY THE ALPINE CLUB.

We are glad to find this interesting and little-known country is likely to be visited by some of the members of this enterprising club. The address recently delivered by the Vice-President, Mr. William Longman, now lies before us, illustrated by a neatly-executed map of the wild volcanic island he seeks to bring, in a special manner, before scientific notice. It is quite surprising to think that a country so rich in the physical phenomena of moving glaciers and active volcanos has "never been explored or even visited" by any traveller who has made a study of such great causes of surfaceaspest. Certain work has, however, been done, and what records of it we have been able to meet with are appended to this article. Most of them are books available for study, and for this special work perusal of them will be nseful, as no doubt a goodly company of physical geologists will answer Mr. Longman's call ; for existing glacial conditions in Iceland are more likely to aid them in learning: the operations of the post-pliocene glacial ezas, which in Britain have left such abundant records of their existence.

No one who has read the last "Edinburgh Paper," by Mr. Robert Chambers, "Ice and Water," can fail to see how greatly our comprehension of the recent arctic condition of the British Isles will be
aided by examination of that icy fringe of the northern zone, which has of late so materially influenced our climate, as if we were again menaced with a somberly extension of polar ice.

The geulogical valne of the study ot Icelandic glaciers is well set forth hy Mr. Lonmman, when pointing ont the heaps of sand and clay bedded in their substaness, which, when the progressive motion of the grlacier from the jükull or iec-mountain is stayed, are seen to form "catenation of small hills round its base"-features in the natural armangement of surface-material to be paralleled in the monntain-districts of Wales and Cumberland.

And although these histories of arctic and sub-arctic conditions come in at the close of the geological record, yet they are by no means insignifieant in their operations, nor were they slight in their duration.

The Pleistocene age of Scotland is shown by the researehes of Mr. Chambers to contain within its limits seven periods, marked hy distinct deposits, each the result of an important physical alteration of surface-aspect. The descending order of these, ending with the deposition of the boulder-clay which inangurated aretic conditions, is thus stated by him:-

1. Vegctable soil-mosses.
2. Ancient sea-margins-erratic blocks from sub-aïrial glaciers.
3. Ancient valley-glaciers and moraines.
4. Beds of sand and gravel.
5. Upper lomlder-elay, marking a short but violent sub-aqueous ghacial drift.
fr. Deposit forming brick-clay, witl sandy beds and gravel.
6. Boulder-clay; laid by sub-aqueons glacial conditions, with moraines of ice.
Most of these wre continned into Englame or have their egnivalents there, and are now, from the nature of their contents, attracting the chief attration among genlogical ohservers. The ancient flint-weapons and implements fashioned by human hands come from the gravels of the fourtlo and sixth periouls, funt, indeerl, there is renson to beliese, were in nor by hman inhabitants of high grounds during the seventh or truc boulder-clay period, at the time that wide-spread deposit was heing laid in the valleys.

But the observation of modern glacial conditions in Iceland is not the only way in which existing phenomena cau be used with advantage in the interpretation of by-gone history. The formation of the gypseous and saliferous marls of the Triassic series is very imperfectly understood, and nowhere so well as in Iceland can be seen the operations of mud-springs charged with muriates and sulphates, such as form the well-marked features of the "red marl" deposits of England, and which may have resulted from some such operations of subterranean heat.

The war between Huttonians and Wernerians is not quite so fierce now as when Sir George Mackenzie, himself a stout supporter of the great Scotchman, visited the volcanic tuffs and scoriæ of Hecla ; but many igneous minerals are yet unsolved, and very good help may be given by a careful study of the "Pearlstones," silico-aluminous deposits, and others so abundant in the rolcanic regions of Iceland.

Again, another field of observation was opened seventeen jears ago by Prof. Ehrenberg, and has not, to our knowledge, been entered by any one since. Volcanic products erupted from the craters of Iceland have been carried in the shape of "meteoric dust" to a distance of five handred miles. A good example of this is the case of the ship "Helena" of Copenhagen, covered with a layer of ashes and dust when at a distance of fire hundred and thirty-three English miles south-east of Hecla. To this mountain, then in eruption, the cloud of wind-blown rolcanic matter was traced, and the result showed that the same silicious-shelled infusoria contained in it were also to be met with in the dust whick had settled upon the flanks of Hecla, and by colour, appearance, and contents, the transported dust was identical with that which had settled upon near-lying places.

In connection with this, Prof. Ehrenberg suggests that it would be of the utmost value to secure samples of dry ashes of any kind that have not been wetted since their eruption; and that if any traveller in the volcanic region was fortunate enough to be upon the mountain while ash or dust of any kind was being emitted, it would be important to secure a specimen of such deposit before it had been subjected to atmospheric or aqueous influences, so that the important question may be settled whether organic bodies do exist in matter emitted from rolcanic rents.

Other questions, the settlement of which is desirable, will no doubt suggest themselves to those geologists who join the expedition, but the abore-mentioncd seem to us specially worthy of an onward stage, and we do not expect that to the seience-loving members of the Alpine Club they will be suggested in vain.

List of Books relating to Tcelandic Geology.

UTno Van Troil. "Letters on Iceland." London: 1780.
J. Wilson. "Notices respecting the Geology of Iceland." ("History of Momntains," vol. 3. p. לै, et. seq. 1810).
Sir George Mackenzic. "Travels." Edinburgh: 1811.
Ohken (İent). "Mémoive sur les jets d'eau bonillante du Geyser et du sitrok 1slande." ".Journ. des Mines," tome 31, p. 5, 1812. ("Trans, Ac. Roy. Sci. Copenhagen," 182.5).
W. J. Hooker. Notice of his "Trawels in lecland." Taschenbuch van Leonhard. Rwolfter Jahrgang. 1818.
Menge. "Notice of a Mineralogical Jonrney through South, North, and East Iceland." ("Edin. Pliil. Joum.," vol. ii., p. 156. 18:0. With map.
Sir G. Mackenzic. "Observations on Menge's Aceount of his Mineralogicał Journcy." ("Edin. Phil. Journ," vol. ii., p. 249, $1 \times 2(1)$.
Dr. Furchhammer. "Account of a Voleanic Eruption in Iceland." ("Amn Phil.," vol. xix., p. 101, 182.2. New Series, vol. iii.).
"Notice of the Geonlngy of Iceland." ("Siliman's Journal of Science," vol. xxii., p. 13, 18:3).
M. Robert. "Remarrunes sur la disposition des conelees basaltiques de l'slande. ("Comptes Remdus;", Jan. Juìer 18:34. 1'. 87).
Bunsen, Irof. "U'eher dic Procepe der valkanischen Gesteins bildungen Islands." (1810., pp. 76).
Bunsen, I'rof. "Ueder den innern Zasammenhang der psendoval Kanischen Eischeinungen Tslandes." ("Annalen der Chemic and Pharmacie," vol. |xii., Bet. 1).
Sarterins v. Waltershansen. "Geologischer Atlas ron Island." Goettingen: 18:33. ("Frlanterungen zum Geologischen Allas von Island.") Ibid. 1850.
Henterson's Iceland.
Forbes's Iceland.

A LECTURE ON "COAL."

By J. W. Salter, F.G.S.

(Continued from page 183.)
I stall now give a few out of many specimens of coal, to show its composition, and so look at it in a practical point of view. For ordinary purposes, there is no doubt the "best" is the best; but whether that best is Welsh, or Newcastle, or Scottish, I do not pretend to say; for the varions kinds of coal are suited for different purposes, and what may be refuse in one direction may be of the greatest use in another.

In experiments undertaken with a view to determine what coals were best suited for our steam-navy, Sir Henry de la Beche and his associates tried nearly all the kinds known in Britain, and compared them too with those artificial fuels which are made up from coalrefuse, and are extremely valuable in their way.

I can only give a few examples, and shall refer my joung readers -they are older now than when the lecture began, and will not mind a little dry study-to the book itself, if they require more information.*

They tried these coals to see how much they held of carbon, which supplies the heat; of hydrogen, which gives the flame; of oxygen, which is worse than useless in the coal, though essential in the air that is to support the combustion ; and, lastly, the quantity of ashes left after the coal was consumed. Because it is clear that the coal which will give most heat, and make least smoke, and leave the least quantity of ash, provided it be not troublesome to manage, must be the best coal to burn.

Now, our steam-navy coal requires all these good qualities. It must have the strongest heating power for the smallest quantity, and the less smoke it makes the better; for that is not only all wasted carbon, but it betrays the position of the ship, when we would fain keep our enemy in the dark as to our movements. Moreover, it should be a coal that does not break or fly to pieces very easily; for the rolling motion of a ship in a gale is very trying to the materials in her hold. Nor is a coal that burns too quickly, and makes the bars white hot, quite the right thing for men to stand in front of, for a stoker with such a grievance might make sad havoc with the engine. All has to be considered; and I believe the government has rejected Welsh anthracite (so good for furnaces), and taken, in the main, Welsh caking coal. Out of three hundred thousand tons

[^41]nsed hy them in 1860, nearly one hundred and ninety thousand wero Welsh coals.

The various qualities stand as follows; beginning with those which lave the greatest heating power. The column standing before the name shows how many pounds of water can be converted into steam by the nse of a pound of the coal. The colamn C stands for tho carbon; H for hydrogen, which is greatest in the bituminons conls, and by its blaze adds so much to the checrfulness of the fire-side. Those coals that have most of it are caking coals, which is an additional attraction. Who does not like to poke the fire? But when stern work is to be done, and crery ounce of coal is so much added on to the price of iron-then the coal which has most carbon is in request. O, oxygen, is simply a nuisance; for being combined with (H) hydrogen, it forms so much water-a thing to be got rid of before any heat can be got out of the coal.

The best patent fuels have none of it, and Welsh coal has less than Neweastle, and this than Scotch, as the table will show. My own opinion is, that the further you go north, the more it takes to warm you.

Lbs. of Water.	Best Coals.	C.	H.	0.	Ash.
$9{ }^{\frac{3}{3}}$	Welsh Anthracite..	$91 \frac{1}{2}$	$3 \frac{1}{2}$	21	$1 \frac{1}{2}$
10손	Welsh, Ehbw Valo	$89 \frac{1}{3}$	5	$1 \frac{1}{3}$	$1 \frac{1}{2}$
9, 4-5ths	Irish Anthracite	80	$2 \frac{1}{3}$	-	10
75	Newcastlo	$81 \frac{1}{2}$	6	43	3
7	Scotel Coal l'atent Fuels.	742	5	$15 \frac{1}{2}$	$4 \frac{1}{5}$
105	Warlich's	90	$5 \frac{1}{2}$	-	3
9	Bell's	875	5	-	5
-	Wylam's Inferior Coals.	80	53	63	5
8, 4-5the	Welsh, Rock-rein...	75	5	5	11
$8 \frac{1}{2}$	Forest of Dean	732	$5 \frac{1}{2}$	$6{ }^{1}$	10
$8 \frac{1}{3}$	Borneo Coal (Tertinry)	$6.1 \frac{1}{2}$	43	$20 \frac{3}{3}$	71

We see by this table that a large quantity of oxygen and hydrogen relatively to the carbon is a sigh of inferiority; and, of course, a great amoment of earthy matter, or ash, is so too. I will add, for comparison, some substances which are not coal yet.

	C.	11.	O.
Prat (from many analyeea)	6.8	6	33
Lignite (forsil wood and peat)	58	6	27
Bogwerel	57	6	37
Willow word	515	6	41
Onk	501	6	12
Birch	501	6	42
Beech	50	6	43

The result is in ronnd numbers : not quite exact.
But then again, no kinds are useless. A coal that has most hydrogen is best for making gas; and the coke will do for the furnace. Parlour-coals should be more caking than those you allow for the
kitchen, if such a division could be made. And coal that is so bad that no Englishman would like to burn it, may be exported!

And now we must leave the coal, with one extract from a work that is rather bulky, but full of information. Ronald's and Richardson's "Chemical Technology," vol. 1, treats of fuel and its applications, and from this work what little I have to say of the products of coal will chiefly be taken.* From it we learn that in 1855 the fuel used was divided as follows:-

Household coal	19,000,000 tons
Iron works	13,000,000
Steam, gas, \&c.	9,000,000
Export	400,000
	4.5,000,000
Add for Scotland..	7,500,000
, Ireland	220,000
Total	52,720,000

Our present consumption, as above said (p. 60), is about seventy million tons, and for the future it will probably be greater; and this, remember, is all from the older or true coal-measures. The continent of Europe is supplied, in many places, with coal of a later date.

We must look at some of the products of coal:
It seems hardly necessary to allude to gas, for, like the common blessings of light, and air, and health, we are only sensible what a boon it is when we lose it. It would take a chapter by itself. Gas is row made so carefully, and purified so completely from the deleterious things that once poisoned us, that I believe I am safe in saying that the bisulphuret of carbon is the only impurity they do not remore. Even this, I learn, Mr. Bowditch has lately succeeded in doing.

We are told that a country rector in Yorkshire, Dr. Clayton, of Crofton, first discovered coal-gas ; and his letter to the Hon. Robert Boyle attracted attention from the Royal Society-when, do my readers think? -in 1739, fifty or sixty years after! So much for the spirit of discovery at that date. The first person who really used gas for practical purposes, and whose credit ought not to be forgotten, was a Mr. Murdock, an engineer employed by Bolton and Watt in putting up steam-engines at Redruth. He lit up his own house, and afterwards the Soho Works at Birmingham ; and even

[^42]made portable gas to light him home from the mines at night. Whout 1809, the improvement had found its way to London, and one side of Pall Mall was illuminated by gas; and the French, ever on the alert for improvements, lighted parts of Paris with it a few years after. In 1852, four thousand millions of cubie feet were burnt in London alone! and the quantity of coal to supply this was four hundred and eight thousand tons-ten thousand cubic feet or thereabonts to a ton. Boghead Cannel, I learn from Mr. Binncy, produces thirteen thonsand to fourteen thousand feet per ton.
A table of the products obtained during the distillation of coal is given in the useful work we have referted to (p. 567 in vol. 2) ; so that may be consulted for details. Besides the coal-tar from the coke, a number of gases are given off, of which the following are to be found in the gasometer:-

Carburetted liydrogen-the prineipal gas we burn :
Olefiant gas, and some other hydro-carbons :
Carbonic oxide: Hydrogen :
And a very little nitrogen, ammonia, and bisulphuret of carbonthe last a substance they do not as yet remove, though, as above said, they might if they would.
The olefiant gas it is which gives the leright light to gas, for carburetted hydrogen without it would produce a very dull flame.

The carbonic acid and sulphuretted hydrogen are separated from the gas by passing it through lime-water. And then there is the combination of stinks (useful in their way no doubt) which make up the "ammoniacal liquor." I can never real the name of this fluid without a shudder. I have fortmately nothing to do with it, and only have time to advert to a fow of the products gained by the re-distillation of the coal-tar

An eminent Seoteh professor, at the end of one of his instructive courses, was asked by his stulents what suljects he would recommend thrm to work at. His reply was chavacteristic-" Pitch into the residnary phemmena." This is precisely what our chemists have been doing of late years, and that abomination coal-tar has heen mate to yied us up such precions things, that " w re are tempted," say the authors of the book almere quoter, " to anticipate the time when within our nwn borders" -i. e., I suppose, our black horders-" we shall have all the matrrials for warming, lighting, and cleansing, which our age demands."
Thr and conal-n⿰ptha are the products geaned by distilling this coaltar ; and when of conde pitch is removed from the tar,an oil remains of great service in habricating machinery, and the constituents of which, on further distillation, prove to be the same in kind as those in the naptha, shthough fewer in mumber. From both, by precesses too tedions to go into here, they whtain the celebrated Paraffin (or napthaline, as it should the called), creasote, aniline (from which Manve and Mayenta are made), Benzole, and Tolnole, and a number of other -ines and -oles which would not mueh edify those who are not chemists.

They are either hydro-carbons or carbo-hydrogens, as the case may be. And then there are acid fats, Rosolic, brunolic, carbolic, \&c., which are likely to test the skill and research of our chemists for generations to come.

We can glance at one or two only of the more important of these substances.

Paraffine, or napthaline, which, as above said, exists in the coalnaptha, is, however, more profitably obtained by distillation of the celebrated Torbane Hill, or Boghead coal, and some of the Cannel coals, at a dull red heat; though even at this heat only a portion of the oil can be retained, the rest going off in the form of coal-gas. An analysis of an average specimen of the coal is as follows, side by side with an analysis of the pure paraffin itself:-

Boghead Coal.
Carbon......... 60 to 65 per cent. Hydrogen ... $7 \frac{1}{2}$ to 9 " Earthy matter 20 to 25 "

100 parts

Pure Parafin.

$\begin{array}{lll}\text { Carbon } & 84 \frac{1}{2} & \text { per cent. } \\ \text { Hydrogen........ } & 14 \frac{3}{4} & " \\ \text { Loss or oxygen.. } & \frac{3}{4} & " \\ & & 100 \\ & \text { parts }\end{array}$

And by this distillation, paraffin oil, naptha, and pmre paraffin are obtained. The cil, as before said, is used largely for machinery, the naptha for light; so that a railway train may be driven by the coke, lubricated by the oil, and lighted by the naptha obtained from the same cwt. of coal.

From the oil a crystalline substance, which is true paraffin, is obtained by cooling, and when purified by vitriol, soda, and warm water, yields at last the beautiful candles with which most people are now familiar. We can get oil and spermaceti at last without hunting out and destroying the lord of the polar seas.

Such oils and candles are made from other bituminous shales in our own country. Those of Caithness are chicfly bituminous remains of Old Red Sandstone fish! So Miller and Murchison tell us. And his majesty the King of Ava makes most of his pocket-money by sending us the "Rangoon tar" for this purpose.

The only uses that I know of for creasote are curing ham and toothache; for the fluid used for " creasoting" timber is not creasote, but pitch-oil. We have done now with these acrid and tarry elements, and must say a word on the scented ethers which are found in coal.

For, strange to say, in this dark compound of ill savour, lie imprisuned fairy scents which rival the breath of flowers. Their full history may be found in Ure's New Dictionary of Chemistry, or the original papers by Prof. Hoffmann, in the Philosophical Journal. Prof. Hoffmann himself has been a large discoverer in this, as in all other branches of organic chemistry; and I hare heard an anecdote of these researches worth recording here. A lady whom he had admitted to his laboratory while these essences were being manufactured, was so charmed with the odour of hyacinth, that she forgot
all about the lecture he was griving her, and sent him a basket next day, emmed with flowers from the greenhouse, that he might have more material at command. He is equally great in coal-colours, but of that anon.

Perhaps the most valuable product of coal-maptha is benzole, or benzile ($\mathrm{C}^{12} \mathrm{H}^{16}$). The more volatile portion of the naptha has heen shown by Mansfeld* to consist chiefly of this substance, a pale yellow sweetish oil, as inflammable as gunpowder. By distilling naptha in a peculiar way, and at in moderate temperature, first cellioke, then bemande, then tulumbe, pass over suceessively, while the less volatile comphete is left in the water. The first named being the most volatile, and the tohnole least so, yon may get pretty pure benzole by taking what comes midway. By adding strong nitric acid a nitro-benzole is formed, and this was the first-discovered of all these pleasant odoms. It is like that of bitter almonds, and is nsed in fragrant soaps, de. : and it is not absent from the cook's repertury.

Tulnule has the same properties, and from one or other of these snbstances (for they play it grood deal into each others hamds, I am told) a varied set of essences-fruits and flowers-jomquil.hyacinth, tuberose, jasmine, are derived. The fanded "milleflems" is a product of gas reffise. How many gallons of it have been washect into the Thames!

To Hoffimam helongs much of the eredit of the original diseovery of coal-colours obtainable from Aniline. It was he who showed that the best of nll tests for the presence of this substance was the chloride of lime, with which it produced the Magenta dye. Ol' course, intelligent chemists had their eyos open: and Mr. W. Perkins, by a scrics of independent researches, rendered it a commercial product, and France soon gave it a mame-Manve, Magenta, Solferino. Why should bloody vietories be commemonated on our peaceful trimmpis of seicnee? We do not gradge ome neighbors, howeser, their mdoubted scientifie fame; and will give them our hest coal for the probe dration of "Fronch blue' from carbolic aciul. It is now coming greatly into fashion.

By trating Benzole with acctate of irom anition is proshuced. But it is made in many ways; and has received many names- 1 'hemylumine. C'ymmel, Buradmm, ise.

The oil of conal-tar is shaken up with hydrochloric acid, and the dear liguer evapmonted till it begims to deemponse and emit acrid fumes. It is then filtered : potanh or milk of lime is added to separate the acit, and the oils, chifly :miline ($\mathrm{C}^{12} 1^{12} \mathrm{~N}$), and leneet (C^{18} If" N) remain. This mixture is distilled. and the miline is found to past orer at alom three handred amel sixty degrees, finhr. It has to he repeatedly distillenl to get it pure, and it is best to treat it again with acid, seprate this by protash as before, and then again distil.

[^43]The chloride of lime was employed by Hoffimann to test the portions as they passed over; the aniline giving a fine violet colour, while the lencol did not.

The aniline must be crystallized with sulphuric acid to obtain the colour; and the process is thus given in Ure's Dictionary, from Mr. Perkins' account, in brief.
"Dissolve equivalent portions of sulph. aniline and bichrom. of potash in water; mix, and let stand for several hours. Filter, and wash and dry the black precipitate. Digest this in coal-tar naptha to extract a brown resinous substance; and finally digest with alcohol to dissolve out the coloming matter, which is left behind on distilling. the spirit, as a coppery friable mass."

To use it, add a strong solution in alcohol to a boiling solution of oxalic acid, and apply when cold to the fabric to be dyed.

But even this is not the last of the coal-miracles. Teetotal adrocates may keep watch orer every grain of barley; but, alas! we can get alcohol from boghead coal. I never tasted it, nor wish to taste it; but I understand it is jet more sleepy stuff than that from the upper regions. Requiescat in pace.
"There is no end," says Mr. Binney, " to the combinations, solid, liquid, and gaseous, which belong to the chemistry of coal. Who shall say these bodies do not change, the one into the other, under various circumstances?" What may we not learn from their investigation regarding the laws-nay, perhaps, even the constitution of matter? And all that is true of coal and its products may be saidlearing a wide margin-for peat and other fossil fuels. They have the same constituent parts, and are among the best of our earthly treasures, although we have sadly wasted them before we knew their ralue.*

Light, heat, motion, fragrance, and colour-all from coal! What more could the sun himself do for us? Is the heat from below the same with that from above? Robert Stephenson used to say so, and when he saw one of his own locomotives tearing away at the rate of forty miles an hour, would call out, half in fun and half in earnest, "There goes the bottled sunshine."

An acquaintance of mine, who knows coal mines well, gives me the same idea in heroic verse :-

> "'Tis the old sun's heat That now cooks our meat ; 'Tis is his bottled up beam That gets up our steam."

Stephenson was right. It is the light and heat of former days expended in converting carbonic acid and water into coal that is here stored up for man. He can, by again converting coal into carbonic

[^44]neid and water, erolve again that heat and light, and use it in a thonsand ways beneficial to his race; nay, essential to his very civilized existence.
\[

$$
\begin{aligned}
& \text { " Hy heart is awed within me, when I think } \\
& \text { Of the great miracle that still goes on } \\
& \text { In silence round me, -the perpetnal work } \\
& \text { Of thy ereation-finished, yet renewed } \\
& \text { For ever." } \\
& \text { BrYaNt. }
\end{aligned}
$$
\]

I have said little of iron, though it always aceompanies, and is the the very handmaid of enal. For more precions, intrinsically, are these black diry jewets to England, than her silver mines ever were to Spain. "Give me," said Dr. Perey, in his opening lecture to the working men, "the iron, and the coal, and the brawny arm of an Enclishman, and I'll soon have the gold."

In eren a short essay like this there have heen not a few mistakes due to me, and the printers have to answer for a few more. In p. 10. I said the Whitelawen conl-fiedd-a mere strip-supplied all hancashire, omitting altogether the Manchester coal-fiek! I have omitted another point of some importance, viz, the chaim which Prolessor King, of Galway, urges* to have first amounced for Fincliand, the fact that stimmentia was the ront of Sigitlaria. I have looked over Prof. King's statements, and am beund to say that he argues the ease very ably, and that he certainly thonght it was the the root as carly as 1812 , and gave anatomical reasons for so thinkince as Prof. Bromgniart had dome in the "Arehives de la Museum d'Histoire Naturelle" three years before. Prof. King quotes him for these, so that he does not clam originality on this point.

But the lact will still remain that Mr. Bimney, who had been looking out in England for many years to find specimens to establish his opinion. showed to many friends the trees with ronts attached, in the Clay Cross cutting, so far back as 18:9, the same year that Bromgniart predicted it ; and also read a paper on the suljeet at the British Assuciation in 1813. An able prediction is scarcely less fortmate than an actnal discorery; and in this* case they were simultanenus, or nearly so.

Again, Mr. Binney, to whom, more than to any living Einglishman, we are iutchted for what we know of our coal-measures, points ont to me that I have committed the nsual error, in restoring the Sigillaria fres, hy making the ronts start horizontally from the base of the stem. They don not so. The four great tapronts, if they can be so-called, shont obliguely down for some distance, like the instep of a foot, hefore they send ofl the horizontal bifureating roots. The cast of the

[^45]hollow space left beneath these gave rise to the original figure of the dome-shape of Stigmaria, and the idea of its being a floating plant, an idea which has figured in a hundred essays on coal. It is an excellent proof how much our logic may go astray with the premises wrong.

Lastly, as a conclusive proof of the marine nature of coal, the presence of very salt sea-water in it, containing iodine and bromine, might have been, and should have been, adduced.

In p. 13, the printers or I have called paper coal "dysoile", instead of dysodile.

In p. 183, I am made to say that plants give out less carbonic acid at night than they take in (by day). The words in brackets should not be left out.

But if I attempted to fill up all my own omissions I should fill this number. The greatest fault of all is to have talked in $p .13$ of finishing in the next number or so, and then extend over half the year.

A subject of such vital national importance ; a traffic which employs directly half a million of our countrymen; and whose yearly value, as raw or manufactured material, represents such enormous capital, cannot be a subject of indifference to any man.

The question whether we can afford to go on digging away at the present rate, or even a greater one, and exporting to other nations as well as keeping up our own steam, has been already answered by my friend, Mr. Hull, in his excellent little book, "The Coal-Fields of Great Britain."* His results are summed up in the last page, and may be briefly given.
" 1 . There is coal, at varions depths, over much larger areas than our maps give, down to depths of nine thousand or ten thousand feet, of which we are never likely to reach more than four thousand feet, from increase of temperature.
" 2 . There is a supply of coal mithin the smaller limit enough to afford sixty million tons a year for ten centuries."

When our coal-fields are being exhansted, then the grand untoucher deposits of America will come into play. Let us get out all we can ; distribnte it as widely as the arts of peace require; use it as carefully as such a blessing should be used, and do all the good with it we may.

1861: Stamford, Charing Cross. A new edition is in the press.

NOTE ON THE GEOLOGY OF SUNDAYS RIVER, SOUTH AFRICA.

Br G. W. Stow, Esq., of Port Elizaretif.

A friend and myself mudertook a geological excursion a little hefore Christmas, along the banks of the Sundays River. We started on horseback, and exteuded our researches some sixty or seventy miles along its banks, examining every kloof and krantz that appeared at all promising. The incidents that befel one on such a trip but add a lively and pleasurable excitement to such an undertaking : now suddenly coming upon a cobra; anon falling unon the the fresh spoor of a tiger; finding ourselves fast on the side of a krantz, with the river muming some hundred feet immediately below us; being hooted at by baboons, for invading their solitary realms; or. lastly, finding the river risen on our return in the evening, and having to make a dash-and swim, splashing through-as best wo could on horseback (with nether garments. tied around one's neck), to recgain our quarters for the night. My friend was very suecessful, and madeacollection of many beantiful fossils. We discoveredinsome places natuma basins, in the hills bordering the river the sides and bottoms of which were literally strewed with seores of magnificent specimens of 'Trigoniw and Pinno broken out entire from the projecting shell-strata,-in fact, being so numerous that it was difficult to know which to select.

I enclose rough sketches of the Kocga Kopjis and of the St. Croix Tilands, as they are now seen from this place. They appear so alike in their conformation-the former isolated quartzite hills rising from the plain, the latter islets sume little distance from the mainlandthat one is urged to the conclusion that thein strata minst be equally alike; and that as the latter are situated now in the present, so must the former have been islands also, in the far more ancient ocean in byecrone ages.

The islands here spoken of I have not visited: but I have been informed by Dr. Rubidge, that they are quartzite also.
That such was the case, with regard to the Koega Koppis, is proved most conclusively hy the following sketch of an exposed section, on the hanks of the Koega River, aloout there hmudred yards from the font of the hills, on the north side towards the Sundays River.

Here it witl be moticed that the different strata vary most considerably in thickness; sund that from five, six, and more feet in thickness, they gradnally decerease, as in some of the more central nues, until they are not more than a few inches. It is also very noticeable that the narrower the different bands of strata become, so in proportion their dip increases,-exactly, as it must have been as

the waters shallowed towards the ancient shore. That the strata marked 4 were more even in thickness, I should imagine, arose from their being deposited in deeper water; the intervening portions must have once extended from their present position to the shoulders of the hills mentioned; bat have since been denuded by the same influences that have formed the present bed of the Koega River.

This section I have looked upon as a most beautiful exemplification of an ancient island in the primeval ocean.

Not far above ns arose those timeworn quartzite hills that had been exposed to the scorching suns of muknown summerssummersata period so remote thatnumberless races have appeared and disappeared from the face of the earth since their tops first emerged from the deep. Never since that time have they sunk so much as to have been again covered by the surrounding waters, but mast have remained islands in the distant main when a magnificent and glorious estuary, of which
KOTCS KORJIA.

> As sech the in the si uth. a. Sunday's River (heibhts). b. ©rase Rilke. c. Zwartkops River.
such evident traces are visible, stretched away towards the feet of the Winterhock and Zuur-
 berg mountains: when the Enon conglomerate was rolling shingle on the beach, when over that subsiding stratum the sediment of ages was forming the sandstones of the Zwartkops and Sundays Rivers, under the dark blue waters in which the ammonites, trigoniæ, pinnæ, and numberless other creatures, whose remains we find, lived and died.

Portions of those sandstone strata must have in their turn emerged, for a time, and become dry land, and their surfaces have been

1. Sunday's River (mouth)

 covered with regetation whose vestiges are now shown in the fossil ferns, \&c., found in the neighbourhood of the latter river: and they were again covered by the advancing ocean while the upper conglomerate and \therefore clays were accumulating, with all their more recent fossiliferous treasmres ; and for the whole of this enormous period must those rugged and weather-beaten hills, from their bare appearance and present position, have stood undaunted by sunshine or wintry blast as islands in the ancient main, calm spectators of the mighty changes that took place around. Our expedition was, however, brought to a sudden conclusion ; and many of our intended observations were obliged to be left unfinished.
ON A RECENT FIN゙DING OF FLINT-IMPLEDENTS AT BEDFORD.

Be James Wratt, F.ci.s.

LHaving knowledge of the important disenvery of fint-implements in the Drift-gravel near Bedford by Mr. Wyatt, we requested that gentleman to furmish ms with the details of the ease, which he has kindly done, and which we have much pleasure in subjoining. Having ourselves seen the implements found, which are of the veritable fossil types. we shall append in a mote to Mr. Wratt's letter a figure of one of them, with some remarks of our own npon it. En. Geol.]

Sir,--l send yon, as you request, an account of the diseovery. hy myself, of tlint implements. beneath thirteen feet six inches of undisturbed deposits, in drift-gravel, lying on Oolite linestone at Bedford. For seweral years past I have been a close ohserver of the Dritt, time sections of which in the neighbourhood of Bedford have been freepuently displayed during the excavation for road material, and especially during the constrnction of the Lecicester and Hitchin Railway. From the nature of these gravel beds, and from the number of bones and teeth of the extinct mammals which 1 have seen taken from them, I formed an opinion that they were the same kind of drift which had furmished the tlint-implements at Amiens and Hoxne; and this opinion was gratly strengthened by an examination of the pits in the valley of the Somme last year. I have observed amongst the fossil remains fiom the lower givel in Bedfordshire bones and teeth of L:lophes primigronius, Fi, antiquus, Liqus fussilis. Pos primigenins, Comus. likinmeros lichminus, and Hippopulamus From the saud weins of the same drift I have taken the following land and fresh-water:hells:-M, li, romeimur, Willtialuenstris,
 Palnelinaimpuch, V'alrutu piscimulis, ise. The curions little fossil sponges Coserinupera glahutaris, hoth whole and perforated, are frequently fond there also. thas showing many prints of similarity with the drift in France. After recently finding flint-implements at Reculver, I renewed my investigations in Bedfordshire but for a long time withont sucens. It may be added here that the pits do not all display the same complete stratitication: they are very varinble, and in several places the lowest gravel is not excavated on account of the water coming in ; and, indered, for road-material it is of no value, being principally sand. Such is the case at some of the pits at Kempaton amb Clapham: whilst those which have heen worked at the centre of the latter parish. at Rletsoe, Radwell, Biddediam, Harrowden, and hedford, have heen exeavated to the fill depth of the

(Front Viewr.)
gravel, and in all cases have produced great quantities of fragments of bones, tusks and teeth. These latter pits have been constantly watched by me; and on the eighth of April last on visiting that at Biddenham, I found the men working in the direction where many bones had previously been found, and where a large portion of a tusk of Elephas primigenius had been taken out. I went into the pit

Section of Pleistocene Deposits at Biddenham, near Bedford.

and found in the reins of sandy clay which lie between the deposits of gravel several species of fresh-water shells, and in the loose gravel at the bottom I also observed pieces of a large bone. I then commenced a rigid examination of all the gravel which had been taken out of this part, and told the men to look closely at that which they might afterwards throw up. On the heap which had just been remored I found an oval flint-implement, and after further search, I discovered arother implement of the pointed kind of the types found at Amiens. I caused the section to be preserved, and immediately communicated the particulars of the discovery to the President of the

Geological Society and other gentlemen interested in the matter; and on the 2 nd of April. Sir Charles Lyell. Mr. Prestwich, and Mr. Tohn livans risited the pit with myself, and made an examination which was most satisfactory. This discovery furnishes many important points of evitence in this inquiry, and as it will probably be refered to not unfrequently hereafter, we append an engraving of the section of the locality. The locality where this discovery was made is in the valley of the Ouse, and is about a mile and a half north-west of Bedford. The gravel lies on the Oolitic limestone, and the pit surface is abont fifty feet above the

[^46] level of the river. The valley at this point is hounded by ridges of Bondder clay, which rise respectively ninety feet on the west and one hundred and thirty on the cast. The drift comes in at the northern end of the county, by Sharnbrook, and extends sonthward through Bletsoe, Milton Ernest, Ractwell, Clapham, Bromham, Biddenham, Bedfort, Kempston and Elstow; and then goes eastwards through Harrowden, Cardington and ('ople. The two flint-implements from Bidilenham were exhihited beforo the Geolorical society on the Rth ult., and are very fine specimens. "The oval one is worked along the edges thoughont, except about one inch of its length, and has a bright ochreons patina all over it of the same tint as the gravel in which it hat been bedded. It is nearly six inches in length, and nearly forr inches across, at the widest part. Once sicle is smooth anel glossy: the other is dull, aml has inerustations of earbonate of lime: a certain proof that the implement laid flat in the gravel, and that this sidp was the upper surface receiving the fil. trations from the beds above. The pointed "hache," which is constructed from a grey lint, is seren inches in length, massive at one end and worked ofl to a wedge-like point at the other, displaying a bolduess of design equal to that shown in tho finest specimens found at Amions. It is stained with an ochreons tint, but not so deep in tone as that on the oval implement, and there are dark formginous stems along hoth surfaces. Another of these "hachess" has been fomme near Bedford. Myself and Mr. Nall were rethrning from the examination of a gravel pit when the latter pieked up from some railway-ballast a small one. This ballast had

(Rimarme)

been taken out of the gravel pit in the adjoining field, excavated to a lower depth than usual. This specimen is figured in accompanying Plates III. and IV.

It was suggested in Mr. Prestwich's paper read before the Geological Society, that examinations should be made in other parts of the country where the Drift occurs ; but our friends who undertake that duty mast not be turned from their purpose by some few fruitless searches. I have constantly examined the drift in the vicinity of Bedford for several years before I succeeded in finding any specimen of the flint-implements. It is true that if the pleistocene drift can be determined in any district, there is a probability of these relics being found also; but these must be diligently worked for; and, as Mr. Prestwich has remarked, the motto of the workers should be "Nil desperandum."

Note on the Sifaller Kind of Large Flint-Tmplements, by the Editor.-The specimen from Bedford, of which we figure both aspects in Pl. iii. and iv., is an example of the smaller kind of large flint-implements, generally regarded as spear-heads, or as hatchets; but without asserting them not to have been used for one or other of such purposes, we would point out that while the one side, or edge from c to d, is finely chipped out, the other is not so for its entire length : one portion, a to b, being either split off flat, as in the present example, or left unworked, presenting the natural surface of the flint, some portion of which will be seen also below the truncated part in our figures. If these instruments be held in the hand this flat part will fit against the palm, generally of the right hand, but some will be held easily only in the left. The suggestion we would make from this is Whether they may not have been used in the hand as flaying-knives to strip off the skins of the great beasts slain with the larger spears, or with flake-arrows?

We do not wish even to insist on this snggestion; but we are the rather actuated to make it, as very little effort seems as yet to hare beeq made to compare the adaptation of these ancient weapons to the nature and character of the operations they were required to perform. To conpare the fossil implements with those in use by the savage tribes of the present day, or with those found in human graves is right enough, but it is only one sort of comparison. The savage peoples of the present time have no such gigantic beasts as the mammoth and its now fossil congeners to contend with,--the African chase of the elephant, only, being the nearest approach-nor had those of the "grave" period; and it seems only right that we should therefore pass beyond the bounds of mere comparison in our study of their fossil implements, and endeavour to make out and understand the necessary modification of the weapons employed in the pursuit and slaughter of the great beasts, as well as in their own domestic operations, by that primitive race by whom these flint-
implements were manufactured and used. The rery association of particular kinels of animals with the worked flints, and the manner of their assuciation in deposits which are really undisturbed and have not been subjected to torrential action, should be the stepping-stones to the right path of inductive inference, and should be most carefully noted in all discoveries of this class of objects..

HUMAN REMAINS FOUND WITH THE BONES OF EXTINC'T ANIMALS IN THE VALE OF BELVOIR.

Dear Sir,-Having occasion to visit the vale of Belvoir, a few days since I met with a few facts which will, I think, be interesting to your readers, and I trust they will induce some of them to make an excursion to that lovely vale the heights of which are crowned with the magnificent eastle of the Duke of Rutland.

Fossils in abundance may be obtained from the marlstone, lias, clays and gravels of the drift, ife. In the lias I have every reason to believe there is an abundance of coprolites, judging from what I saw at the residence of Willian Ingram, lisy., near the castle, an ardent geologist, who possesses an exceedingly grod collection from the neighbourhood. In it he has a very interesting young Plesiosaurus. The specimen is not quite perfect, the neek being wanting. It seems evident that the farmers in this distriet are not aware of the fertilizing agent that exists immediately under the soil.

But the fact which I prineipally wish you to record is rather impertant just now, as it bears upon the rerutu querstion of the day-the age of the human family. Two hours ride from the castle will bring yon to the valley of the Trent, near Newark. In this valley as most of your readers are aware, the Drift is largely developed, and abundance of fossils characteristic of that period may be foumd, such as mammalian bones of extinet species, fee; and now I think it is proballe the acme of Mons. Perthes' dreams have been realized, for a part of the hmman frame has been found eommingled with extinet animals. The arrow-head found entangled in the horns of the stang found by Mr. Pengelly at Brixham was vast in importance; it told us by inferenee that man must have existed along with the extinct anmals of, mayhap, the closing aons of the tertiary era. Some of ns strove to leok back through the vista of time, buf the darkness seemed only intensified by that sulden spark cast athwart the gloom; hut the flame of knowledge kindles more and more as the electric light of intelligence penetrates. In the second part of fointhes Fanst there occurs that wonderful seene, where, in the classical Walpurgis night, on the Pharsalian plains, the mocking

Mephistopheles sits down between the solemn antique sphinxes and boldly questions them, and reads their riddles, even so must we boldly question the bones, \&c., that constantly turn up, and as boldiy read their riddles; and so vague images and gorgeous dreams, that float about like the tremulous sunbeam on the wave, dazzling yet undefined, shall give place to "things of beauty," and so become "a joy for ever." Bnt I have almost lost sight of what I intended to relate. In sinking a pit for gravel, through mould, clay and sand, a human sknll was found by Mr. Chowler, of corn-law protection notoriety, twelve feet below the surface, with bones of Bos, Elephas, Equus, \&c. The strata evidently never had been disturbed, but were just as originally deposited.

Those who fond of archæology will likewise find in their ramble through the Vale ample gratification : near Bennington is a British encampment, with a circular moat or rallum round, and partly filled with water. I dug out some British pottery, and found some stone foundations formed with Drift from the Oolite, and crammed with fossils: near is also a mound, which I hope to see opened at a future trip. Opposite on the "back bone" of Lincolnshire are extensive remains of another British camp.

There is no doubt but that the ralley of the Trent is exceedingly rich in Drift fossils; and I firmly believe the delta of the Soar, near Kegworth, where that river made its embonchoure into the Trent, would well repay a little work. Cannot some of your readers buckle on the harness and set to work?-Yours, \&c., Francis Drake, Leicester.
[This communication from our correspondent Mr. Drake, reached us barely in time for press. We hope to give minute details of this important discovery of human-remains in our next number. Ed. Geol.]

CORRESPONDENCE.

THE DARIVINLAN THEORY.

Sir, - I read with some regret the article in your number for April, on the "Darwinian Theory :" not that I would be understoo"l to be in any way opposed to the ventilation and free discussion of any subject fairly within the range of scientific research; the contrary, I believe there is no surer method of testing the numerous theories, which now-a-dars so often take the place of facts, than to submit them to the free and open discussion of those who are conversant with the facts which they profess to generalize and explain. Still, when all this allowance has been made, I confess that I do feel some little regret at seeing the modernized Lamarckian Theory of Darwin advocated in the pages of your valuable magazine; for I cannot forget that this "development" theory would not only not furnish us with an adequate solution of the facts it professes to generalize, since by the direct admission of its adrocates, an admission, by the way, which forms one of their
readiest arguments against observed facts, its operation is so exceedingly slow und intermitant that it is removed altogether from the range of eorvect observation, and its verification rendered impossible; but, also, its direct eflect wonld the to shat the Creator out of the world of his own creation, and to set up instead what the Rev. Baden ['owell calls "the self-evolving powers of nature."

In arguing this theory Mr. Lutton gives a list of twenty-six "reasons for supposing that variation is at present unlimited," and says that "he knows of mo answers to them." He may know of no answers to these arguments; but I don't think it would be rery difficult to supply satisfactory answers to most, if not all of them, withont having reconrse to the "Darwinian" theory, and I have no doubt but that most of your readers have already done so to their own satisfaction. Whether or not, to bring lorward a number of isolated statements, many of them sufticiently hypothetical, and make them decisive of the question is simply absurd. With greater propriety might those who maiutain the constaney of species prowluce a number of statements of an opposite character, and claim that they shall decide the guestion.

Agrain, Mr. Hutton professes to have answered the principal oljections to the "Darwinian" theory: will ho find answers to the following, which I give hy way of example? If the Darwinian theory ho true, then for long ages before the deposition of the lowest Silurian strata the world must have swarmed with living creatures (Darwin, "On the Origin of Species," page 307). What have become of the "records of these vast primordial periods?" If acquired organs aro ohtained gradually, how is it then that no specimen in the transition state has erer loen found? What will he say to the statement of Professor Owen (Classifieation of Mammals, appentix xiii, on the " Orang, Chimpanzee, and (iorilla, with roference to the Transmutation of Species"), (hat "no known cause of change prodnctive of the varieties of mammalian species could oprrate in altering the size, the shap", or the connections of the premaxillary hones, which so remarkably distinguish the Troglochytes gorilln not from man only, hut from all other anthropill apes"? This single statement is wejghty enough to decide the whole question, if any statement could decide a theory so tenacims of life; and lastly, his theory professes to explain the history of all ereation, will he, hy way of proving its suflicieney, give 1 a , instead, the history ef a single specirs and exhibit, hy facts its "develapment from some other? If the "Darwinian" theory can du this it will then be time enough to receive it as a trne plysical law; but if it cannot, then it is a mere dream, and unworthy of the serions attertion of the true student of naturo.

But leaving this line of argument, which has been gone over again and again only to be again and again disregarded hy the tmasmutationists ; and which, after all, is not adequate to decide a question which eleala with in emmpomel nature such as that of man. I now turn to another which ought to recojve a the consideration in every fair disenssion of this theory: I mean the argmment derived from tho mental and moral powers of man ; and in this merument I restrict myself, for the sake of brevity and simplicity of detail, to a siugle example; fint it must he horme: in mind that one part of the urgument, at least, is equally apllicable to every other species of living beimgs.

The mity of the haman speceies is domonatrated be the constaney of eertain ostehberical ant dental characterintics; fout ha is loss chamacterized hy these phywical peculiaritien than hy his unental and moral characteristics. Compare the gigantic gragu of his inteflect with the fiedhe and meertain mental powers of the most sagacions of the infirior ereatures-what analory is there betwen them that we shonld infor the one to be :a "llevelopment" of he other? Can the "sngarions" lrute cepplore the ileptis of space, sum weigh as in a balance the ponderons orbs of haven? Can he lig into the bowels of the earth and drag ont from thence the buried recorls of ages, wast as the spaces alant him? Can he rentrol the elemonts, mul wield the powers of nature? In all these things, and in a thomsand othors, the brute is ne powerless and insignificant as the man is mighty and all-controlling, and ret in the face of all there are those who, with audacity equalled only by their bumility, would link themselves hy a bond of jlentity with the brute, and make their lofty and god-like intelleet the transmuted
instinct of the brute! To maintain this strange position the first individuals of the race are regarded as savages of the most degraded type in whom the boundary line between the man and brute is scarcely distinguishable, and an upward progress is supposed, produced by the "struggle for life," in which, as generation after generation passed away, the powers of the individual gradually increased until, after the lapse of countless ages, they become what we find them now. This, in brief, is the argument employed to support the "development" theory, but unfortunately for its stability it is mere supposition, and the roice of science, as well as the roice of revelation, gives as a far different account of the nature and powers of original man. The arguments upon this point I need not produce here, they are well known to everyone; but they prove undeniably what the Scriptures of Truth assert, that "man was made in the image of God"-that "Adam, the father of mankind, was no squalid savage of doubtful humanity, but a noble specimen of man; and Ere a soft Circassian beauty, but exquisitely lovely beyoud the lot of fallen lumanity." If, then, the "theory" fails on this pointif it fails to establish a chain of "development" between man and the higher forms of the brute creation-how can it expect to succeed in tracing the connexion lower down in the scale of life! If it cannot trace the sequence of the "development" of the mammal into the man, how can it hope to show the faintest trace of the development of the bird into the man? or, still more hopeless task, of the molluse or crustacean of the Silurian deposits into the nammal or the man of the recent ! And yet this is the theory in farour of which "after taling everything into consideration," the balance of evidence greatly preponderates!

But once more, conceding, for the sake of illustration, that the instinct of the brute might be "developed" into the reason of the man: nay more, that the incomplex form and regetative existence of the zcophyte might be " dereloped" into the highly organized body and magnificent intellect of the man: wondrous concession! Conceding all this, I say what shall we say respecting the moral porvers of man? Are they "dereloped" too? And if so from what? In many of the inferior animals we may occasionally discover traces of an indistinct reasoning power, in which the willing eye may perhaps see the "undeveloped" intellect of man; but where in the ape, or in any other earthly thing, shall we find the faintest traces of that moral nature which so pre-eminently distinguishes man from above every other creature, and which links his earthly nature with the spiritual natures of heaven? In the case of the intellect of man, the adrocates of the "Darwinian" theory may, with some little show of plausibility, point to feeble glimmerings of reason which have been observed in some of the lower animals, and assert man's intellectual powers to be merely a "derelopment" of theirs. But if they cannot point to the possession of a moral nature beyond the pale of humanity, then I contend that their whole theory fails, and that man, instead of being merely a "development" of some previouslv existing creature is, in reality, a new creation, and if one species is admitted to be an independant creation, and not a "development" the whole theory breaks down; for it becomes impossible, the operation of this supposed law once broken, to fix its limits anew. The whole theory smacks strongly of the unscientific and reprehensible scheme of bestowing upon what they call the "self-evolving powers of nature," the prerogative of the Deity, the power to create; so much so that the sooner it becomes a thing of the past the better.

I have this morning got my copy for this month (May), and I find that the conclusion of Mr. Hutton's long and elaborate "notes" is almost entirely taken up by an account of the imperfect condition of the geological records, with the riew of throwing upon this imperfection the onus of the fact that not a single specimen of any species in the transition state has erer beens found. Admitting all he urges respecting the manifold imperfections of palæontology, are these imperfections sufficient to accoant for the total absence of examples of what, if it existed at all, must be considered as the great law of existence? These breaks in the geologic records might be sufficient to account for the rarity of these examples: but they do not account for their entire absence. How they can be made to furnish an additional argument in favour of the " development" theory, I am certainly at a
loss to diseover. I remember that exactly the same kind of argument was used by Sir C. Lrell ("Principles," 3rd edition), to produce just an opposite result, namely, to prove the theory that all the great clases of organic life were created at once; and not successively, as inferred from geology. How wonld Mr. Huton reconcilo these opposite conclusions drawn from the same facts? Or does he expect his theory to be better received than Sir Charles'? In conclusion I assert that, while other considemations may be either for or against this theory, groology alone must decile it. By the supposed slowness of the operations of the assumed law it is thrown entirely beyond the scope of observation, and unless actual factsfiets conclnsive and undeniable-can be cited out of the stony records, it must still be considered the mere speculation of a theorist. - Yours, \&c., Tios. Grindiex, Glossop.

Note by the Editob. We are sory that our correspondent should express regret at the appearance of Lient. Hutton's article on the Darwinian Theory in the "Creologist." Our realers will donbless bear in mind what our correspondent has forgotten in this remark, that whenever an articie bears the name of its author, we are not rexponsible cicher for its facts or its arguments. Our paces are alke open to Mr. Grindles or Lieut. Hutton-to one eorrespontent equally with anocher ; and on this point we have always justly prided ourselves on our fair dealing; we have printed the labouring man's communieation beside that of the most talented geolutist; we have jrinted even eommunications against ourselves. Darwin's theory undulutedly has a most important bearing on geology, and if not wholly accepted, still contans views whiel must exert a powerful influence on all future investigations.

Granting it to be an error, we would still wish to see it powerfnlly treated and defended by the ablest hands; fur the more powerml the defence of an error, the stronger and mightier the intellect that wields the weapons of its lefence, so much the more brilliant will be the victory of Treta in the end. We can not have discussions without the defence of error, and without discussinns there would he no progress.
In coneluding this note, the Editor wishes distinetly to say that be does not consider himself as in any way advocating duetrines eontained in any articles exceptug in those which are written by hitoself. On the other hand, he ennsiders the magnzine to be, and always to have heen, open to the fair expression of any opinion deserving of attention. Moreover, he trusts that frendly discussion and correspondeuce will be more dereloped in this magazine than even it has hitherto been.

FOREIGN CORRESPONDENCE.

Spectueni of minerals have heen sent from (hili lyy M. Domeyho, for the Sehool of Mines in Paris. 1. Black eopper-ore, fibrous, (a silien-aluminate), bronght from the min's of Taltat, in the desert of Atacama. 2. Ameniate of copper from the (ierro of las Yecruas, in the district of Rancagua. 3. Arseniate of copprer. with sulb-oxide from the same locality. 4. Two speeimens, arsemate of silver, with antimony from Chamarcillo (one washed in a tube, the other in its onigimal state). 5. Arsenical silver-ore from the mines of Bandurrias. (6. Bi-arseniate of nickel, mixed with arsenical acid, and sub-arseniate of nickel, bromght from the mines of San Pedro, sitnated a few leagnes from the port of San Frameneo, in the desert of Atacama. 7. Arseniate of nickel, a little hydrated, mixet with a silico aluminate of nickel from the same locality as the precereding one. 8. Fragnent of an aiorolite which fell in 18.5, in the environs of Hevedia at CostaRica.

These specimens were accompanied by a full mineralogical notice of each, and a letter addressed to M. Elie de Beammont, by M. Domeyko, amouncing that he has sent two cases of fossil-bones, found in the same locality he had explored the preceeding year at Taguatagua. He also gave a description of a recent valley containing bones of Pachyderms, situated at the foot of the Andes, and presenting the same features as the great formation two or three hundred leagues on the other side of the range. This circumstance will, perhaps, throw some light on the true epoch of the relationship of this district to the last changes of the Andes M. Domeyko also sends a note on the valley of the ancient lake of Taguatagua on which new light has been thrown by the study of the region above mentioned.

On Density and Hardness consideved as distinctive characters of Metalloides and Metals.

M. Marcel de Serres has communicated an important paper to the French Academy on the above subject. "The classes, orders, and families, which hare been established in the classification of simple bodies, considered in regard to their hardness and density, appear to be founded on sundry rules, which the comparison of these properties has furnished.
"The metalloides are divided naturally into gases, liquids, and solids, the latter into soft (apalides) and hard (schlerides).
"The soft metalloides, with one exception (phosphorus). are denser than the hard ones: it is principally by the degree of hardness that the two orders may be distinguished."
M. Serres then proceeds to inquire whether the difference between the density and hardness of the metals is as decided as in the case of the metalloides. For this purpose he divides the metals into-1. Heteropsides, which are the lightest bodies among the metallic substances, being in some cases less dense than water. 2. Allopsides, which comprise the hardest bodies in nature, often the schleride metalloides, indicated by the No. 10, in the scale of Mohs. 3. Autopsides, which are again divided into perfect metals and common metals.

From the tables we learn that among the metalloides phosphorus is the least, and tellurium the most dense ; and that phosphorus, again, is the softest and diamond the hardest.

Among the metals stilbite is the least, and iridium the most dense; while asbestos is the softest, and emerald the hardest.

On the Extinet Genus Thecodontosaurus.

M. P. Gervais has communicated a notice of the first discovery of the remains of this animal in France. M. Dumortici, of Lyons, who forwarded the specimens to him, found them at Chappon (Ain). M. Gervais refers to the characters of the genus, as stated by Messrs. Riley and Stutchbury in their memoir on the Th. antiquus of the

Bristol dolomite (Trans. Geol, Soc. of Tondon, 2nd scries, vol. 5, p. 35:9) ; and coneludes that the animal found at ('happon belongs to the same species, or, at all events, the same genus.

Mineralyy.-Inalysis of the "Closeccolite Shepard," by M. F. Pisani.
This substance, which resembles the "Halloysite" in its formation aml properties, was found at Dade in the provinee of Ceorgia: M. des Cloiseaux, the discoverer, gives the following deseription of it.
.. The glossecolite shepard is compact, and breaks with a conchoidal fracture ; it is lull looking, but with rubbing it becomes bright; it is white and sharp to the taste; it does not soften in water, but becomes transparent on the edge and opaline, throwing ofl bubbles of air, and giving out a strong elayey smell. Soft and very fragile, water is disengaged in the "matras." amd the mineral becomes a hluish grey. It is infusible with the blowpipe, and gives a beantiful hae with nitric of colalt: sulphuric acid attacks it, heat being applicel.

- The glossecolite shepard is composed of-

Siliea	411.1
Alıminum	37.8
Magresium	11.5
Water.	21.8

 Primipull lotanic Dipartmonts of Fimmer.
M. Pertrand de Lom, in a memoir muder this title read lefore the lirench Academy gives some interesting details tomeling (0) show the great richness of these districts in genns and crystali, especially commem amd erysolite, fwotse thomsimd feecimens of the former having heen fonmd hy him previonsly to his last exploration, which we may remark, has ocenpied him six years.
 li.i s, ••
 veying the coart ontbe lind sa by order of the limperor, has sent in a itry valathe report of the natnral history part of the expedition, the geolugieal protion of which, illnatrated by manerons sections and five large maps made from motes taken on the spot, will form a very valmalle addition to our knowledge of the strata of the districts bordering thereon.

The localities which appear to have been more particularly studied are the bay of Adulis and island of Dissée, Eild and Maycok, Perins
and Doomairah. The island of Disséc, formed of a great number of gentle prominences, composed of nearly vertical beds of gneiss, micaschists and other like rocks, sometimes impregnated with granite, is highly interesting; and M. Courbon's description of it and the neighbouring shore will well repay perusal.
M. Courbon thas describes Perim :-
" Perim is the result of a volcanic eruption below water. The lavas and other erupted matter have first of all raised the coral bed, which formed the bottom of the sea, leaving in its substance some of their remains, and have then forced a passage to appear above the sealevel. This volcano, of which the vast crater corresponded to the whole bay of Perim, has been some time in activity ; and has covered the island with mud, cinders, scoriæ. puzzuoloni and, lastly, with the trachytic rocks, which now cover its surface.
"The volcanic action then ceased, and the calcareous sandstones formed: at length a gentle uphearal elevated them, in their turn, above the water; and the island has since that time presented the same appearance that it now does."

The facts collected by M. Courbon, taken in conjunction with those of his predecessors, prove that the Red Sea, which forms one of the most marked localities on the surface of the globe, and of which the eastern side in particular is aligned with a wonderful precision on the great primitive circle of Thuringerwald, which passes Aden, bears traces throughout all its length of eruptive phenomena of immense extent, and of an age certainly not very remote from the present epoch.

On the Age of Fossil Bones, as determined by their composition.
M. Delesse has furnished a paper on this subject, from which we extract the following remarks :-
"When amimals are buried their fleshy parts soon decay, whilst the lard part, which forms the skeleton, resists decomposition. Nevertheless, the latter undergoes some alterations that are easily discoverable in comparing the same parts of the skeleton of fossil, with living animals. If one considers particularly the bones, their alterations are shown by the changes in their density and their chemical composition. First of all, it is very easy to prove that in fossil bones their density always augments with age. This augmentation is very sensible, not only in the bones belonging to different geologic epochs, but also those of the present time. In the bones of a man, more particularly, it rises sometimes thirty-four per cent. It is generally higher in the tusks of elephants and mastodons than in their bones. This arises from the destruction of the organic matter or bony substance, and also from the introduction of new mineral substances.
"When fossil bones are impregnated with oxyde of iron, or pyrites, their density rises very rapidly, and is only limited by the density of those minerals. It is difficult to compare the carbonate of lime in a normal and fossil bone; for it varies not only in each bone, but also in each animal

In conserquence of the destruction of the bony substance, the earbonate of lime ought to angment in a fossil bone, but this does not always take place. In certain fossil human skulls it falls more than three per cent. although it is at least double in a normal skull: tho quantity of earbouate of lime diminishes, therefore, oceasionally, in finsil bones, more particularly in the first period of their decomposition, that is, when the bony substance is being destroyed.

But most frequently the carbonate of lime angments in the fossils prine to our epoch. One can easily prove this in those which are cellular, because their cavities are filled with it in a crystallized form. It also increases in the most compact bones, even the teeth and tusks. As the carbonate of lime is found in most rocks and waters of infittration, it is easy to understand why its quantity increases in fossil bones. The phosphate of lime sometimes diminishes considerably, as low as twenty-five in one lmodred, as M. Fremy has proved; sometimes on the contrary. it rises as high as cighty in one hmedred, although on the average it is little over sixty in the normal state. The bony substance is present in fossils, and the azote they contain enables ns. to arrive at the proportion. Nevertheless. but little remains in the hones found in formations older than the tertiary. The bones which belong to the recent formations, or to the diluvimm, contain, on the contrary a good propartion.

The quantity of azote in a fossil hone depends om complex canses. Firstly, it varies with the bone and the animal. Nevertheless, when one compares the bones of mammals, bieds, and reptiles. the difference in the proportion of bony substance does not exeeed many humbedth parts, consequently the difference of proportion of azote is reduced to some thomsamth parts.

When the bones are fossilized, the azote depends on their exposme to the atmosplitere before they were covered up; for the atmosplate lestroys organic matter pretty rapilly. It depends also upon the dampiess or dryness of the heds in wheln they lie and upon the salt or fresh-water which ther imbibe. The mineralogieal eomposition of the rock in which they are fonnd must again be comsidered, loceanse it tends to vary the substancess enntained in the water of infiltration.

Lastly, the azote in a fossil hone varies with the age. To be convinced of this fact it will be emongh to test it in bones belonging to differcut "pochs, and uspecially in hmman hones. Althongh a normal lone comtains ahout fifty-fmur thomsambles of azote, there are hut
 time of Joline Consar: 18% in a human skull found ly Sir C . Lyell in the Denise beds; 165 in a human jaw-bone, which has been forwarded to me by M. de Vibraye, as coming from the grotto of Arey, and 1.3 ti in a hman cubhitns discovered by M. Lartet, at Aurignac.

The haman remains last mentioned have been the subjectsof mueh geologieal dismusion: they are magarden as very anciont, and, as we have seen, contain but litle azote. Nevertheless, in other human bones which have muldergene elhanges, rither liy exposure to atir or hy fonsilization, the proportion of azote in still less. A haman skull, of
which the exact age is unknown to me, and which was found in a marine conglomerate of Brazil, has but $1 \cdot 6$ thousandth of azote.

When bones hare been buried under the same condition the quantity of azote becomes better comparable ; and then it varies, especially in relation to their age.

According to the observations of M. Lartet, the luman bone of Aurignac, above mentioned, was associated with extinct species of animals, especially of the reindeer and rhinoceros. It therefore became of interest to discover the quantity of azote in the bones of those animals.

I have obtained 14.8 for the reindeer, and 14.5 for the rhinoceros of Aurignac. That is to say, nearly the same proportion as for the human cubitus fornd in the same deposit. Hence, analysis seems to indicate that these extinct animals were contemporaneous with man.

In the grotto of Arcy, M. de Vibraye says there are three deposits of bones, which are very distinct. The upper and most recent one contains unmistakeable traces of the habitation of man, and of animals still represented in the ricinity. In a human bone which came thence, I found still twenty-four thousandths of azote. The middle deposit contains bones of extinct species, particularly the reindeer, in which there is $14: 3$ of azote: these last are enveloped in a red clay, with a great number of celts and of flint implements. The lower deposit contains bones of Ursus spelseus, which contain no more than 10.4 of azote.

It is therefore very evident that the azote raries in the bones from these deposits according to their age; and that it successively diminishes as the age itself increases.
The caverns and osseous breccias contain bones of the hyena, stag, ox, horse, and rhinoceros, which have an equal, or nearly equal, proportion of azote to those of certain human bones of great antiquity.

Analysis proves, consequently, that these animals, belonging to extinct species, have lived on our earth at an epoch not fai removed from our own.

To sum up: a fossil bone is subject to very complex alterations. The porosity and density angment; its bony substance is destroyed; and the proportion of calcareous salts is more or less modified, or altogether destroyed. In the first phase of decomposition, a bone retains a great part of its osseine, efferresces slowly in acid, and loses a little of its carbonate of lime. In the last phase the bony substance has almost altogether disappeared: it is sharp to the taste, and effervesces violently in acid. At this period its carbonate of lime tends generally to augment more rapidly than the phosphate. Sometimes it still undergoes other metamorphoses, which completely alter its chemical composition, although its form remains unchanged.

The testing of azote, then, contained in a fossil bone, permits us to control and verify the assertions of archæology and geology. It can even afford us, within certain limits, indications of its age; and furnishes ns with another means of determining relative age in the different epochs of our globe.

PROCLEDINGS OE GEOLOGICAL SOCIETIES.

Geologists' Associatiox:-On the 20th ult. (Whit-Monday), about fifty members made an exeursion to Oxford. The party left the Paddington Station at cight a.m., and, assembling at Maglalen lirilge, Oxford, proceeded to Shotorer Hill, examining on foute the Oxford Clay, Caleareous Grit, Coralline Wolite, Kimmeridge Clay, lortland Sands, and the so-called Lower Greensand, which furms its stmmit.

On the return to Oxford the new musmm was rivited, under the guidance of Profesen Phillips, who pointen out the chicf ohjects of interest in it. The Slaft: of the columins romed the interior of the building are compesed of specimens of all the most impurtime british rocks and marbice.
The party next refired to the theatre of the muscom, where the Profeson geace a short but interesting lecture on the beds at shotomer Hill, which he consid real, from the presence in some of freshwater-shells, to be rather Wealden thom Lown (irecensand. Admission was then kindly gisen by Dr. Acland to 1h. Rutclife labrars, in which there is a fine collection of foreign marbles.
This was mot only the largest muster of the Association for a fiedd-lay, but the most important and best condneted exension yet made: and we reened with the highest weasure any symptoms of improrevent tending io raise this Sucirty to the position it ought to ocenpy at the head of the Fied Chuls.

Ricinsesta lartite tios:- Dharing the last month nur estecmed friend and correspondent Bdward Wood, Est., F.(Gis., of Riedmomed, Vorkshire, has difered two highly imeresting and instruetive lectures on the formation of the Earth, to andiemees on cach weeasion of not less than one hundred and soventy persons, at his own resideuce, the whele of whom, after iuspecting the treasures of his choiec museum, were hospitably entertained in the mast : muphtuons manner lyy the leeturer. The local papers speak highly of Mr. Wiond's leetures. Onie of them says:-
"The lecturer purposely abstained from tedmicalities, and by the nse of the ordinary phraseology rondired his thonghts with so much perspicuity as to be intelligible to the most ordmary capacity. This is a rame quality in leeturers, who, in a general rule, cace lew about insiructing thoir mudiences than nypraring fearned themedves. Mr. Wond's departure from this ontentations display of muncessary learning is well worthy of imitation; and lis modesty has been contributory to the information of his hearers. The lectucer spoke for upwards of in hour, with the greatest flucnes, though entirely withont notes, and was warmly afplauded thronghout."

Haply, imdeed, are our Yorkshire frimds in being first entertained with corerlent mental foed, and then huspitably banqueted on the delicacies of the sosme. Ihoubtless, geolegy will be a rery proular science, treated in this 10.tumer.
(ibanoow Geonefical. Sorimity. - ()n the 1th of May upwards of twenty of the members of this receiety procereded by the Calednuian Railway on their serend ercursion of this season. 'The loealities examined were Braidwood (iill nand Nethan vallere, in the Upper Ward of Lanarkshire. At Braidwond station the party were joincll by Mr. Forest, who had kindly come from Edinburgh to aut as guide, Dr. Rankine, of Carluke, having also seut an csecort. On cutering the "gill," a wonded ravine, the hammers of the exenrsimists were som busy on some transported blocks of very fine greenstone and felstone-porphyries.

The banks of the strean which winds through the glen exhibited rarious sections of strata consisting chiefly of sandstones and impure limestones；and ou arriving at a steep bank of shale containing narrow bands of the latter rock， one of the vice－presidents called the attention of the party to the circumstance that these deposits rested upon Old Red Sandstone，which appeared in the bed of the stream，and mere evidently the lowest members of the Carboniferous system in the district；at the same time remarking the strong resemblance these thin－bedded strata presented to the＂Ballagan beds，＂inmediately succeeding the Old Red Sandstone of the Strathblane and Campsie districts，so well described by Mr．Young in the first number of this Society＇s Transactions． In one part of the＂gill＂＂an extensire fault was observed，crossing the strean at right angles，producing a vertical displacement of the strata to the extent， probably，of one hundred and twenty fathoms，so that there is a sudden transi－ tion from the Old Red Sandstone to the Coal measures，with their characteristic organic remains．Further down the stream a thick bed of limestone，containing Prolluctus giganteus，indicates the base of the Carboniferous system，and a relative depth of nearly four hundred fathoms below the＂ell coal，＂which occupies a position near the upper stage of the Lanarkshire coal－field．They then took the shortest route to Crossford，where the Nethan Water unites with the Clrde．Here they were joined by Laird Templeton，an enthusiastic local geologist，who led the way up the valley of the Nethan．On either side of the river fine scetions presented themselves，and it soon became apparent that the rocks to be examined were chiefly of marine limestones and clay ironstones， with shales and sandstones，some of the deposits being exidently of estuary origin，and in all likelihood equivalents of the strata in the neighbourhood of lennoxtown，on the north－west margin of the great coal basin．The only igneons products observed were some rolled fragments of a light－coloured fel－ stone porphyry in the bed of the stream，with a similar rock used as road metal， indieating a trap－area at no great distance．In the lower part of the Nethan hills the strata formed precipitous banks，at one point attaining an elevation of about three hundred feet above the bed of the stream－a fault causing a down－ throw to the extent of several fathoms．Further up the river an exhausted opencast coal－pit was obserred．Doubts were soon renroved as to the true position of the strata，for before long the fossils of the Lower Limestone series presented themselves in the form of various Brachiopoda，the Lingula iron－ stone indicating a higher stratigraphical order than the Productus limestone of the Braidwood gill．Under a projecting mass of strata a fire was kindled from coal supplied by a seam on the spot，and coffee was prepared and served out to the willing recipients，who had been under the necessity of making considerable exertion in threading their way among the numerous blocks of stone strewn on the banks of the stream．At the base of the lofty eminence on which Craignethan castle stands，a bed of shale was pointed out by Mr．Templeton as containing numerous fossils；and here the party left the course of the river in order to visit the famous archetype of Sir Walter Scott＇s castle of Tillietudlem． A great portion of the edifice has been removed to build the neighbouring farm houses ；but two towers still remain，with part of a solid mall of hewn stone perforated with loop－holes．From the commanding position，the prospect was interesting in the extreme．Round the base of the cliff on which the castle stands winds the Nethan，fringed with leafy verdure，and away in the distance beyond an undulating district the eye could embrace the south eastern limit of the great coal－field of Scotland．The excursionists then retraced their steps， and on returning to Crossford exanined Laird Templeton＇s collection．

NOTES AND QUERTES.

Sisnfifis it Grays Therrock- \boldsymbol{A} short time sines I visited the chalk pits at "Grass Thurroch," and fomml the chatk of that district to contain a number of very interesting fossils, especially a large variety of sharks' teeth. The ofenrrence of momerons sandpipes there is very remarkable. These vary in shape, hat the majority are more or less conical. I notiend two, and part of a third, which, from their peculiar form, and other circumstances, canses a difliculty in my mind as 10 the mode of their formation.

The chalk in the pit in which these are seen has been exeavated to a depth of scsenty feet, and on all sides can be deteeted either perfeet sandpipes, or the remains of some partally eleacd away. Those to wheh I wish now partienarly to thaw sour attention are on the north side of the working; they are almost close to ach other, not being above twenty fect apart. I hase traced their depths, whe of thirty-five feet, another to fortr-fise fect below the surface of the ehath, on which the bed of dark red elay containing green-erated tlints reposes (No. G in the sections, \&e.). Their diameters are omly about 1 went y-four inches, and the sides of eath are amost paralled, the dewiation throughont the whole length not execeding two inches. It is remarkable that a layer of lints, traceable all round the pit, passes through these pipes (see diagram, fig. I, l b). l'ur-

Fis. 1 - . We pratchea of rlape otpoaced by the fall of chatk: b, the layer of flinta pasaing
 The devel lines ahow the contrmation of the pires.
tions of the pipes hare fallen down, giving the patched appearances secn in the illustration. I could not trace the pipes lower than the depths given above, owing to their disappearance in the talus and rubbish at the base of the chalkplatform, which has been left to support the planks on which the workmen whecl the barrows to the lime-kilns. I have preserved a specimen of the sandy clay taken from the lowest attainable depth in one of the pipes (fig. 1, c), with a flint that was embedded in it. This mass scems to be a mixture of clay from

Fig 2.-Section above the sandpipes, showing the strata through which the water percolates.

No. 6, and sand from the superincumbent strata No. 5 (fig. 2); but the white grains of the sand are much discoloured by the oxide of iron contained in the clay No. 6. The flint is not in the least degree water-wom, but has one of its projecting portions broken off, showing the fracture clear and distinct: it is not tinged by the red clay which surrounded it, and still preserves the outer white coating characteristic of chalk-flints. The chalk forming the sides of the pipes is invariably disintegrated for about two inches into the solid mass of chalk forming a cellular or spongy substance, and may by slight pressure be reduced to fine powder.

The extreme depth and uniform width of these pipes, although frequent examples are met with, are not the common characteristics of sandpipes occurring in cretaceous stiata, which are generally more or less triangular or funnel-shaped (fig. 3), and this led me for the moment to imagine that they might be fissures into which the clay and sand had been washed or had fallen; but the stratification of the chalk in their neighbourhood being nearly level and qnite
mdisturbed shows this notion not to be tenable; besides, the layer of flints refiered to passes completely through the pipes.

Fig. 3.-General form of the sand- and gravel-pipes at Grays Thurock, being more or less triangular or fumel-shajed.

There have been two theories adraneed to account for the formation of these singular phenomena. 1. The meehanical theory by Mr. Trimmer, which suppose them to be produced by the wearing action of one or more stomes, put into rotatory motion by water, at a period when the chatk rerrion it whel they oeenr formed a sea-shore, the waves being the prime moving power, and that the holes thus drilled afterwards filled with eravel or samd. This theory is evidently insufficient to explain these very long pipes, onaccount of the necurrenee of dints throughout the whole depth, and unt strewn merely at the bottom, as they would be if the pipes had been worked ont by mechanieal abrasion; at times flints are found at or near the bottom of sand-and gravel-pipes, but they are not water-worn, and still retain their original shapes, and even their calcareons coatings.

The other theory is the chemical, namely, that the pipes have been gradually dissolved to their present shape hy the action of water highly charged with earbonie and other acids, subsequent to the deposition of the sands and gravel above them.

Suppose slight hollows or depressions to be formed on the surface of the chalk, the neidulated water would colleet there, ind finding the easier passage downwards, there womld son become fixed water chanmels, and these smalt

 hicipient andilpiper.
depressions gradually iucreasing in size by the continuous action of the acidulated water, would grow in proportion to the activity or duration of the errosive action. This action would also be exerted in equal portions round the circumference of the hollow, provided that the sands or gravel above were of a moderately uniform texture, and its result would be to give the pipes a more or less circular, funnel-shaped, or cylindrical form, depending greatly on the solidity of the chalk and the duration of the errosive agent in action. The longer this action continued, the greater would be the tendency to deepen vertically, or in other words, to pass successively from the "cup" to the "fumnel-shape" (fig. 3), and lastly to the cylindrical form presented in the diagram (fig. 1).
Mr. Prestwich explains the gradual formation of these pipes in the following manner-

Fig. 5.-Horizontal section of sandpipe.
Fig. 6.-Tertical section of one in course of formation.

Fig. 7.-Tertical section in a more advanced state, showing where the action ceases, except in a vertical direction towards " \boldsymbol{P}."
"If we divide a line dramn through the centre of the horizontal section of the top of a pipe into three equal parts ($A a, a b, b B$, fig. 5), and carry down tro perpendicular lines from a and b until they meet the sices of the pipe at c and d in the vertical sections (figs. 2 and 3), it is erident that in (fig. 2) the relative dimensions of $A c, c d$, and $d B$, are very nearly the same, the line $c d$ being very little less than $c A$ or $d B$; still the difference is sufficient supposing equal quantities of water to pass in equal time through the equal widths $A a, a b, b B$, to make the relative quantity supplied to $c d$ greater than that supplied to $A c$ and $B d$; consequently in (fig. 3) the waterwear between $c d$ would be slightly greater (aided also by the tendency of the water to converge at p) than between $A c$ and $B d$, and tie cavits of the incipient
pipe would increase in magnitude more rapidly in the direction of $c d$ than of if $\therefore B d$, or in other words, would deepen more rapidly than it widened. Further, as the dimensions of the pipe incrased, so would the disproportion betwectn I α and $I c$, and between $b B$ and $B d$, constantly inerease; and as conly the same relative ruantity of water would pass orer the surfaces $A c, B d$, whatever their dimensions might be, its effect would be one gradually diminishing, and consequently the lateral growth of the tube would tend to berome lese from day to day, whilst as the proportion of $c d$ with regard to a 6 would contime with little variation, whatever the size of the pipe."

By this explanation we may to a certain extent understand the method in which these singularly long narrow juipes were produed. The pipes that we have been deseribing in many points seem to accord with the theory of chemieal crrosion; in their extreme depth, the occurrence of flints indiscriminately throughout, by the uninterrupted passage through them of bands of thintnodules, and in the disintegration of the chalk surrounding and forming the silles of the pipes.

The patches of clay shown in the diagram (fies. 1) would also prove the disintegrating power of the water on the sides, and that a certain portiom of the water cocaped in that direction; the inclosed samdy clay, assisted by the "side of iron, would, as it breame dry, attach to itself the prowdery chatk, and when, as was the ease, masses of the elalk fell down, portions would remain adhering to the elay, while others would fall with the mass of chalk, cansing the patched appearance mentioned above. The erosive aetion was apparently so gradual that the llints were kept in their right position; and so gently hais the chalk in the interior of the pipe been remosed, that the projectinge portions of the tlints hate not been broken ofl.- Enmexp Joses.
 ("Nutes and Queries," p. 217).-As it is very desirable that any matter conneeted with the assmaed contemprary existence of man with the great extinet ammals shoukd be cleared up as far as practicable, I wish to append to the paper by Dr. Koch, which your eorrespondent, Mr. Bensted, obligimgly transcribes, im abstract of an artiele by Dr. Wislizemus (Trans. Aead. Seiences, St. Lonis, vol. i., p. 168), in which, after noticing the discovery of the Mastodon gigantrus, as an upright skeleton in clay, partly consmmed by fire, and associated with stone weapoms, he lakes exception to the conclusion of Dr. Koeh, that the animal, while thas mired, was killed hy a loman onslaught.

After showing that the discovery of Xastodun skeletons in an upright position is far from an unusual erent, he sinerests the following combination of eiremnstanees, as a more nathral and likely way of sulving the question:
"An Indian family, attractell by the springs, celerted ecmomes ago that place for a residence, and lixem their tiont or wiewan on the very spot below whidh, maknown to them, the bomes of the mastodon rested. The gromed corering and hiding the boars formed then but a superticial laner, perhapis a foot in ofepht. The hemseloblef fire made in the centre of the londere, is is the Indian custom, and kept up for werks or montlis, would he quite suffieient to form the loflow in the eround wherein a lager of ashes would be collected, the herat from which would be quate suflicient tio burn, to some extont, the under-lyine buried bones.
'The presenee of stomes in the inhes may also be arecomted for hy remembering that among primitive nations a common mode of cooking is that of burving meat in cartheosen4, dete a foot or more in depthand partially eovered hy a layer of somes. wheh would, whon heated by the fire at the hotom, assist the conking process. Another Indan emstom, that of placing stones upen the lower end of thintenta to hespithemedoere to the erremmel, may alsu be cited. If such an aneient lowge was left undisturled allunfal deposit iseuld accumbate
over it in the course of centuries to the depth of cight or nine fect, burying alike mastodou bones and Indian traces."
The discovery of stoue arrow-heads mingled with the bones of a mastodon, clsewhere related by Dr. Koch, is of vers little value in determining the original question; for these weapons, which are widely distributed over the state of Missouri, have no doubt owed their spread to water-agencies, during the generally accepted humau period.-George E. Roberts.

We are much obliged to our friend, Mr. Roberts, for this note. We had been told that the supposed association of man and the "Missourium" had been explained away in this case, but we did not know by whom. We think, however, the original opinion of Dr. Koch, as supported by the traditions of the Indiaus, at any rate is quite as good a theory, and as mucli entitled to credenee as the other, --the latter seemingly being an attempt to explain away the cireumstances noted by Dr. Koch. In all these matters the evidence should be scrupulously examined for the sake of truth, and we must ever be on our guard against the misleadings of prejudice.-Ed. Geol.
Gontopholis and Suchosaurus Remains in Tealden Strata. SIr, - The fossils which I send for your inspeetion are from the Wealden strata round Cuckfield, Sussex, and I should be much obliged if you would, through the medinm of "The Geologist," inform me, 1st, whether I am right in the supposition that all the teeth with cylindrical bases belong to the genus Goniopholis:-[Yes]. And 2nd, the one which is compressed to Suchosaurus? -[Yes.] (3rd). Does the vertebra, which was found associated with the teeth, belong to either of these two ? - [Yes]. (4th). Do not all the osseous plates belong to Goniopholis? - [Yes]. And have any dermal bones of the Suchosaurus been found?-[Yes]. (6th). What is the cause of wide irregular grooves on three of the teeth?-[Varietal condition]. If you will kindly answer these queries you will deeply oblige me.-Yours truly, J. C. Ward, Clapham Common, Surrey.

The fossils sent are teeth of Suchosaurus cultridens and Goniopholis crassidens; bones and scutes of G. crassidens; fragment of bone of Tretosternon Buke. welli (?) and indeterminable fragments of bones.

These fossils are from the "calciferous sandrock" of the upper portion of the Hastings sand.-Ed. GEoL.
Errata in Foreign Correspondence.-Page 196, line 28, "pressure of the steam = one seven-eighith" should read "one and seven-eigths."
Errata in Geol. of Nemport Pagrall. - Page 215, line 17 (from the top), for "it takes the place of the Cormbrash of the south of "England," read "it apparently takes the place, \&e.-p. 215, for "Lethbury" read Lathbury. In the list of fossils, p. 216, for "Modiola plinaba" read MI. plicatu-for "Cardium globosum" read C. cognatus- for "Peeten globosum" read P. arcuatus- p. 216, for "Hantwell" read Hartwell, and for "Stoke Goddington" read Stoke Gioldington.-J.H.M.
Extracts frou Magazines.-Dear Sir,-Would not a fen selected facts and memoranda from the monthly and quarterly scientific magazines relating to geology and mineralogy be acceptable to many of your readers, as there are often discoveries, \&c., that occur which are almost umoticed, at least by many who have not time nor opportunity to glance over the jouruals that may contain such information, and which is sometimes very valuable? These memoranda, when brought together in such an exeellent magazine as the "Geologist," would prove of much interest to those studying the kindred sciences of mineralogy and geology.

I notice in the Philosophical Magazine for April, an interesting paper on the existence of a new element, discovered by the spectrum analysis, by Mr. W. Crookes, among some seleniferous deposits at a chemical works at Tilkerode,
in the Hart\%, where, it is well known, many minerals are found in which sćleumm and some other clements are combined, such as seleniuret of lead, of silver, of merenry, and of mereury and lead. There are also severnl other seleniurets in that locnlity- lomes, fe., dames R. Cinegony.

Fructitis: of Fhint-Pmenes,-Dean sif,-In reference to the fracture of tlimt-pehbles from Charlton, p. is, I would observe that the bed, No. I, from which they were taken may be eonsidered as having been drifted, from the eonfused maner in which the pelsbles and sand are heaped together; indeed, we may infer, from the resemblamee both of the sand and pebbles to No. 2, that they were deried from that bed, probably at some distanee oft, where it appearedat the surface; and whichafter being denuded was again deposited and strewn over a large area, part being the locality where our sectien was taken, and some distamee above its true position, which wonld be No. z. We may presume (if this took place during the drift-period) that the pebbles were for some time surrounded and suspended by ice, long enough io canse the water they contaned, howerer minute its quantity in become thoroughly frozen, which, when the mass was thawed, would canse the flints to be traversed be mumerous impereeptible fissures. These stones, imbedded in the sands, woild bold tugether, font when extracted, a "tap" with the bammer proves their existenee in the shattering of the flimt.
lin atl the -perimens broken nearly the whole of the fragments assumed a definite form. The ermeate and ennex sides of each fitting on to the convex and concave sides of its neichbour : and so perfect is this arrangement, that, with a little trouhle the pelbhle may be put together be replaring the fragments; and if hedel firmly in the band will exhibit scarcely any traces of the mmerons cracks:- Yours iruly, liomusd duses.
(emenite of Aumona in an Oligist of Devosion Age-Dr. Phipson las communieated a note to the Compless Rendus for May, on the nceurrenee of an organie matter in an oligiat of bevonimage in Belgmon. Its oolitio stmeture cansed him to think that it had been formed by incrustation in marsly tracts of the eeges of aqnatic insecte, as in the ease he deseribed in a former volnme of this magazine, of the oolitic limestone in the great lakes of Mexien; and it was this character which, in spite of the antiquity of the rock, lead him now to examine this oligist to find if it had any any organic matter that combld be regarded as the debris of plants or of aquatic insects.

The result of this chemiena malysis was that the obligist was found to contain more than four per cout, of cromate of ammonia, ant azotized organie salt. dismonered by Borzelins, mud the produets of the deempmosition of vegetable and animal matters thoting in water. The mineral emitained, moreover, traces of phopphorie arid, whenee it is iery probable it whs formed like the modern

 Sir,--Ire there any widences of smilar alterations of general terrestrial

 tims? Your kind reply wenld ohliger a young sudent who is much interested in the subjuet of former climalal ehames.- I. Whan, Doneaster.
'Tlis matter has just been very mieely treated in Mr. Pace's new book "Life no the lianth," where heresiess a dingram of madulations in whieh the Silurim, Carbomferoms, Dolitie, Tertiary, and lisent liras are made to represent the eylres of warmer temperature: and the Cambrian, Old Red, Permian, Chalk, and Boulder drift the ahtenate colder perionls. This idea of colder and warmer cyeles no affetime the morthern hembshere was hrought seme years nen mader the notiee of the st. Andrews Philosophieal siciety, and has since bern vairmaly dismabed, and some grool grounds urged for its acerptance.

Opercula from the Paludina-bed at Peckhan.-Dear Sir,-The accompanying figures represcnt some impressions which occur in the Paludina-bed at Peckham, to which deposit reference has before been made in "The Geologist (see vol.ii., pp. 151 and 205). Figure 1 is the most abundant rariety, and is of a roundish form, with a sub-central nucleus and concentric markings.

Opercula from the Paludina Bed, Peckham (natural size).
Having, by the kindness of Mr. Pickering, compared this with recent examples, I think there can be little doubt that it is the operculun of Paludina lenta, which is present in such rast numbers in this stone. I have lately found one with the horny matter preserved.

Figure 2, of which I have seen but one specimen, and that one not quite perfect, resembles figure 1 in the sub-central nucleus and concentric markings; but differs much from it in shape, being oblong, rounded at one end, and becoming narrower (almost pointed) at the other. I imagine that this operculum must have belonged to a shell with an elongated aperture. Two species of Paludina occur in this bed, but all the specimens I have seen have rounded mouths.

I have not seen a figure of P. aspera; but P. Desnoyersii, to which the other species is considered to be related, is figured with a rounded mouth by Deshayes.

It being rery difficult to obtain Paludinæ with the mouth perfect, either at Peckham or Dulwich, I cannot state for certain that the specimen, fig. 2, is not the operculum of Paludina aspera.

The only other univalve that I have met with in the Paludima-band is the Pitharella Rickmanii. The operculum No. 2, will correspond with the aperture of that shell; but I find that the Auriculidæ, Achatinidæ, and Lsmneidæ, to which families Mr. Edwards considers Pitharella is related, have no opercula.

At a recent meeting of the Geologists' Association, Mr. Pickering expressed doubts as to the correctness of Mr. Edwards' views, and considered Pitharella to be more nearly allied to Ampullaria. This question, however, I must leare to more experienced conchologists than myself.

While on this subject I should like to know whether Mr. Edwards described Pitharella, after a comparison of specimens, both from the Paludina-band at Peckham and Dulwich, and also from the shell-rock at the latter place. The shells that I have seen from the Dulwich shell-rock differ so much (being longer in proportion to their breadth) from those of the Paludina-band which occurs abore it, at bothPeckham and Dulwich, that I should have thought they belonged to two distinct species of the same genus.

I may add that I think some public notice should be taken of the fact that the first specimen of the Peckham Pitharella was discovered by Mr. Edmund Jones, in the strata at Cow-lane, Peckham, and was by him submitted to several geologists (who then considered it to be Tolutu denudata), some time before the excarations for the main drainage were commenced.-Yours truly, C. Etans.

That Mr. Edmund Jones has not had the credit of being the original finder [Supplement to 'fhe "Geologist," No. 42]
of the Pitherella Richmanii is due to my own easnal negligence. The specimen found hy Mr. Jones was placed br him in my hands montlis before the Dulwieh drainage-works were becrun; and I requested Mr. Jones to show it to Mr. E:herthee and Professor Morris, which, I believe he did; and by whom I also believe the shell was called a Voluta. Not being satisficd with the vaguc kinul of opinion given tu him, and the doubts expressed regarding it by those eminent palaomtologists, Mr. Jones agrain left the eprecimen in my hands, and I placed It aside for carcful examination and study ; hut mumerons professional engagements, as well as domestie matters, at that moment engrosing my thoughts, it re nained unateroded to by me; and was not, simgular to say, recalled to my mind, even when making the drawings (which I did msself) of Mr. Rickman's specimens, buth for this journal and for the Illustrated News. I am sure this frank ackinowledgement of my "sin of omission" will be a sufficient npology to my young frientl, Mr. Jones." The indefatigable perserercuce of Mr. Rickman in working out not onlv the fossils, but the stratigraphical det ails of that portion of the drainage works well deserves the little honour that is at a ached to the triviale numen of a new shed, of which honour I am sure neither Mr. Jones nor myself would wish to sec him deprived, esucially as Mr. Riekman's discovery was perfectly distinet from Mr. Jones': the former not having any knowledge, as far as 1 know, of what the latter had thone.

Mr. Jones is an active geolagist, willing to do grod work, and our regret is that he was not more enconraged to continue his researeles by those nat uralists to whom he showed the original specinen.

I ann not clear that there may not be two sperien of this new genus, and I have jul sent two sperimens handed me by Mr. Arthur Bott of l'erkhan, to Mr. F. F. Ddward, for his insprection and ilecision. In this catre it womld bo fair Mr. Jones should he homoured with the speecitic dromination-n slight gherificstion as rightly due in his case as in Mr. Riekman's-more than manally can be sail when pervonal names are so commonly attached as mere compliments (1) maturalists, whe have never seen the objects named after then; or in commemoration of amatenr-geologists, who have bought their specimens of working mellectors-: J. Miches.

New Spectrs of Thlobbits. - Sir,- I salw sume weeks ago an advertisc. ment by Mr. Gregury, on the cover of The "Groncicist," stating that he had many specimens of ignuslis rennlowus, from the Limgula tlags; but I shomld not have notierd the blundering we of a mere MS. name, gion by me to a friend for his collection, had I not seen (in p . 212 of your last minber) an artiche My Mr. Gregury, giviug three or four other Ms. natumes in the same way-all of which are wrons: and certainly they onght mot to have heen publiched, whether right or wronge, for they have not get appeared in any shape. 1,ent theac mischicroms adsurtisemmes thonld ber repeated, 1 must correet the reference so far as to sar that the species of Asaphes, and the shells referred to, are from the "Lower Tremadoe -ates" - men from the Lingula flags, in whiel no true lsaphides enenur.

I shall tahe this opportmity of adocrtiving in a sceientific sense, reque-wing thoar gentlemen not personally hmon to me, who may be prosessed of grond collections of tribdtitic, to commmicate to me their willingeness tol lend speciumens for illustratuon in the Palarontologiral Suriety's Transactions. I hape I mary take this means of beenning further acequainteil with collections of thia beanuful gronp of fussuls. As only a few genera will be illustrated at a time, no unreasomahle detention of the specincens will occur.-J. W. Salter, Geological Survey Ollire, Jermyn Street.

Shetched from the Speamers
In Stone by S Jaciue, FGS.

REVIEWS.

Proceedings of the Geologists' 1 ssociation, No. 6.

Since ourlast number this part of the Association's proceedings has been issued. It commences with a very good paper by the Rev. Walter Mitchell, on "Crystallography." This is followed by one on a "New Red Saudstone Quarry," at Stourton, in Cheshire, by Mr. Mitchener; and by another on "Brickfields, \&c.," by Mr. Pickering. "There is another paper on which we can bestow an equal meed of praise, although its main features have previonsly been presented elsewhere-that by Mr. Rickman on the Dulwich and Peckham beds.

There is one paper, however, to which we cannot help referring in a special but different manner, that on the "Geology of the Isle of Shepper." We do not know why it should be necessary to print such a paper in full, when neither the geology, the natural history, the English, nor the spelling is at all accurate; while one is so bothered with italics in the printing, that it is difficult to understand and appreciate sentences so full of points.

In the opening sentence we are told of Sheppey that "The island itself is an outlyer, having beeu split off and pushed arcay to the northward and eastward" (!). We do not know by what rule in orthography outlier is spelt with a y; nor do we comprehend how, if it be an outlier, it could be pushed two ways at once. We could understand a mass of rock being pushed to the north-eastward; but even then we should stop to enquire who or what it was that pushed it in that direction. As little can we understand the second senteuce, namely, that:"t.iese (the Sheppey) strata were undoubtedly formed below the waters of the Eocene period (!) of our theory, though now raised high above the ocean." We know there were Eocene seas, on the shores or bottom of which certain strata were deposited; but "the water of the Eocene period of our theory" is a novel liquid of which we were not previously aware of the existence. We are also in some little confusion of idcas as to what it is that is "raised high above the ocean." The text does not clearly explain to us whether it is the strata, the waters, the Eocene period, or "our theory," which has been thus conspicuonsly elevated. We do not wish to go into the question of the dirision of the tertiary beds into crag, Bagshot sand, fresh-water formation, and lower tertiary; nor to argue against the decided preference the author thinks this divisional arrangement possesses over "the rather awkward names of pliocene, miocene, and eocene;" and there are numerous other matters of which we refrain from speaking. Some one said of a book that was praised by our cutting contemporary, the Saturday Review, that it must be a good book indeed when that journal praised it; so, on the other hand, when we, who prefer to leave unnoticed what we cannot conscientiously praise, say there is one passage in this paper which we intend speciall to condemn, our readers will, no doubt, think that passage very bad indeed. The author speaks of Septaria-those great argillaceous nodules of the London clay-as being concentrated round an organic body. We do not want to quarrel with this idea; but when we read that "indeed, is it not probable that some molluse or jelly-fish originally formed the nucleus of every septaria; and that the septa were produced after the creature was, perhaps suddenly, enveloped in soft or semi-liquid clay by gases evolved from the decomposing animal matter, causing the conglomerate to crack in rirtual (: sic) lines, till other chemical changes taking place the chinks became filled with calcareous spar, often bespangled with crystals of pyrites," we can scarcely refrain from grinning like an ogre, throwing our arms about like a windmill, and with Dominie Sampson in Scott's novel, shouting "Prodigions," till the roof rings with our raptures. The nucleus of that great septarian table-top in yonder
coruer of the room-so hard, and beautiful, and polished-originating in the animal matter of a jell!-fish (.'), a ton of which creatures would not leave an omner of solid material. Has the anthor of the paper ever seen a jelly-fish? llas he ever seren thene slowals of "slutter" melting into water and eraporating on our beaches, without even staining the stones on which they rested? Uf all things 10 form a mueleus-a jelly-fish! the largest of which, wrighing three or four pounds, does not leave as many grains of matter; and this too, printed under the sanction of a Iondon committee of a london society, mustering F.(i.Ss, and F.C.Ss, and M.M.Ss, and F.R.A.Ss, with one of the council of the Geolugical Society as president, and an M.A. as honorary seeretary. The only cxeuse we can make for them is, that they must have left this praper on sheppey to its fate at the printer's, who, certainly, was not a naturalist, much less a geologist.

On the Vestiges of Extinct Glaciers in the neighbourhood of Great Britain and Irelund. Dr Enwari Hull, F.G.S.
In the early part of last year a paper on this subject was read be fore the Philosnphical sueiety of Manchester, hy Mr. Edw. Hull, of the Geslogical Surveg.
"As lar back as the yar 142 i M. Venctz first amonnced his opinion, founded on ample testmony, that the glaciers of the Alps formerly extended far berond their present limits. These riews were subsequenty confinud by MM. '(harpentier and Agassiz, and ate now universally received. But it was not unth the year is 1e that Dr. Buekland published his reasuns for betieving that the momitains of C'remaryonshire gave birth to ghaciers which desemded along seven main valleys; and that to these atents are to be attributed the polished, thted and striated rock-surfaces wheh may be traced at intervals along the pase of ldanberris and elsewhere. This opinion, at first wecrived with incredulity, was subsequently contirmed hy Mr. Darwin and Professor Kamsay.
"'The gromeds upon which Dr. Buekland rested his conchasions were prerisely those upon whiel M. Venctz inferred formed extension of the Alpine glacers. The effects of these streams of ice moving along their clannels have now been repeatedly ubserved not only in central Europe, but in the Aretic regions, where they descend into the sea and give origin to icebergs. These (ffects consist in the polishing and monbling the hottoms and sides of the valleys intos smonth owal bosses, of rorkes moufonmons-the production of strise, flutings and serat ches (which are generally parallel in a given locality) ; also, prehed blows and morniurs. The combination of these phenomena in any region can only he attributed in the agoner of elacial ice, as there is no other known power rapable of producing then. When to these is addel the dispersion of erratic bleeks, or bouldera of large size, over a district extending many miles from the parent mases to which they may be traced, we cambot hesitate to refer the 1 ransportation of these hloch s in thating icehergs derived from glaciors in a manner smilar to that whish is in operation along the coast of Greceland, or amoneat the fiords of Tierra del liuego."

The omly British district where, as far as I am aware, a detailed survey of the glacial atria has heen aceomplinhed, is that of Suowion by Professor A. C. Ramsay. The author gives in this paper a short sketch of the ghacial vestiges which are to be fomm tunongst the mountnins of killarney in Ireland, of Caernarvon in North Wales, of the lake distriet in lingland, and the Scottish Hichlands.
['rofesanr Agaasiz, in giving a general sketeh of the ancient glacial ecntres of the Pritish Islands, includes amongst them the mountainous distriet of Kerry, at the southern extremity of Ireland, at the entrance to which are situated the
far-famed Lakes of Killarney. On approaching this region from the east, it is impossible not to be struck with the rast accumulation of detritus, with large boulders derived from the rocks of which the mountains are composed. This deposit of the age of the northern drift is spread over the low-lying district of Carboniferous'limestone which extends to the lower lake. On the western and southern sides of this lake the mountains rise abruptly and attain at Carn Tual an elevation of three thousand four hundred and four feet, and here the glacial phenomena are as strongly pronounced as in any part of Wales and Scotland. The Black Valley, one of the most wild and striking, which stretches from the head of the lower lake to the base of Macgillycuddy's Recks, exhibits these appearances in their most marked form. The surfaces of the rocks are here worn into smooth oval bosses, lying with their major axes in the direction of the ralley, and extending several hundred feet up the sides. These polished roches moutonnées, howerer, assume a singular appearance when traced into the upper lake. They rise above the surface in the form of small oral islands, lying parallel to each other, aud, though frcquently clothed with luxuriant regetation, are generally smooth and bare. It is impossible to give an idea of these ice-moulded bosses, protruding their naked backs above the calm waters of the lake, bearing some resemblance to a number of up-turned hulls of ships, or to a shoal of whales swimming half out of the water."

Nearly all the main valleys present similar appearances. The rocks, wherever frcshly exposcd, are grooved and striated : the picturesque valley of Glengariff being specially remarkable for the freshness of the ice-groovings and scratches. These striæ point west-sonth-west, stretching along the valley till it is submerged in the sea at Bantry Bay.

The years 1S4l-42 appear to have been remarkably prolific in researches into the glacial phenomena of our islauds, for we fiud Professor Agassiz, Dr. Bucklaud, and Sir C. Lyell announcing consecutively their convictions of the former existence of a state of things in these islands, which have their analogues only in Greenland, South Georgia, or Tierra del Fuego, at the present day. M. Agassiz pointed to the Cacrnarvonshire mountains as one of the centres of dispersion of glacial and erratic detritus; and Dr. Buckland speedily followed with details tending to prove that the seven valleys of Snowdonia were once occupied by as many glaciers, discharging loads of boulders and gravel over the lower grounds or into the sea, and covering the bottoms and sides of those valleys with flutings and furrows. He also shows that on the northern flanks of this district, boulders and marine drift coming from Anglesea, Cumberland, or Ireland, and containing, as shown by Mr. Trimmer, marine shells, have been deposited at an elevation of one thousand three hundred and ninety-two feet on Moel Tryfane.

The observations of Dr. Buckland were followed by those of Mr. Darwin, and more recently by those of Professor A.C. Ramsay. This author has shown that many of the tarns, such as Llyn Llydaw and Llyn Idwal, have been produced partly through the damming up of the waters by moraines, as Agassiz had previously shown to be the case in the Alps, and Lyell in Forfarshire. The same author, in order to account for the fact that several of the mountain tarns, as those near the summit of Cader Idris, Moel Wynne and Snowdon, are in the form of basins hollowed out in solid rock, has suggested an explanation which may be called " the scooping theory." These tarns are generally surrounded through half their circumferance by precipitous walls of rock; and Professor Ramsay supposes that solid masses of ice, descending from these heights, charged with imbedded fragments of rock, have actually scooped these hollows, which are so numerous in all mountain districts.

But there is one interesting fact brought out by Professor Ramsay, and which, according to my own observation, is repeated amongst the valleys of the

Iake distriet. Taking the moraine of lay Idwal as one of several examples, he shows that it is simated at about one thonsand feet below the eleration attained ly the Northern Drift. Now if this morame had heen formed previous to the deposition of this marine deposit (which attains an elevation of two thousand three hundred foet), it would most certainly have boen entirely whliterated. It is, therefore, evident that momines of this kind belong to a periond subseguent to the Northern Drift. Bearing this in mind, and recollheeting the elear evidence whicls the roches montonnes, frequently enelosed by marine drift, aftord of having beren formed by glaciers before the deposition of the same formation, we have here a sequeuer of three distinet, though emmeeted, periods: the tirst, in which the glaciers deseended down the main valleys; she seemol, when the land of Whales had sunk at least two thousand three-hundred feet, during which the till or drift was spread orer the thanks of the montain; and the third when the lamd had been clevated, and glaciers again deseended from the heights ploughing out the drift, and forming moraines for embankments to lakes and tarns.
'The striatious of the rock-surfaces of Anglesea appear to be altogether discomeeted with the glacier srstem of Cacmarmonshire. 'The strix and groores generally ramge west thirty degrees south, and are prohably the result of iec. frergs stranding and seoring the bottom as they floated from the mountains of Wistmorcland.

The existence of former ghaciers amongst the mountains of Westmoreland and C'muberland have been ammuned by Agassi\% and Buckland. Both these anthers, notiee in several localities on the sonthern and eastern sides of the dietrict, examples of seored and grooved surfaces, and the mammilar bosses, which oecur at l'enritl and Windermere. The athor thinks, howerer, that Dr. Burkland has extended the glacial theory frequently beyond its true limits, and has mistaken, in the valley of the liden, Walney lslamb, and elsewhere, remarkable forms of drift-gravel and boulders for glacial moraines; and altoget her dissents from the astombling supposition that a glacier stretehel from the shirts of Shap Fell across the valley of the Eden, by means of whel the granite bloeks were distributed over the high table-land of stammore Forest, and the valley of the Tres.

The roeks of a large distriet surrounding the interior mountains are remarkably iec-monlded, pelished, and st riated, as fur tas the head of Morecombe bay to the sonth, and the vale of the Eden to the north; and the drift, n marime bouder-elay, rises to the height of one thousand two humded feet on the sonthern slopes of the hills.

Several well-marked moraines mar be obseresed at elevations ennsiderably below the upper limit of the drift. All thase oernpring this position must, in eonsequenere, be of more reecut date than this marime deposit. Of examples of this class, the innst remarkable is the large terminal moraine at the lower extremits of tirinedale. This gorge, one of the most desolate and savage in Comberland, ileseends from the heart of Itelodlyn towards the head of Clleswater. The rocks of porghyry which furm the hotem and flanks of the valler, up to an elevation of abont five humbed fert on either sidd, are remarkably iere-monded, affording mamerome examples of perehed blocks and lateral moraines. Seriations are not, however, of frequent necurreuce, owing to the nature of the racks. On deacendeng towards the month of the valler, the terminal moraine arreats the attention, and appears like a coneeries of large rounded hummecks, atrewn with boulders, rising inp the sides of the valley to about one hundred and fifter feet abone the bed of the river. After the medting of the glacier, this moraine, in all probahility, prodneed a lake. But the torrent has hewn a channel and levelled the grombd nver a breadth of about one hundred yards.

The position of this moraine is not more than six hundred fect above the sea-
level, or two hundred and twenty feet above the Ulleswater; and it enables us to measure with exactness the dimensions of the glacier which formed it. Taken from the tarn at the head of the valley, this glacier was three miles in length, about five hundred feet in depth at its centre, and from two hundred to four hundred yards in width. On the eastern side it was bounded by a continuous and nearly vertical escarpment of bedded trap; but the western side was very irregular and indented. The phenomena of this region appear to show: first, a period when glaciers protruded far down the main valleys; secondly, an interval when the land was submerged about one thousand two hundred feet or more, during which the boulder-clay was spread over the flanks of the hills and valleys; thirdly, a period when the land had been again elerated, and glaciers extended, some distance down the minor vallers and ploughed out the drift. It was a glacier of this third period which has left the terminal moraine of Grisedale.

The glacial vestiges of the Highlands of Scotland are on a scale more grand than those of the lake district or Wales, in proportion to the greater extent and loftiness of the monntains, and their higher latitude. Ben Nevis, in lat. fiftysix deg. fifty min., attaining an elevation of four thousand three hnndred and sixty-eight feet, falls only a little short of the suow line, and is said to have patehes of snow all the year round in the fissures near the summit. The observations which have been recorded regarding the direction of the strix, go to prove that the Highlands formed a centre of dispersion, from which the ice. streams and bergs radiated in every direction from the central range.

The southern slopes of the Grampian Hills in Angus and Forfar have received a detailed examination at the hands of Sir C. Lyell. The striations follow the lines of the main valleys south-south-east, and several fine examples of lateral and terminal moraines are mentioned. Of these the great transverse barrier of Glenairn seem to be the most remarkable. The valley of the south Esk here contracts from a mile to a half a mile in breadth, and is flanked by steep mountains. Seen from below, this barrier resembles an artificial dam two hundred feet high, with numerous hillocks on the summit. Its breadth from north to south is half a mile. Sir C. Lyell considers this to be the terminal moraine of the receding glacier, and considers it probable that it once banked up the river so as to form a lake, which has since been drained by the Esk having cut a ehannel for itself thirty feet deep on the eastern side.

The Sidlaw Hills claim particular attention on aceount of the examples of transported boulders which they afford. Separated by the great valley of Strathmore from the Grampian range they reach an elevation of one thousand five handred feet. They are formed of Old Red Sandstone, and on their flanks at elevations of seven hundred and eight hundred feet are strewn blocks of gneiss and mica-slate, which have been Hoated aeross the intervening space orer a distance of fifteen miles. One of these blocks on Pitscanby Hill is thirteen feet long, and seven across. This is an example, on a much smaller scale, of the erratic phenomena of the Alps, where enormons blocks have been transported across the great valley of Switzerland from the Mont Blanc range, and stranded along the flanks of the Jura hills. The Pierre à bot, one of these boulders, is one of the noblest monuments in the world of the transporting power of ice.
-
The Highlands of Perthshire have been examined along their southern watershed by Buckland and Agassiz, who detail numerous examples of glaeial traces in the shape of moraines, roches moutonnées, strix, and perched blocks.

The wild district of Inverness-shire and Ross-shire remain yet to be described, as far as its glacial history is eoneerned. From what we know of the adjoining regions, however, we may surmise that its long channel-shaped valleys and arms of the sea, stretching from the coasts far into the mountains, must have presented a series of physical conditions very similar to that of Norway, where the glaciers
appear to have descended into the sea during the glacial period. The phenomena of Sutherlandshire appar to have forced such an analogy on the mind of Sir K. Murehison, when lately exploring this region. Glachal vestiges are no less inarked over the rugged and inhospitable island of Skye.

Professor Agassiz is of opinion that the parallel roads of Cilenror, near the foot of Ben Nevis, are attributable to a lateral glacier haviug been projected across the valley, near Bridge Roy, and another across the valley of Glen speanc.

By this means glacier lakes were formed, along whose margin the stratified terrates of gravel were produced, which are now seen to line the tlanks of the valley at a perfectly horizontal level through several leagnes. The subsequent melting of the glaciers has entirely obliterated any traces of the agent by means of which the waters were pent up. Mr. Darwin, however, takes a different view of the subject, considering that the parallel roads are marine terraces, formed during the submergence of the land to a depth of one thousand two humdred and fifty feet, their present clevation.

Professor Agassiz and Dr. Buckland considered not ouly that glaciers once existed in the British Islands, but that large sheets of jee (nappes) covered all the surface of the districts surrounding the Hirhland groups. This opinion in founded on the wide extent to which unstratified gravels, perehed blocks, and polished surfiuces in situ are distributed over the distriets adjacent to the eentres of distribution. It is now generally allowed that floating see, or rather surimming ier, has played a more important part in producing these phenomena than was supposed by the founders of the glacial theory. It is, indeed, ant almost unsolved problem, how we are, in all cases, to distinguish between the effeets of iechergs charged with stones scraping along the sides and bottoms of the channels throngh wheh they tloat, and the effects of subaerial glaeiers. If of large size, and impelled by prevalcut winds or currents in one general direction, they wonld produce polished, grooved and round surfaces on the rocks with which they would come in contact, and leave behind blocks and debries strewn so as to resemble the matter of moraines. At the same time there are several elasses of ohjects which could only lave been produced by sulbacrial glaciers, and others which bear the manistakable impress of aqueons deposition." The great object to bo acomplished is the production of maps shewing the direction of the strix, the position of the moraines, and the limits of the drift, amongst the highlands of Britain.

liemarts upron the Flint-Implements found at Amiens and Ahberille in comnerliont

with the Glarial Theury. By Almul. Wanchope. Swecter: Penrith.

In this pamplidet Admiral Wiachope attempts to co-relate the flowd of Norah with the (ilacial period; mul to show that the subsidenere of Rast, Forida, Newfondland, Nora Scotia, and Lathador, by diverting the Gulf Stram, was the canse of the dispersion of icehergs ower Burope. One remarkable statement is made at page \tilde{r}, which it is highly desirable should be clucidated by a more partienlar statement of the farts,- the passage we allode in runs thus "All these events would produce a climate of equal cold with the Polar regions. 'This would eanse a rapid, and all but total extinction of the luge Mammatia that browsed in thenastaly in the valleys and wooded plains. The Iribh Eilk was adse most likely destroyed at this time; for I con prove its laving heen emtempraneons with man, haring sen a stone hammer sticking in the skull of onr, and also the lieads of others ichich hat been perforated ly the same bilid of iernpuan."

Anahuac; or, Mexico and the Mexicans, Ancient and Modern. By Edw. B. Tylor. Loudou: Longman and Co, 1861.
It is really a treat to read a book like Mr. Tylor's. Free, easy, lightly and pleasautly written, and yet containing really solid information and material.

In the spring of 1556 Mr. Tylor met another traveller, Mr. Christy, accidentally, in an omnibus at Haranua. Mr. Christy had been wandering in Cuba amougst the sugar-plantations, and copper-mines, and coffee-estates, descending into cares, aud botanizing in tropical jungles; Mr. Tylor had been for the best part of the year in the United States, and had just left the live-oak forests and sugar-plantations of Louisiana. So the two travellers agreed to risit Mexico, and heartily glad will everybody be who reads the book which their adveuture has produced that they did so.

It opens pleasantly with this incident, takes us on a delightful excursion to the Isle of Pines, off the Southeru coast of Cuba. Theu the two travellers proceed from Harana to Vcra Cruz, aud from Vera Cruz to Mexico. Our old Euglish authors of the seventeenth century used to make their books as short as possible; they never said in six words what they could say properly in five, and they always tried to say what they had to say properly. They were pithy, curt, quaint, often laconic.

Mr. Tylor always says ererything he lias to say properly ; more than this, he says it pleasantly, correctly, wittily, amusingly, concisely. Polities, religion, the habits of people, the characters of individuals, political economy, statistics, warfare, physical geography, geology, and scenery, are all treated with a masterly hand. As he walks through Vera Cruz, he describes the white coralrock houses, mildewed and dismal-looking. You feel the melancholy plaguestricken look of the place; you see the great turkey-buzzards, with their bald heads and foul dingy-black plumage, sitting in compact rows on parapets of honses or churches, and thence leisurely swooping down on the offal in the streets, one after the other. Palpably the sentry, with his old flint-lock, stands at the city gate, and wheu you step outside you feel vourself amongst the high shifting sandhills that stretch away for miles around Vera Cruz. And so it is throughout the journey: you understand exactly what Mr. Tylor and Mr. Christy are doing; you know perfectly well who they met and what they saw; you know eren exactly what time they got home to dinner, or who they dined out with, and you do not feel the least angry with Mr. Tylor for telling you. In fact, you do not know that he has told you; you have been one of the party, and of course you know what you did when you were with the trarellers. Mr. Tylor is a consummate word-painter of incidents and scenery-a witty, ehecrful, agreeable narrator.

Matters geological there are plenty of in this charming volume, from shifting sandhills to lava-curreuts; from silver-mines to limestone-quarries. It well suits us to give a long extract from Mr. Tylor's book. The obsidian kuives were not likely to be orerlooked by two such well-read and observant travellers. The subject at the present time camot fail to interest our readers.
"Soon after nightfall we got back to the English inn, and went to bed without any further eveut happening, except the burning of some outhouses, which we went out to see. The custom of roofing houses with pine-shingles ("tacumeniles'), and the general use of wood for building all the best houses, make fires very common here. During the few days we spent in the Real district, I find in my note-book mention of three fires which we saw. We spent the next day in resting, and in visiting the mine-works near at hand. The day
[supplement to the " geologist," No 41.]
after, an Enclishman who had lived many years at the Real oftered to take us out for a day's ride; and the Company's Administrador lent us two of his own horse, for the prore beasts from l'achica conld hardly have gone so far. The tirat place we visited was Pemas Cargadas, the 'loaded rocks,' Riding through a thick wood of oaks and pines, we came suddenly in view of several sugarloaf peaks, some three hundred feet high, tapering almost to a point at the top, and each one crowned with a mass of rocks which seem to have been batanced in unstable expulibrium on its point-looking as though the tirst puff of wind would bring them down. The pillars were of porphyritic conglomerate, which hat been disintegrated and worn away by wind and rain ; while the great mases resting on them, probably of solid porphyry, had been less affected by these influences. It was the most curinus example of the weathering of rocks that we had ever scen. From Penas Cargadas we rode on to the farm of Cinajalote, where the Compriny has forests, and cuts wood and burns charcoal for the mines and the refining works, Don Alejandro, the tenant of the farm, was is scotchman, and a gond fellow. He could not gn on with ns, for he had iuvited a party of meighbours to eat up a kid that had been cooked in a hole in the ground, with embers mpon it, after Sandwich Island fashion. This is ralled is burbucou-a barbecuc. We should have liked to be at the feast, but time was short, so we rode on to the top of Mount Jacal, twelve thousand feet above the sea, where there was a view of mometains and ralleys, and heat that was positively melting. Thence down to the Cerro de Nasajas, the 'hill of knives.' It is on the sides of this hill that obsidian is found in enomons guantities. Before the eonquerors introduced the use of iron, these depesits were regularly mined, and this place was the sheflield of Mexico.
"We were chrions to see all that was to be scen; for Mr. Christy's excellent collection, abready lare before our visit, and destined to beeome much larger, contained mumbers of implements and weapons of this rery peenliar material. Any one who does not know obsidian may imagine great masses of bottle-glass, such ats our orthodox ugly wine-botlles are mate of, very hard, very bittle, and-if one breaks it with any ordinary implement-going, as glass does, in every direction but the right one. We saw its resemblance to this port-wine botile-glass in an odd way at the Ojo cte Agna, where the wall of the hacienda was armed at the top, atter our English fashion, apparently with bits of otd botiles, which turned out to be chips of obsidiam. Ont of this rather mopenmising stutl the Mexicans made knives, razors, arrow- and spear-heads, and other thinges of great beauty. I say nothing of the polished obsidian mirrors and romaments, nor even of the cirious masks of the human face that are to he senen in colbertions, for these were only latorionsly cut and pulished with jewellers' samd, to us a common-phaee prosess.

Cortes found the barbers at the great marke of Tlateloleo lonsy shaving the matives with such razore, and he and his men had experienee of other uses of the same material in the thghts of whidian-headed arrows which 'darkened the sky, as they said, and the mone deadly wooden maces stuek all over with obsidian points, and of the pricuts'saeribienal knives too, not long after. These thines were mot cat and polished, hut mate by chipping or cracking off picces from a lump. This one ransee hy the traces of conchoidal fracture which they all show.
"The art is not wholly underatond, for it perished soon after the Conguest, When iron came in ; bot, as far ats the theory is coneremed, I think I ean give a tolerably satisfactory accome of the process of manufacture. In the first plaee, the workman who makes gru-fliuts could probably make some of the simpler obadim implements, which were no doubt rhipued off in the same way. The section of a gron-tlint, with its one side that for sharpuess and the cifher side ribbed for strengeth, is one of the characteristies of obsidian knives. That
the flint knives of Scandinavia were made by chipping off strips from a mass

1. Flame-shaped arrow-head; obsidian: Teteohuacan. 2. Arrow-head; opake obsidian: Teteohuacan. 3. Knife or razor of obsidian, shown in two aspects; Mexico. 4. Leaf-shaped knife or javelin-head; obsidian; from Real del Monte. 5. Spear-head of chalcedony; one of a pair supposed to be spears of state; found in excavating for the Casa Grande, Tezcuco. (This peculiar opalescent chalcedony occurs as concretions, sometimes of large size, in the trachytic lavas of Mexico.)
is proved by the many-sided prisms occasionally found there, and particularly by that one which was discorered just where it had been worked, with the
hnires chipped off it lying close by, and fitting accurately into their places upon it.
" Now to make the ease complete,

Fiutell prigm of rhsichan: the core from whom fukton here been struck olf, we ourgt to tind such prisus in Mexico: and accordingly, some months ago, when I examined the splendid Mexican collection of Mr . Chele, at Heidelberg, I found one or two. No nne seemed to have suspected their real .nature, and they had been classed as maces, or the handles of some kind of weapon. I should say from memory that they were seven or eight inches long, and as large as one could eomreniently grasp; and one or both of them, as if to remove all doubt as 10 what they were, had the stripping ofl of ribbons not carricd quite romed them, but leaving an intermediate strip rought. There is another peint about the olssidian knives which requires confirmation. One ram often see on the ends of the Somdmavian flint knives the bruise made be the blow of the hard stone with whels they were knoeked off. I did mot thimk of looking on this point when at Mr. Chde's muscum, but the only obsidian knife I hawe seen since seems to be thus brused

Azifc knives or razors. Jong narrow tlakes of otmodints, luving an simHe fucu on one sirle, and three facets unt lie othor.
"Onee able to break his obsidian staight, the workman has got on a long way in his trade, for a large propertion of the articles he has to make are formed her phanes intersecting one anohher in various fliecetions. But the Mevican knives are erencrally not peinted, but turned up at the end, as one may bend up a druegest's spatula. 'This peenliar shape is not given to answer a pirpuse, but results from the natural fracture of the stonc.
" Pien then, the way of making seteral implemments or weapoms is not
 inchere long which wore haver from lase to point, and covered with taper flutinge ; add there are wher thinges which prosent great diflienties. I have heard on gomel mohority Hat somewhere in Prom the Indians still have a way of workng whidian hy laying a bone woder on the surface of a pioce, and lappinge it till the stone crachs. Such a process may hase been used in Mevimo.

We inay are in mbemmes beatiful little articles made in this intraetable material, such as the mirrors and masks I hiwe mentioned, and even rings and cups. But, as I have said, these are more lapidaries' work.

The situation of the mines was pichurewque ; grand hills of porphyritic roek, ant pine-fores eversubere. Not far off is the liruad track of a hurricanc, whect had walked through it for miles, knoehing the great trees down like num phes, and leasing them tor ren there. The weretation tave evident pronf of a 4 -sere climate ; nud jet the luat and ghare of the sun were more intolerable
than we lad ever felt it in the region of sugar-canes and bananas. About here, some of the trachytic porphyry which forms the substance of the hills had happened to have cooled, under suitable conditions, from the molten state into a sort of slag or volcanic glass, which is the obsidian in question; and, in places, this vitreous lava-from one layer having flowed over another which was already cool-was regularly stratified.
" The mines were mere wells, not very deep; with horizontal workings into the obsidian, where it was rery good and in thick layers. Round about were heaps of fragments, huudreds of tous of them; and it was clear, from the shape of these, that some of the manufacturing was done on the spot. There lad been great numbers of pits worked; and it was from these "minillas," little mines, as they are called, that we first got an idea how important an element this obsidian was in the old Aztec civilization. In excursions made since, we travelled over whole districts in the plains, where fragments of these arrows and knives were to be found, literally at every step, mixed with morsels of pottery, and here and there a little clay idol. Among the heaps of fragments were many that had become weathered on the upper side, and had a remarkable lustre, like silver. Obsidian is called bizcli by the Indians, and the silvery sort is known as lizeli platera. They often find bits of it in the fields; and go with great secrecy and mystery to Mr. Bell, or some other authority in mining matters, and confide to him their discovery of a silver mine. They go away angry and unconvinced when told what their silver really is; and generally come to the conclusion that he is deceiving them, with a view of throwing them off the scent, that he may find the place himself, and cheat them of their share of the profits-just what their own miserable morbid cumning would lead them to do under such circumstances.
"The family-likeness that exists among the stone tools and weapons found in so many parts of the world is rery remarkable. The flint-arrows of North America, such as Mr. Longfellow's arrow-maker used to work at in the land of the Dacotahs, and which, in the wild northern states of Mexico, the Apaches aud Comanches use to this day, might be easily mistaken for the weapons of our British ancestors, dug up on the banks of the Thames. It is true that the finish of the Mexican obsidian implements far exceeds that of the chipped flint aud agate weapous of Scandinaria, and still more those of England, Switzerland, and Italy, where they are dug up in such quantities, in deposits of alluvial soil, and in bone-caves in the limestone rocks. But this higher finish we may attribute partly to the superiority

Mexican arrow-heads of obsidian. of the material; for the Mexicans also used flint to some extent, and their flint weapons are as hard to distinguish by inspection as those from other parts of the world. We may reasonably suppose, moreover, that the skill of the Mcxican artificer increased when he found a better material than flint to work upon. Be this as it may, an inspection of any good collection of such articles shows the much higher finish of the obsidian implements than of those of flint, agate, and rock-crystal. They say there is an ingenious artist who makes flint arrow-heads and stone axes for the benefit of English antiquarians, and earns good profits by it. I should like to give him an order for ribbed obsidian razors and spear-heads; I don't think he would make much of them.
"Tle wonderful similarity of character among the stone wcapons found in
different parts of the world has often been used by ethologists as a means of supporting the thenry that this and other arts were carried over the world by tribes migrating from one common centre of creation of the human species.

Aztec knife of chalcerlony, mounted on a wooden handle, which is shaped like a humnn figure, with is face appearing throurh an cugle-heal mask, and has leen inluid wirla musaic work of malnchite, shell, and turyuoise. Length 12t inches.

The argument has not much weight, and a larger view of the subject quite supersedes it.
" We may put the question in this way. In Asin and in Europe the use of stone tools and weapons has dways characterized a very low state of civilization; and such implements are only fomd among savage tribes living by the chase, or just begiming to cultivate the cround, and to cmerge from the condition of mere barbarims. Now, if the Mexicans got their civilization from Enrope, it must have been from some people macquainted with the use of iron, if not of brome. Lron aboumls in Mexico, not mily in the state of ore, but orcurring nearly pure in acrolites of great size, as at Cholula, and at Cac:tecas, not far from the great ruins there; so that the only reason for their not using it most have been ignormee of its qualities.
"The Arabian Nights' story of the mountain which consisted of a single loadstone finds its literal fultilnent in Mexico. Not far from Huctamo, on the road towards the Parifie, there is a conical hill composed entirely of magnetie iron-ore. The hheksmiths in the neighbourhood, with no other apparatus than their eommon forges, make it directly into wrought iron, which they use for all ordinary purpeses.
"Now, in supposing civilization to be transmitted from one country to another, we munt measure it hy the leeight of its lowest point, as we measure the st rencth of at chain by the strengith of the weakes link. The only civilization that the Mexienas cail have recewed from the (Ohd Wirld must have been from some perphe whose cutting implements were of shappsome, eomsequently, ns we must conclude ly analogy, some wery harlarnus and ionorant tribe
"From this point we must admit that the inhabitants of Mexien raised themselses, independenty, to the extraordinary degree of calture which distingonched them when Europeany firut beeatie aware of their existence. The carione distribition of their humbledge shows plainly that they found it for themalses, and did now receles it by tramsmasion. We find a wonderfol arruaintance with antronomy, eren to anchiletails as the real canse of eelipses, and the longth of the sear given by interealations of surprising acemrars; and, at the wame time, mon kuwhedee whaterer of the art of writing alphabet ieally, for their heroglyphies are mothing but suggestive piofures. They had earried the art of gardening in a high degere of perferefon; but, though there were two kinds of or, and the butbilo at no great distance from them in the erothtrice they had ulready pased thromeh in their migration from the morth, they fad no idea of the employment of beasts of burden, nor of the use of milk.

They were a great trading people, aud had money of sereral kinds in general use, but the art of weighing was utterly unknown to them; while, on the other hand, the Pcruvians habitnally used scales and weights, but had no idea of the use of money.
"To return to the stone knives. The Mexicans may very well have invented the art themselves, as they did so many others; or they may have received it from the Old World. The things themselves prove nothing either way.
"The real proof of their laving, at some early period, communicated with inhabitants of Europe or Asia rests upon the traditions current among them, which are recorded by the early historiaus, and confirmed the Aztec pieturewritings; and upon several extraordinary coincidences in the signs used by them in reckoning astronomical cycles. Further on I shall allude to these traditions.
"On the whole, the most probable riew of the origin of the Mexican tribes seems to be the one ordinarily held, that they really eame from the Old World, bringing with them several legends, evidently the same as the histories recorded in the book of Genesis. This must have been, howerer, at a time when they were quite a barbarons, nomadic tribe; and we must regard their civilization as of independent and far later growth.
"We rode back through the woods to Guajalote, where the Mexican cook had made us a feast after the manner of the country, and from her experience of foreigners had learut to temper the chilé to our susceptible throats. Decidedly the Mexicans are not without ideas in the matter of cookery. We stayed talking with the hospitable Dou Alejandro and his sister till it was all but dark, and then rode back to the Real, admiring the fire-flies that were darting about by thousands, and listening to our companion's stories, which turned ou robberies and murders-as stories are apt to do in wild places after dark. But, save an escape from being robbed some twenty years back, and the history of an Indian who was murdered just here by some of his own people, for a few shillings he was taking home, our friend had not much reason to give for the two huge horse-pistols he earried, ready for action. His story of the death of a German eugineer in these parts is worth recording here. He was riding home one dark night with a companiou; and, trusting to his knowledge of the country, tried a short cut through the woods, among the old open mines near the Regla road. They had quite passed all the dangerous places, he thought, so he gave his horse the spur, and plunged sheer down a shaft, hundreds of feet deep. His friend pulled up in time, and got home safely."
From this interesting subject we pass on to a discourse on numerals and counting; then to the siege and capitulation of Puebla; to miracles, rival virgins, Indian eanoes, water-snakes, salt and salt-pans, fried flies'-egrs, Aztec pictures, the mammoth bones in the Mexican museum, bull-lazoing and coekfighting, gambling and fortunate miners, travelling companious and Mexicans who live by their wits, artificial lightning, the future destinies of Mexico, cunn multis aliis, which are, as the puffing advertisers say, "too numerous to mention." With them we do not meddle; luckily for us, our province is confined to the geological: we do not say all we could say about that; but if we were tempted out of our course, eight pages would not suffice for this review.

We linger ouly to add a valuable note which Mr. Tylor gives us in an appendix, on the manufacture of obsidian knives.

[^47]wht it it a mnst wnolerful and mimimble thing to see them n.ake out of the sinne; nat the in . Why whels avented thas art is much to be praised. 'They are mate and got out of tho \therefore it (fl nne can explain it) in this manner. One of these lidim workmen sits down mon tion grouml, atud takes a piece of thas black stome, which is like jet, and hard as tlint, nud in a सtone whel wight he called precions, more benutifnl and brillimt than alahaster or jasper, Ful much sithat of th are made tablets and mirrors. The piece thry take is alout eight inches 1. the or ruther more, and as thick ns one's leg or ruther less, and cytudrical; they havo a shek as large as the shaft of a lance, and three culbits or mather more in length; and at tho end of it they fasten firmly another piece of woot, eight inches long, to give more weight to the part; then, pressing their naked feet together, they holl the stone as with a puir of pincers or the vice of a carpenter's bench. 'They take the stick, which is cut off smooth at tho enrl, with both hands, and set it woll home against the edge of the front of the stono (y poncnion acexar con el canto de la frente de laz piedra) which also is cut smooth in that part; and then ther press it against their breast, and with the force of the pressure there dics off a knife, with its point, andelige on each side, as neatly as if one were to mako them of a turmip with a whatp kuife, or of iron in the fire. Then they sharpen it on a stone, using a hono t. give it a very fine elge; and in a very short time these worknen will make moro than tweuty knives in the aforeasal manner. 'They come out of the same slape as our harbers' lancets, except that they have a rib up tho middle, and have a slight graceful curve wowards the point. They will cht and shave the hair the flrme time they are used, at the first eut nearly as well as a steel mazor, but they lose their calge at the keconil cut ; aud to, to finish shaving onc's henrd or hair, one after another has to be used; though indeed ther are cheap, and thoiling them is of no conserpence. Many Spaniards, hoth regular and sechlar clergy, huve lien shaved with them, especially at the leginning of the colonization of these realms, when there was nosuch ahmodance as now of the necessary instruments, and people who gnin their livelihood by 1 mactising this oceupation. I Sut I conclude liysaying that it is an tulmiraWe thing to see them malle, and no small argment for the capacity of the men who found out such an inveotion.'"

Nors we take our leare of "Anahuae;" we have read it from begimning to rod and have been delighted with it. Our readers will be the same if they buy it and read it right throngh as we have done.
ile have to thank Mr. Trlor for the nse of some of the excellent woodents with wheh his book is copionsly ilhstrated.

Primeral Man. By the Rev. Dr. Aspfusox, F.G.S. Edinhurgn: I'aton and Ritchic, 1561.

This small Pamphlet, a report and address to the Graduates' Association at Si. Andrew's, has been sent to us by its author, the Rev. Dr. And.rson of Durn Den, who takes views on the sulject of flint-implements and their bearings ou the question of the great antiquity of man like those expressed hy M. Robert in lis late eorrespondence with M1. Boucher de I'erthes, namely, that there had been buch eommingring by diluvial or torrential action of the bones and debris emthodded in the more incient pleistocene beds, with more recent remains and more modern sediments and deposits.

Geologieal changes are daily falling wilhin our own observat inns, and scarecty a year "hapes williont something ocenring wort he to be nuticed. The Murraysliere flonds of 1529 ; them in the spring of 14.j!, at the breaking up of the: jee in the river Spery and its tributarice, and the sast accummlat ion of sand and crabl mar the junction of the bilen with the Perees Burn, are quoted Gy. Dr. Andersem whe denduces frem theae and similar modern instances that the anere perition of the bets of geravel and sitt in whech the flint weapons are found does mot neceasarialy determine their time, or erem relative ages one with mother. Many of them may not he in their original plaees, but have been shifted and earried tionther lecalitiea, cether suddenly by river-flooding, or slowly and erad bally hy the erodius action of rains and rimlets of streams,

Whongh these repinions are not in striet acecrelane with our own, we are always rady to ornecalu a portion of our pages in stating the opposing viows of nthera, whenerer those viewa hase any merit.

We are sorry, however, that Dr. Jinderson should hare misinterpreted and mis-atated some of our thoughts expressed in a former volume of "The Geono6,1st," lout as we feel quite sure this was not iutentional on his part, we refrais from further comment on that subjert.

THE GEOLOGIST.

JULY, 1861.

ON METALLIFEROUS SADDLES.

By Dr. R. N. Rubidge, of Pory Elizabeth, South Africa.

In the number of your journal for October, 1860, I read with great interest a paper by Dr. Watson "On the Metalliferous Saddles of Derbyshire and Staffordshire." The Doctor says that, though well known to the miners, he believes these saddles have not hitherto been described by any geologist. If he will refer to the Journal of the Geol. Soc., 1857, p. 233, he will find a paper "On the Mines of Namaqualand," in which I think he will recognise a description of these deposits under the name of "metallic axes." With such modifications as the difference in the strata and their metallic contents requires, his description would nearly apply to what I said.

The strata in which my axes occur are gneiss and gneiss-granite with occasional beds of magnesian and micaceous rock at Springbok Vontein and Concordia, and micaceous and calcareous rock, with gneiss at Kodas. The saddles (a better name than mine) in all the productive mines were folds in the strata, with fissures of various sizes and directions intersecting them. The one was in some cases more abundant in the planes corresponding to the original bedding of the rock: this was strikingly the case at Concordia, where the VOL. IV.
main dip was north and the disturbed ono south-the strike of the rocks being nearly cast and west. (Sec. 1 and 2).

Fig. 1.-Spring Bok Vontein.

Dip North.
Fig. 2.-Concordin.
The ore is chiefly copper, with a good deal of iron, a little molybdenum (sulphuret), an occasional film of gold, and in ono instance a lump of tungstate of lime. Oxides, silicates, and carbonates occupied the fissures and the upper parts of the pipe-veins, those, viz., where the surface-action was greater. Black, purple, and ycllow sulphurets succeeded at first in good quantities; but lower in the excavation the gneiss became mere felspathic, less fissured, and at length nssumed the form of Ω felspathic granite, in which ouly specks of pyrites were ohscrvable here and there. Meeting theso saddles, whose anticlinal line coincided, or nearly did so, with the strike of tho rocks, were twists of the strata, figs. 3 and 4 , crossing the strike at various angles, one of which, a horizontal section, appeared on the surface near its junction with the metallic saddle of Koperberg, and had the appearance
in fig. 3. The points a and c, were not three feet apart; the line $f . g$., about an inch thick, was micaceous rock with large crystals of felspar. The richest deposits of ore seemed to me to occur at

Line of Strike.

Fig. 3.-Koperberg.
$h i$, direction of the metallic axis; $k l$, strike of the rocks; dip towards $h i$.
spots on the saddles or axes where one or more of these twists met them. There was generally no metal in the twists. The axes too were traceable for miles through the country, but were only metalliferous, to any considerable extent, at intervals. Thus, I believe the mines of Springbok Vontein and Koperberg were on the same runa good section of which was visible on the side of a ravine crossing it nearly at right angles near Koperberg. This showed that these disturbances were not produced by, nor essentially connected with, granite. The meeting of a twist with the saddle of Koperberg I have mentioned. I believe more than one crossed that of Springbok Vontein, though the surface was so decomposed and so scarred and fissured in various directions that it was impossible to make it out clearly. This mine had not been worked to any great depth when I visited it. The observations on the succession of ores, though I believe it applies equally to this, was made at Concordia and other places.

At Nababeel, a spot which has not produced so much ore as its appearance promised, was observed the structure shown in fig. 4.

Fig. 8. Ninbitinel.
 takes thil wime direction, ur nenrly so.

When the saddles were traced down to any considerable depth the gneiss seemed gradually to lose its laminated character, and assume the form of a highly felspathic granite, which lower down lost all traces of metal.

It was evident to me, as I stated at the time, that the deposits of ore were due to the surface-actions of water, with what aid from electro-magnetic agency I know not. Some of the rocks acted strongly on the magnetic needle; but, as most of them contained iron, it might have been owing to that, though all the ores that I tried in one or two mines had no such effect.

I believe that what I then stated still holds good-that at whatever depth (and it varied considerably) surface-action ceased, the ore disappeared. I mentioned several circumstances to show that even the less soluble ores were acted upon by the water of the district, and that in the case of Van der Stell's mine the surface of the excavation has been coated with silicate of copper by permeation through the solid gneiss rock since his time,-1680, I believe.

Your interesting periodical, though ordered through an agent as soon as I heard of it, only reached me last month. I find that views which I entertained on the nature of granite years ago are fast gaining ground on the continent. I wrote about this to members and officers of the Geological Society at intervals for several years; and, though I did so with the diffidence of one whose position did not entitle him to hold an opinion adverse to those of the leaders in science, 1 believe that I said enongh to show that, if the igneous theory of granite is abandoned by most geologists ere twenty years elapses, as I believe it will be, I was among the first to give it up, and to show good reasons for doing so. That if the metamorphic theory was true, as applies to gneiss, mica-schist, \&c., it was equally true of granite, syenite, and greenstone, I felt quite sure in 1855. That clayslate passed quietly into mica-schist, chlorite-schist, gneiss, \&c., without eruptive rock of any kind, I stated as early. That rocks were changed into quartzite by surface-infiltration, I wrote as my opinion to Sir R. Murchison in the same year. In 1857 I showed good reason to believe that the oversight of this fact had led to great error as to the super-position of our strata. Since then I have proved that strata set down as primitive and separated from the

Devonian on the evidence of their mutual relation with horizontal and inclined quartzite are all of one formation; all contain the same fossils, and all have the same relation to the quartzite in different localities. See Quart. Journ. Geol. Soc., vol. xv, p. 196, \&c.

CORRESPONDENCE.

DIFFICULTHES OF DARWTNISM.

Sir,-In the article on Mr. Danwin's theory that I contributed to your magazine in April and May last, 1 contented myself with stating the scientific arguments both for and against it, as they presented themselvos to mo. I did not touch on any of the points connected with theology, as I mistrusted my ability to deal properly with them; and now, if Mr. Grindles's attack had been directed against myself alone, I shoukl not have troubled jou with any remarks on tho snbject; but as he has stated that this theory is opposed to the truths of Revealed Religion, I feel that I ought to do my best to show that I believe such not to be the case.

In his first paragraph Mr. Grindley says that "its direct efleet wonld be to shut the Creator out of the world of His own creation, and to set up instead what the Rev. Baden l'owell calls the 'self-evolving powers of nature.' " Now in this I cannot agree with hom. They who speak of this thenry as "shutting out the Creator from the world of His own creation," seem to imagine that its advocates dispense with the necessity of a Crentor altogether; and they talk of the "theory of creation and tho "theory of development" as if the one were the exact contrary of the other. But the theory of tevelopment, or of natneal selection, is merely a theory of the way in which the Creator has carried on llis work of creation; not Ω denial of a Creator, nor of creation. I ennnot understand why naturnl selection has been so often mistaken for a cruse, when it is evidently the effect of the "struggle for life" acting on variations in species, which variations are tho effects of an unknown law ordained and gnided, without doubt, by an Intelligent Cause "on a preronceived and definito plan." I have neither time nor space to go into any of the pronfs now, but 1 mnst refer Mr. Grindley to a most able pamphlet called "Natnml Selection not inennsistent with Natural Theology," by Dr. Aan Gray; pullisherl in the "Atlantic Monthly" for Inly, August, and October, and reprinted in Eingland by Tribner and Co., 60, Pnternoster-row, which I would alsn recommend to your nther readers who take an interest in the subject.

The serond magmph reqnires mon notice. Ileave it to your readers to judge whether antiafactory nuswers have heen, or can he, given to most of the statements by any other hypothrais.

With refermene in the thirl paragraph, I must protest against Mr. Grindley saring that I profeng "to have anawer d the principal ohjections to the Darwinian theors." If he lorks at my article again, he will see that I mercly state the nbjections and the nnawers that have hem given to them (the anawer to No. 4 being the only original one), andl lame it an open question. It is not until I have stated the argumenta in farour of the theory that I may that, on the whole, the evidenen secmes to be in favnene of it. He also puts fonr queries to me, npon which 1 mnst mako a few remarks.

1. It seems that he had only read one-half of my paper when he wrote this. He has by this time, I hope, found my opinion on it in the second half.
2. I must confess that I do not understand what Mr. Grindley means by "no specimen in the transition state has ever been found ;" although it cannot be a mistake, for he uses the same words again.

According to Mr. Darwin's theory, all species are in a transition state. Mr. Grindley cannot have formed very clear ideas on the subject, if he thinks that we ought to find animals of half one species and half another, like mermen or centaurs. If he means connecting links between species, any elementary work on natural history or palæontology will point out many to him.
3. I have not the slightest doubt but that Professor Owen is quite right, and that it is a fact that "no known cause of change productive of the varieties of mammalian species could operate in altering the size, the shape, \&c., \&c.;" but I do not see how Mr. Grindley obtains from it the conclusion which he implies, viz., that therefore the rariations could not have taken place. We do not know the causes of many things. Besides, it is not at all necessary to Mr. Darwin's theory to suppose that man has been developed from the gorilla; on the contrary, as they are recent species, the parent stock of both is most likely extinct.
4. Mr. Darwin does not pretend to adduce direct evidence of one species changing into another; althongh, when we see two forms so different as to have been at first classed by all naturalists as distinct species, and afterwards, on the discovery of connecting links, obliged to be referred to one and the same, I think that we might fairly take that as an instance of one species having passed into another. For even if one of them should not be a lineal descendant of the other, yet, as they are allowed to be of the same species, they must have had a common progenitor, which could not have been like them both. Among species, I need hardly say, instances of this kind are innumerable, and in the case of the foraminifera, Messrs. Carpenter, Jones, and Parker have been obliged to acknowledge that many forms, previonsly considered not only as of different species, but as of different genera and even orders, "must, in all probability, have had a common origin."

Mr. Grindley says that, until direct evidence can be produced, it is no "true physical law," but a "mere dream." I am sorry to have to refer him again to my paper, but, if he will take the trouble to look, he will see that I do not say that it is a true physical law, but that at present it must be considered as a very probable hypothesis. A probable hypothesis only becomes a true theory when the probabilities in its favour amount to certainty; and it then becomes one even if no direct proof can be given. The first law of motion itself has not been, and cannot be, proved by direct experiment; yet who disbelieves it? The theory of the undulation of light, and even the rery existence of ether upon which it depends, cannot be proved directly, yet it is believed to be true on account of the immense number of phenomena that it explains; and, although I do not mean to say that the proof of the transmatation of species is at all equal to the proof of the undulatory theory of light, still it easily explains a great number of phenomena.

With regard to paragraphs 4,5 , and $6, I$ am willing to admit that Adam may hare been "a noble specimen of man, and Ere a soft Circassian beanty," thouglh I do not know that "the Scriptures of Truth" anywhere" assert" this; but I am sorry to see Mr. Grindley wasting the best and most eloquent parts of his letter on shadows. No advocate of the Darwinian theory, to the best of my knowledge, ever said that "the mental and moral powers of man" were developed from the instincts of the lower animals. On the contrary, I see many reasons for beliering that, when the time was come that man was fitted to receive them, they were giren him by a special interposition of the same power that created all things. The Rev. J. Kenrick, in his essay on Primæral History, published in 184, has remarked that "it is impossible to define the time which he (man) occupied in advancing from his primæral condition to that in which he appears at the commencement of history ;" and we must remember that it is the mental qualifications of man, and not the physical strength of his body, which gires him
＂flominion over the fish of the sea，and over the fowl of the air，and over every living thing that moveth upon the earth．＂The only argument，as far as I know， ngainst this siew is that there are races of men，as the Zulu Caffires，who seem to have no more sense of right and wrong than the beasts，and no belief in or knowledge of a fiod．

As for Mr．Grindley＇s indignation at the＂humility＂of those＂who would link themselves with hrutes，＂I leel no more disgraced in supposing that on present bodies are the noblest result of creation＇s work，perfected thromgh countless nges，and thromgh comatless forms，than in the fact that our actual bodies，in which we are now living，are formed of the food we eat，which，in its turn，must shortly before have existed only as inorganic elements－as，in fact，＂tho dust of the gromid．＂

With regard to tho last paragraph，I stated in my paper that there is nothing like a total absence of intermediate forms in the geological record；and if Mr． Grindley does mot mean them by his＂species in a transition state，＂I to not know what he does mean．I do not remember where Sir C．Lyell＂proves the theory that all the great classes of organic life were created at once，＂aul I do mot． think that he is likely ever to have attempted to do so ；but I have never seen the third edition of his＂Principles．＂In the nimtls chapter of the ninth edition， he shows that，owing to the great imperfection of the genlogical record，＂wo must not too hastily infer that the highest elass of vertelmated animals did not exist in remoter ages，＂and also that we ought to be on our guard against＂taking for granted that tho date of creation of any family of amimals or plants in past． time coincirles with the age of the whlest stratified rock in which the geologist has detected its remains，＂atd I suppose it is to this that Mr．（irindley refers．In my paper 1 sanl that I thonght the genlogieal argument was in firvour of Mr． Darwin＇s theory，becanse all known fossils are intermedinte to living forms－that is to say，they fall naturally into the modem elassification，umb help to lill up the gaps in it，and because，as a general role，the older a form is，the more it differs from lixing oues．I camot，therefore，imagine what made Mr．Grimdley think that my eonchasions were opposite to those of Sir（．Layell，or that they wero drawn from the same facts；but as he says that he only received his copy of the ＂（ifunogist＂on the marning that he wrote his leter，I dare say he read it rather hastily．

I do not wish to take up more of your space than I can help，or I wonld mako some remarks on the numeroms ineonsistencies and absurdities in Mr．Grindley＇s W．tter；such as＂therries which now－a days take the plare of facts．＂Compare ＂to bring forward a number of isolated statements is simply absurd＂with＂this singlo statement is weighty enough to decide the whole question．＂．．＂＂If it canuot trace the aegnenee of the development of the mammal into man．＂，＂But if they cannot point to the possession of a moral nature leegnol the pale of humanity， then I ennend that their whole theory fails，＂\＆c．，\＆c．Bint as none of these beur rliectly on the question at issme，il lave them for the amusement of your rendera．

Yours truly，
Staff College，Jume 7.
F．W．Hittos．

DEER＇S HORNE IN BRIXHAN CAVERN．

Dfar Str，－The imjortant commmeation which apponared in the last（．June） number of the＂（ironcorita，＂from your correspondent Mr．Drake，contains the follow pasace，which anema to reguire a little attention，namely：＂The arrow－Heal froml entangled in the horns of the magg by Mr．Pengelly，at Brixham， was vast in importanes．＂ 1 camone molderstand low ithe iflea of an＂arrow head＂
 framen Anatorl＇s＂firolngionl（inwap，＂aml i4 pusibly the original of Mr．Drakr＇s．

Be this as it may, it is certain that no arrow-head, or worked flint, or other stone of any kind was so situated. The antler of the rein-deer was found lying on the floor or cake of stalagmite which covered the bed of bone-earth with all its contents, and all the worked flints lay at the base of this bone-bed, and therefore at a considerably lower level than the antler.

The relics of the cave mammals, with the evidences of man's existence and (as I believe) high antiquity, had all been deposited and hermetically sealed up before the introduction into the cavern of that fine relic of the rein-deer.

So far as Mr. Drake's inference is concerned, this correction is unimportant, but it seems right to prevent, if possible, erroneous statements respecting Brixham Carern from becoming current, especially as no anthorized report on it has yet been given to the world.

I am yours, \&c.,
Lamorna, Torquay, June 4.

W. Pexgelly

FOREIGN CORRESPONDENCE.

M. Gaudry has communicated another interesting paper on his researches in Greece, in which he states that, although his researches in 1855 furnished him with the remains of a great number of ruminaats, they never brought to light any tooth or skull belonging to one of the goat tribe. So in a note which M. Lartet and himself laid before the Academy in 1856, they stated their opinion that the amalthée might be an antelope. At the present time M. Gandry possesses eighteen skulls, and most of them lave their posterior part whole, two among them being furnished with their teeth and the bony axes of the horns. These fossils confirm the supposition that the amalthée is not a goat, but an antelope. MI. Owen says that the grinders of the antelope are distinguished from those of the goat in not having interlobular columns, their covering of enamel being longer, and the external surface of the superior grinders having the furrows more marked and the depressions not so plainly limited by straight longitudinal borders. M. Gaudry has remarked also that with goats the superior front griuders are cut at right angles, instead of being rounded and sinuous as with antelopes; it seems that they are halves separated from the back grinders. They have not any distinct tops like those of antelopes, so much so that one cannot mark the part where the enamel begins upon the shaft. These characters give the front grinders of the goat, seen on the external surface, a look which reminds one a little of the teeth of a horse. In goats the three front grinders are very straight, the space which they occupy is far from being the third of the total length of the series of grinders, whilst in the antelopes they attain, and sometimes go beyond, the third of that length. It is true that these various characters are subject to exceptions, but at least they are more constant than those furnished by the horns, and certainly they are of greater generic value. The amalthée has not any of those characteristics enumerated
as peculiar to goats ; it has, on the contrary, those belonging to the antelope.

The tecth of the upper jaw bone, and partieularly of the lower one, have the interlobular tubereules jutting out, becoming in some specimens real columns. The principal part of the skull does not recede behind the horus as does that of the goat. It is straight and massive, and forms a right angle with the oceiput. As there is no existing sub-genus of antelope in which this could be phaced, the namo of tragoceras (τ pázos goat, and Xépas horn) has been proposed for it, and Trag. Ameltheers in the name M. Gaudry would give the above deseribed species.

In a small skull of an antelope, still furnished with its teeth and the bony axes of its horns, the extremity of the nasal and intermaxillary bone is still preserved. This discovery allows him to determine a great many axes which, up to the present time, had been foum separated, and which M. Wagner had included under the name of Antelope brevicornis. The skull discovered can be classed in the sub-gemus gazelle. It resembles the general form of the head of the common gazelle in the direction of its horns, their point of insertion, their spread and the orbital depressions at their base.

Some speeimens of the Autelupe Lindermayeri have also been discovered, which much resemble the Oreus comua, though differing in detail. M. Gaudry, therefore, proposes to mame it P'alucureas Lindermayeri.

Eutire skulls of all the antelopes found at Pikermi are now in the possession of M. Gaudry. An undeseribed one, much resembling the sub-genus Antielorcas has just been forwarded to him.

Two skulls, found in 1855, resembling T'ragoceres amaltheres appear sufficiently distinct to constitute another species, which M. Gandry names Trug. I'alenciennesi, in honour of the distinguished savant to whose good counsel in paleontology M. Gaudry owes so much.

On Flint Implements. By MM. Boucher de Perthes and Robert.

In our number for May we gave a résumé of a paper ly M. Robert on the substances worked by the primitive Gauls, in which he stated his opinions on the age of the Celts, de., which have been discovered in several parts of Frauce.
M. Boucher de Perthes, in a memoir read before the Paris Academy of Sciences, replies to this paper, and, having arrived at a very different result from M. Fobert on the subject, proceeds to state the grounds for so tloing.

In the first place he says, that recent hones liave never been found at S't. Acheul, A bleville, or indeed in any deposit of diluvium mixed with fossil bones. This statement differs toto colo from that of M. Robert, to which we again refer our readers.

Secondly, he states that M. Robert is in error in saying that the
bones of extinct species of elephants, rhinoceros, \&c., found at St. Acheul and Meuchecourt, are much worn and water-rolled, and that those of the horse, aurochs, \&c., are not; they are very rarely waterrolled, and those that are belong as often to existing species as to extinct ones. (See Cuvier "Oss. Foss., Bœufs Fossiles," tome iv., p. 162, edition $4 t 0,18 \div 3$.) No palæontologist, since Cuvier, has endearoured to draw a chronological distinction between the bones of the elephant, rhinoceros, horse, stag, and aurochs, mixed pell-mell in the same beds of diluvium, from which the hatchets and worked flints have since been obtained. The bones found at the above-mentioned places bear no comparison, either in colour or weight, with those of the turbaries or those belonging to existing domestic animals.
MI. B. de Perthes then asks, why the flood, which destroyed the habitations of man, and washed the bones of extinct species from the diluvium to mix with the drowning carcases of animals, did not wash up the bones of man also, and, supposing they burned the dead, the urns which contained the calcined dust? Why, too, does not the resulting bed contain remains of dwellings, bricks, glass, metals, or indeed of any index of the first stage of civilization presented by the lacustrine deposits of Switzerland?
M. B. de Perthes then argues on the age of the flints as shown by their own colour, \&c., and by the accompanying beds always being exactly similar, and then proceeds to ask, if the men of those days inhabited the deep vallies and were surprised by inuudations which washed away their habitations and all they contained, how it is that these hatchets have been found more than thirty metres above the level of the vallies, found, too, associated with elephantine remains; and how is it, again, that only these have been so carried? He concludes his paper in these words :-"If the diluvium where the bones and hatchets have been foumd, is not the veritable diluvium, where is it? Cuvier, Brongniart, M. Elie de Beaumont himself, and more recently Verneuil, Lartet, Collomb, Prestwich, Lyell, and Murchison, have been strangely deceived, since they have mistaken that for it ; and stranger still, have recognized as virgin soil that which, according to M. Robert, is but a modern twice deposited allnvium.

To the above commmication of M. Boucher de Perthes, M. Robert has replied at a subsequent date, to the following effect.

He considers the most serious objection raised by MI. de Perthes to be contained in the following question :- "If the men of that time inhabited the deep valleys and were there surprised by the flood which washed away their dwellings and all they contained, hatchets among the rest, how comes it that these hatchets are found thirty mètres above the level of those valleys, and how have they been carried there with the bones of elephants, \&c. ?"
M. Robert submits the following explanation:-
"At the time of the first appearance of man in Europe, many ages after that great cataclysm which destroyed every breathing thing on
the earth, at least in our hemisphere, and with a violence sufficiently powerfal to snateh from the occan the immense body of a whale and deposit it in the Paris basin, where now is sitnate the Fatumers saint Germain. The valleys were filled with materials prepured by this grand bonleversement, and spread coufnsedly over all the eontinent.

For a lone time they seem to have been ocenpied rather by chains of lakes and marshes than by rivers. The first inhabitants of these combries established themselves near these lakes, and when tho immolations came, as come they do in the present day in the same valleys, they natmally left all they eared for least, such as hatelets, and songht the upland. Their burial grounds always having been put ont of the reach of these overlows, one never finds luman bones mixed with the bones of other animals. As to the vases, which aceording to M. Boucher de Parthes contained the ashes of their dead, and might lave been carried away by the waters, one can easily understand why no restiges are to be found as they were simply dried in the sun, and would not stand the slightest shock without being reduced to powder."

Thus it is that objects of hmman industry are mixed mp in tho alluvinm with the remains of ammals of extinct and even new species; some more or less rolled, others scaredy: and if some depots exist above the present level of the rivers, it is that those rivers have hewn ont for themselves a bed deeper and deeper, year by year, in the deposits with which they were in the first instance smronnded.
M. Robert adds that these valleys have not been filled up rery violently, for most of the flint-implements fonnd in the valley of the Somme have a very new look about them which does not admit of their having been much water-worn, althongh they are side hy side with rolled stones from which they might have been cont.

In allnding to the bone-caves in whieh. human remains are associated with anciont pottery and the bones of extinet animals, M. Robert refers to the laboms of $\$ 1$. Desnoyers, who has pretty well proved that the cavorns in whele this singular assoceation is oflered were inhabited hy the Celts, or used ats a plate of sepulehre by them, acres after they had served as a place of retreat for wild heasts, especially the Prens spulens, the bones of which are always fomm mader the superficial deposit which contains the traces of man. Cowar, Fiomens tolls us, ordemed his lientonant, ('rassus, to slat up the crafty inhabitants of Aquitaine in the eaterons in which they hid themsilves, many thme perished. As to the smpposed skulls of Carihs, or of African race, fombl in the caves of Mailet, in Belgimm, they are found assombated with nther skinlls, which hy their confimention belong to the ("ireassian race, aceording to M. Desmoyer, who considers that the analogy sugerested by the others is due to an artificial depression, or to an individual peenliarity.

Touching these bone-onves, M. Rubert asks M. Boucher de Perthes in his turn how it happens that these primitive inhahitants of fiaul made no ornaments, ne amulets, with the bones of the elephant, rhinoceros, \&e, or that they have nut enteavomed to make use of
the tusks of the former for weapons :-is it not because these bones, of which they could not ignore the existence, were fossils in every sense of the word, in their time, that is to say entirely deprived of animal matter and reduced to the nature of stone, and consequently improper (one must, howerer, except the Silurian mammoth preserred in ice) for the use they wished to make of them. It is impossible to say what period of time was necessary to change this organic matter which constitutes the solidity and tenacity of the bony substance, since the well authenticated remains of early Celtic inhabitants, which we can only allow to have been buried six thousand years, contain it still. In the supposed diluvium of the borders of the Somme one easily understands that objects of this kind are never found, as in the carerns of Aquitaine, where hare been discorered so many remains of Celts and the lower animals.
M. Robert concludes his paper with a quotation from M. Desnoyers, "The Gauls would not have failed to make trophies of the remains of elephants, hyenas, and other grand mammifers, if they had been contemporaneous with man."

On the Cretaceous Deposits of Central Bohemia. By M. Lipold.

The Quader or Cenomanian group prevails in the south and central regions of this district. while the Pläner or Turonian group, appearing in isolated hills as far as near Mezeritch, is more exclusively represented in the north-east region. The strata of both, having suffered no disturbance, lie perfectly horizontal, or with a scarcely perceivable angle of inclination. Organic remains are of rare occurrence in them, except in the case of the limestones with Hippurites ellipticus, appearing in the south-east, either as isolated coral-reefs or associated with sandstones of the Quader group.

On the Tertiary and Diluvial Deposits of Central and Eastern Moravia.

 By M. Wolf.The tertiaries between Brïnn and Olmütz, belonging to the marine deposits of the Vienna Basin, occupy a narrow zone running from Steinabrunn north-eastward between the ranges of the Austro-Moravian hills into Moravia, and filling up, towards Olmütz, several bays, cut into deposits of older date, as, for instance, in the Zevittawa Valley and around the Mährisch-Trüban. This northern bay near Brünn was a branch of the north-eastern arm of the sea extending, during the Miocene period, in a north-eastern direction, and connecting, after having passed over the anticlinal of Weisskirchen, the tertiary basins of Vienna and Gallicia. Fossiliferous localities are rather numerous, and among them Rausnitz and Ruditz are conspicuous for numbers and variety of organic remains. Of twenty-four species collected at the second of these μ places, fifteen also occur at Baden (S. of Vienna), and fourteen at Steinabrunn (N.N.E. of Vienna), so that, as far as evidence
at present goes, the fumne of these three localities may be considered as nearly, if not completely identical.

Ruditz and Ransinitz also, separated only by a distance of three Austrian (between fourteen and tifteen English) miles, possess in common only two species of Gasteropods. Ruditz is one of the lighest fossiliferons localities in the V'ienna basin, lying about I 400 feet above the level of the Adriatie. Leitha limestone and the sandstones conneeted with it, appear only as isolated but well-characterized hills, rising above the surrounding plain.

Four subdivisions may be distinguished within the diluvium of the region here in question :-l st, Erratic blocks and boulders; 2nd, Inferior loam (Löss) ; 3rd, Terraced detritus ; and 4th, Upper or valley loam (Lüss).

Proceedings of geological societies.

Geological Society of London-April 21, 1561.

1. "On the 'Symon Fault' in the Coalbrook Dale Coal-field." By Mareus W. 'T. Scott, Esq., F.G.S.

This communication was based on obserrations made during many years on a section through a part of the Shropshire Coal-field in nearly a straight line from north 10 south, commencing at the Grerhound Pit, near Oakengates Tunnel of the Shrewsbury and Birmingham Railway, and terminating at John Anstice and Co.'s Halesfield Pits near Madely. Particular reference was made to the explanation of the nature of the Great East or Symon lault. The author commenced making his observations on the Malinslce and Stirchlee Royaltics in 1813 ; and in 1845 he came to the conelusion that what the miners terned in this locality the "Symon Fault," that is the successive dying out of ecrtain coal-scams, ironstones, \&e., at various depths mederground, was due to an old denudation which had produced an inclined surface at the expense of some of the beds before the upper measures were deposited. Having ohtained, in course of time, correct sections of several pits sitmated in the N.-S. line above mentioned, the author, taking the "Little Flint" (tlee lowest workab)le coal) as a base-line, plotted the several shifted segments of the coal-fichl in a vertical plan, and thus restored the original outline of the denuded area (one side of a valler") as seen in a transverse section. Six sinkings in the N.-S. line having indicated the suecessive disappearance of five workable coal-beds in a distance of $245+$ yards, a seventh pit, 20 out yards further south, was found to yield all the coals again, and the anthor thinks that between the sixth (the Grange) and the seventh (Halesfied) pit the eoals re-occur suceessively on the opposite side of the old valler of demmation, and that they may here he sought for and worked advantageonsly. The line of the old valley of denudation apparently strikes the Great East fault, as laid down on the Geologieal Survey Map, at a considerable angle.
2. "On the Ocrurrence of Cyrena fluminalis associated with Marine Shells in Sand and Crarel abowe the Boulderelay at Kelsey Hill near llull." By Joseph Prestwich, Esry., F.R.S., Treas. G. S., \&c.

The anthor's observations tended to show that the Cyrena fuminalis, instead of being limited, in its oceurrenee, to beds heneath the Pouder-clay (under which ciremmatance it is foumd in Norfolk), necurs in deposits of newer date; and that the argument, that the well-known beds at Grays, in Essex, are older than the Boulder-clay, depentinge much on the presence of this shell, would
lose much of its force if this Cyrena were proved to belong also to the newer geological horizon. The question is now the more important, as this shell has been found by Mr. Prestwich in the beds that coutain fliut implements at Abbeville.

The author proceeded to show that some gravels and sands near Hull in Yorkshire, formerly described by Professor Phillips, contain abundance of the Cyrena fluminalis, associated with twenty-two species of marine sbells, two of which have Arctic characters, the others being common littoral forms. These grarels and sands were prored,by well-sections and other exposures, especially by borings and trenches made by the anthor and Mr. T. J. Smith, F.G.S., of Hull, to overlie the Boulder-clay.

May S, 1861.

1. "Description of two Bone-caves in the Mountain of Ker, at Massat, in the Department of the Arriège." By M. Alfred Fontan. Communicated by M. E. Lartet, For. Mem. G. S.
The valley of Massat, on the northern side of the Pyrenees, is of triangular shape, its northern angle being narrowed by the projecting limestone mountain of Ker. Among the fissures and grottos that traverse this mountain in every direction are two caves in particular; one is situated near the top, at abont 100 metres above the valley; the other is near the base, at about 20 metres above the river. They both open towards the north. In the upper cave M. Fontan found a sandy loam with pebbles (the pebbles being of rocks different from that of the mountain), extending inwards for 100 metres, and containing a large quantity of bones of Carnivora, Ruminantia, and Rodentia; those of the great Cave-bear, a large Hyena, and a large Felis being the most numerous. On the surface some fragments of pottery, an iron poignard, and two Roman coins were found, with a quantity of cinders and charcoal; and at a depth of more than three feet in the ossiferous loan another bed of cinders and charcoal was met with, and in this M. Fontan found a bone arrow-head and two human teeth; the latter were at a distance of five or six metres one from the other.

In the lower cavern a blackish earth, with large granitic and other pebbles, was found to contain bones of the Red-deer, Antelope, Aurochs, and Lynx; also worked flints and numerous utensils of bone (of deer cliefly), such as bodkins and arrows; the latter have grooves on their barbs, probably for poison. Some of the bones bear marks made of iucisions by sharp iustruments in flaying or cutting up the carcases. In each cavern a chasm crosses the gallery and terminates the deposits; in the upper cave at 100 metres, in the lower one at about seven metres from the entrance.

The author argues that, from the facts which he has noticed, these caverns must have been subjected simultaneously to the effects of a great transient diluvial cataclysm coming from the N.N.W. or West, in the opposite direction to the present course of the waters of that region; that man and all the other animals the remains of which are buried in these caves existed in the valley before this inundation; and that the greater part of the animals inhabited the caves, but that man was not contemporary with all of them.
2. " Notes on some further Discoveries of Flint Implements in the Drift; with a few suggestions for search elsewhere." By J. Prestwich, Esq., F.R.S., Treas. G.S.

Since the author's communication to the Royal Society last year on the discovery of Flint Implements in Pleistocene beds at Abbeville, Amiens, and Hoxne, sinilar implements have been found in some new localities in this country.

In Suffolk, between Icklingham and Mildenhall, Mr. Warren has met with some specimens in the gravel of Rampart Hill in the valley of the Lark. This gravel is of later date than the Bonlder-clay of the neighbourhood. In

Kent, Mr. Ieceh, Mr. livans, and the author foumd some specimens at the font of the elitt's between Herme bay and the Reculvers. The author helieves then to have been derived from a freshwater deposit that caps the eliff, and which has heen found by Mr. Lians and himself to rield similar specimens at swate Cliff near Whitsable. In Bediordshire, Mr. I. Wiatt, F.G.S., has found some specimens in the gravel at Beddenham, near Bedford; this gravel also is of frestwater origin, and is yomger than the Ponlder-chay. In surrey, a specimen found in the gravel of l'easemash twentr-tive years ago has been bronght forwand by its 'discoverer, Mr. Whitburn of Guildiord. In Herts, Mr. Evans has tomed is specimen in the surface-drift on the Chalk Hills, near Abbots Langley. Lastly, the author recommended that diligent search be made in the gravel and brick-carth at Copford and Lexden near Colchester, at Grays and Ilford in lissex, at Erith, Brentford, Taplow, Murley, Ravange, Oxford, Cambridge, Chipmenham, Lath, Lhandford, Salisbury, Chichester, Seleca, Peasemarsh, Godalming, Croydon, Ilertford, Stamford, Orton near Peterhorough, \&c.
3. "On the Corbirnle (or Cyrena) fluminalis geologically consitered." By I. (iwen Jeffrevs, R.R.S., F.G.S.

Mr. Jeffreys has identilied the species of Corlicula found hy Mr. Prestwich in a raised sea-beach at kelsey Hill in Yorkshire with that of the Grays deposit, as well as with the recent species from the Enplaters ant the Nile. Ite mentioned the great tendeney to variation in freshwater shells, and the distrihution of the same species throughout diflerent and widely scparated parts of the world; and he therefore considered that there was no difliculty in supming that the corbicula was contemporancous in this country witl Aretic shells found with it at Kelsey Hill. Aecording to Mr. detlicys, specimens of Testacea from the north are larger than those of the same sjecies from sumthern localities.

May: 2, 1bsl.

1. "On the (ieology of a part of Westem Anstralia." By F. T. Gregory, Esy. Communcated by Sir K. 1. Murchison, V.P.G.S. \&e.

The anthor first described the granitie and grecissose tract of the elevated fable-land ranging northwads from Cape Entrecastcaux and comprising the Dinling Downs. The igneous rocks and quartzodykes, the clays, sandstones and conglomerates cappine the table-land; and the earboniferous, cretaceons (\%), and pleistosene rocks were described, and some evidenees of the reeent eleration of the coast hrought forward. The following fossils from W'estern Anstralia were exhithted: Carboniferoms fossils and cannel-coal from the lrvin Kiver; Fossils of scomblary age (Trigonie, Anmoniters, sald fossil wood) from the Moresty Range; fossal wood from the Stirlinge Range and from the ' Pper Murchinon Riser; Ventriculites in thint from Cmgin; nul brown-coal from the Fitegerald River.
2. "On the Zoncs of the Lower Lias and the Avicula conlorlu Zone." By Chartes Moore, Xisy, F.G.S.

Reforring to a paper on this sulject, by Dr. Wright, which appeared in the siaternth volume of the Serety's domrat, the author stated that details of the seetion at Beer-Crowembe (near Itminster) in Somersetshire are now more fully kiown than they were when the liew. P'. B. Brodie, after having beentaken (o) ece that section hy the enthor, commmieated to Dr. Wright the motes on th that are pmblabled in the paper alove referred to. In the first plaes, Mr. (: Mowere deseribed the characters of the biassie beds at Inminster, and 11 cir relations to the Acirula comtorla beds and the Kenper as seen in passing from Ilminater through Ineer-Croweombe fo Curry-Rival and North Currs, - a di taner of ten miles. He then treated of the subidisisions of the Lower Lias and the true position of the "White Lias;" and stated that,
although Dr. Wright had proposed the following classification-5. Ammonites Buchlundizone; 6. A. Planorbis zone (including the White Lias and the Ostrea beds); and 7. Avicula contorta zone, yet he preferred to group them thns-5. A. Bucklandi zone ; 6. A. Plunorbis zone; 7. Enaliosaurian zone; S. White Lias; 9. Aviculu contorta zone: δ and 9 being equivalent to the "Kössener Schichten" or "Rhætic beds" of Gümbel and other Continental gcologists.
The arguments in favour of his views the author based chiefly on observations made at Beer-Crowcombe, Stoke St. Mary, Pibshury, Long Sutton, and other places in Somersetshire ; and on a critical examination of the sections at Street, Saltford, \&ec. as given by Dr. Wright.

The communication concluded with descriptions of upwards of sixty species of fossils belonging to the Rhetic beds of England (including their thin representatives discovered by the author in the Vallis near Frome) ; twenty-ight of these species are neiv.
June 5, 1861.

1. "On the Occurrence of some large Granite Bonlders, at a great depth, in West Roserrarne Mine, Gwinear, Cornwall." By H. C. Salmon, Esq., F.G.S.
The boulders of granite referred to were found in the 50 -fathom level below the adit, the adit being 24 fathoms from the surface. One of the boulders was 4 feet 2 inches, and another 3 feet 10 inches in diameter; there were five other smaller boulders or pebbles also met with in the level. The boulders are in the killas close to the lode, and both the lode and the "country" near the lode are made up of brecciated killas. After quoting the details of somewhat similar phenomena formerly observed at Relistian and Herland Mines, the author treated of the probable origin of the boulders in question; and although lodes are regarded by some as having been formed from below upwards, yet in this case the author thinks that the boulders must have had a common origin with the lode, and have been introduced by a fissure from the surface.
2. "On an erect Sigillaria from the South Joggins, Nova Scotia." By Dr. J. W. Darson, F.G.S.

This specimen, presenting the external markings of leaf-scars and ribs with more than usual clearness and with some instructive peculiarities, has afforded to the author the type of a new species, Sigillaria Brownii. Observations on the probable style of growth, on the structure, and on the classification of Sigillarice, were also given in this paper, together with a résumé of the observations previously published regarding Sigillaria by Brongmiart, Corda, and others.
3. "On a Carpolite from the Coal-formation of Cape Breton." By Dr. J. W. Dawson, F.G.S.

Numerons Trigonocarpa belonging to a new species (Trigonocarpunu Hookeri) occur in a thin calcareous layer in the coal-measures near Port Hood, Cape Breton. The author thinks it highly probable that, though some Trigonocarpa may hare belonged to Conifers, yet in this case they were the seeds of Sigillaria.
4. "On a Reconstructed Bed on the top of the Chalk." By W. Whitaker, Esq., B.A., F.G.S.
At some places near Reading (Maidenhatch Farm, about six miles to the W.; and Tilehurst, two miles to the S.W.), and also near Maidenhead, from 18 to twenty feet of broken chalk overlies the true chalk; and in places is overlain by the bottom-bed of the Reading Beds, and therefore must have been reconstructed before the deposition of the Tertiary strata. For the most part, however, in Berkshire the Woolvich and Reading beds rest on an undisturbed surface of the Chalk. In Wiltshire, also, the author has observed similarly constructed chalk, probably there also underlying Tertiary beds; and he suggests
that possibly the local reconstruction of the Chalk may have been contemporancous with the formation of the 'Thanet Sauds further to the east.
5. "On some of the Higher Crustacea from the British Coal-measures." By. J. II. Salter, Esq., F.G.S.

In this paper were deseribed, (l) a new Macrurons Crustacean, under the name of Anthrapalemon Grossurti, from the slaty band of the black band ironstone of the coal-measures, Goodhock Hill, Shotts, Lanarkshire. (2) The Macrurons Crustacean of whieh an imperfect sperimen was figured in Mr. Prestwich's memoir on the Coalbrook Dale Coal-field (plate +1, fig. !, Apus dubius) : this is referred to a subgenus (Palecocurubus) of the grnus Anthrapatemon; and another specimen from Kidgeacre Colliery was referred to. (3) A specinen from the Carboniterons Limestone of Derbyshire. (t) A smatl Crustacean, from the Momatain-limentone of Fifeskire, fyenred and described by the author in the 'Transactious of the Royal Socicty of Edinhurgh,' vol. xxii. p. 391, as Uroneetes socialis, but now regarded by him as belonging to the Macrura.

Royal Institction.-Murch 22, 1561.
"On the Origin of the Parallel Roads of Lochaber (Glen Roy)." By Professor H. D. Rogers, F.R.S., E.G.S., \&e.

The speaker prefaced his account of these curious features in the secnery of Lochaber, by stating that he was induced to recall attention to them from having, during four recent visits to the gromud, discovered eertain phenomena not hitherto noticed or theoretieally considered by any of the able and distinguished observers who have preceded him. Thongh nearly all the more prominent peeuliar characters of the seene have been very shilfully described and discussed by Dr. Mace ©ulloech, Sir Thomas Diek Lauder, Charles Darwin, Esy, 1)avid Milne Home, Esy., Professor Agassik, Sir George S. Mackenzie, Robert Chambers, Esq, and others, Professor Rogers has heen led hy a carefin study of the structure of the su-called larallel Roads, and a perusal of the virws of those eminent grologists, to rejeet all the hepotheses thus far otfered in explanation of the terraces as inadequate, and to recounize in the facts abont to be developed, a key to a solution of the problem of their origin which he thinks may prove satisfactory.

The geographical arrea of the parallel roads may be defined as embraced hetween Loch Laregan and lereh Lochy, cast of the Great Cakdonian Valley. They are chicfly restricted indeed to filen Spean, Glen Roy, and two or three inumediately aljarent smaller glens. One belt of then rangee from near spean lifilse up the Epan Valley, to beyond the head of Loch Lamgan; another up. Gilen ling to the water-bheds at its very head, and a third through (ilen Ghoi to its hemel.

The "Roads" or Shelves themselves are of varions heights above the sea, the lowest of the three compuemons ones in (iken Roy having an elevation of aberat 850 feet, the middle one a height of about 10 gif feet, and the hieghest a leve of nearly 1140 fe . Other mueh fainter, still more thevated shetres are discernible in Galen Gluoi, but all hitherto seen lie below a horizon of 1500 feet abowe the cocean. These Parallel Roads, as ther are called, are apparently level, and therefore parallel, but further instrumental measmements are necessary before the question of their aboblute horizontality ean be regarded as satisfactorily settled.

They eomstitute a most impressive feature in the seenery of the lonely, treeless glens erntaining them. Winding into all the recesses and round the shoufters of the mommains which they imprint, they present at first view a striking likeness to a sucecssion of raised beaches deserted by their waters.

Seen in profile, as when looked at horizontally, they resemble so many artificial hill-side cuttings, the back of each terrace lying within the general profile of the mountain slope, while the front or outer edge is protuberant beyond it. Each is indeed a nearly level, wide, deep groove, in the easily eroded boulder drift, or diluvium, which to a greater or less thickness everywhere clothes the sides of these mountains. They vary greatly in their relative distinctness, being in some places raguely discernible, while in other spots they indent the surface very plainly, just as they happen to be narrow and to coincide in slope with the hill, or to be broad and apparently level from front to back. Where most indistinct they are frequently not discernible at all when we stand upon them; though we may in a favourable light have detected their position and course from the opposite side of the glen, or, better still, from the bed of the valley. The conditions which influence this fluctuation in distinctness promise, if carefully obsersed, to dispel much of the obscurity which has hitherto invested the origin of the terraces. The modifying circumstances seem to be all referrable to one general condition, that of exposure to a current or inundation, supposed by the speaker to have rushed through these glens from their mouths to their heads, or upper ends. Thus it would appear: lst, With scarcely an exception, that each terrace or shelf is most deeply imprinted in the hill-side, and is broadest where the surface thus grooved has its aspect down the glen or towards the Atlantic, and is faintest where the ground fronts towards the head of the valley on the German Ocean. 2nd, While conspicuous on the open sides and thie westward sloping shoulders of the hills, the terraces disappear altogether in the recesses or deeper corries which scollop the flanks of the mountains. 3rd, Each shelf, or "road," grows usually more and more distinct as it approaches the head of its own special glen, until those of the two opposite sides meet in a round spoon-like point.

A fact obviously material to a true thenry of the origin of the terraces is, that each of them coincides accurately in level with some water-shed or notch in the hills leading out from its glen into some other glen or valley adjoining, a coincidence suggestive of the notion that they were formed by the grooving agency of a flood pouring through the glens while it was embayed at the respective levels of these natural waste weirs. In confirmation of this view that they were transiently caused by erosive currents held successively at the heights of the barriers on whose levels the terraces terminate, we have as another interesting general feature, a remarkable ruggedness of the bed of each external glen just outside the water-shed or barrier closing the glen which contains the terrace. These rough and deep ravines, contrasting strikingly with the smooth spoon-like terminations of the terrace-lined glens which head against them, strengthen the suggestion already awakened by the marks of horizontal erosion in the terraces themselves, that the notches or passes which determined the grooving of the hill-sides on their one hand were externally the sites of so many stupendons cataracts.

The internal structure or disposition of the matter composing each terrace, affords a further and striking corroboration of this hypothesis of the passage of an erosive flood. It consists in an "oblique lamination," or slant bedding of the constituents of the shelves-viz., the layers of gravel, sand, and other sediment, such as geologists familiarly recognise as the result of a strong current pushing forward the fragmentary material which it is depositing, and which is held by them to indicate in the direction towards which the laminæ dip, the direction towards which the current has moved. Now, it is a most suggestive peculiarity in the obliquc bedding of these terraces, that the "dip," or downward slant, is almost invariably up the glen, or towards its head, and not down the glen, or towards the Atlantic, as we must suppose it would have been, had the glen been a bay of the sca, and these materials but portions of
ordinary sea-beaches. Indeed, this feature is of itself cuough to surgest an origin due to a strong current sweeping inward from the Allantic, and across the water-hed of the ishand to the opposite sea.

The speaker next proeecded to examine the liypotheses of his predecessors in this inguiry respecting the origin of larallel Reads. They all arsume the ageney, in one form or another, of standing water, either the occan in its ordinary state of repose, or lakes pent within the glens.

The iotion that a quietly resting sea has fashifoncl these level shellyes is refuted lis the fact that the a are not truc marine beaches; they exhibit none of the distinetive features of genuine sea-shores, not a vestige of any marine organic remains, no rippled sands, no shingle, and no sea-elitts. They display in like mamer a total absenec of the distinetive marks of lake sides; not one lacustrine organism, neither fresh-water phant, nor animal having ever heen diseovered inheelded in them. A further diftienly attends the lake-hypothesis in the necessity it imposes of diseovering a feasible canse of blochage of the erfens at diflerent stations above their mouths, to pond the waters to the respective heights of the terraces. Though much ingenuity has been expented upon this part of the problem, no suggestions yet offered of harriers of gravel, accumulated by currents or glaciers from Ben Nevis, can be recrarded as admissible, inasmuch as there ate no traces of aut such in any of those localities where alone we can assume them to have existed to prothee the required combaving of the waters. In this entire absence of all remmants of the suppood matural dams across the glens, it is most umphilosophicul to take for grantel their total obliteration, where no cause has or can be assigned which can have so cffaced them.
On the other hand, the hypothesis of successive "sea-margins," or sealesels, is overthrown by the now well established deduction from the professor's own recent measurements, that none of the scveral shelves, or "roads," of Gilen Roy correspond in level with any of those sern in the anjacent valley Gien filuri, a markert discrepance separating the two gromps of terraces into two independenty produced sysmes. It can be shown, moreover, that these disenrdaures of interval between the shelves of the glens reppectivels, are such as cammet be accombed for on any supposition of "fanls," or dislocations of the earth's erust, in the gromed between the two glens. Equally ineompatible are all the facts of the refative levels of the shetwes, with the notien that they are pusseibly seatbeaches which may have muderyone an unequal amount of chevation by an oblique secular rise of the land, such as is hown to be very gradually taking place on some coasts at the present day. The iadividual terraces are too nearly level to admit of this explanation, simee so wide a warping of the crust from horizontality within sol limited a space as separates the two glens, would have left them conspicmously sloping. Besides, the two srstems of shedves are wholly insulated from each other, and the notion of their origin as seableaches gradually olvated implies a comtinuity between them, tugether with errtain nererments in their directions of derivation from leveloesy which we wholly fail in perecive.

In efmelnsion, the sprater precereded to sketeh the action to which he aseriber the fermation of all these shelves or parallel roads. He supposes the seseral terraces to have been cut or gruoved in the sides of the hills lyy a great imundation from the Allantic, engendered by some wide carthepake disturianee, of the oceran's herd, and forced against the western slope of Scotland. The features of the comutry indicate that, while a prottion of such a vast sea-tide enterng the Firth of Lamber rosheds straight arross the island throngh the deep mannal trench, (alen Mur, or the groat Caledmian valley, a franch current was deflectal from this, and turned by the Spran valkey and its tibutary glens, Glen Kong aul Gilen Gimoi, into the valley of the Sipey, and so across
to the German Ocean. In this transit, the deflected waters first embayed in these glens, and then filling and pouring through them, would, upon rising to the levels of the successive water-sheds, or low passes, which open a way to the eastern slope of the island, take on a swift eurrent through each notch, and as long as the outpour nearly balanced the influx, this current, temporarily stationary in height, would carve or groove the soft "drift" of the hill-side. But the influx increasing, the stationary level and grooving power of the surface stream would cease, and would only recommence when the flood rising to the brim of another natural dam, a new temporary equilibrium would be establishod, a new horizontal superficial current set in motion, and a second shelf or terrace begin to be eroded at the higher level. So each of the parallel roads is conceived to have been produced in the successive stages of the rising of one vast steady incursion of the sea. The lapsing back of the waters, unaccompanied by any sharp localized surface-currents, through the passes, could imprint no such defined marks on the surface, nor accomplish more than a faint and partial obliteration of the terraces just previously excavated during their incursion. This procedure was elucidated by likening it to what takes place when we allow a steady but gradually increasing jet of water to flow into a tank, perforated laterally with several orifices at successive elevations, the outlets permitting a somewhat less rapid rate of discharge than is equivalent to the influx. If such a tank be smeared internally with soft clay, the inpour can be so regulated in respect to its acceleration, that the water, as it rises successively to the levels of the several orifices will take on a horizontal motion or current, through, first the lower hole, and then the second and so on, and, remaining approximately stationary for a brief while on the lerel of each, will groove the soft elay as it passes out, until it swells above the orifice to reach the next. Some such process as this at the notches which terminate the glens will, it is believed, account for the terraces and all the features which belong to them.

Glasgow Geological Societr.-On Friday, May 24th, the Queen's birthday, a large party of the members of this important society, aceompanied by a number of ladies, took advantage of the holiday by making a lengthened excursion to the far-famed chasm of the "Whangic," Finnich Glen, and the Spout of Ballagan, all on the south-western borders of Stirlingshire. The excursionists, numbering abont sixty, left Glasgow at 10 A.M., by two of Menzies' omnibuses, each drawn by four fine horses. The road led by Canniesburn and New Kilpatrick, towards the localities to be explored. The weather proved favourable, and the scenery by the way was much admired, the verdure of the fields having been heightened by the refreshing showers of the previous day. Emerging from the low-lying districts of the Lanarkshire coal-field, the delighted party quickly passed into a rich undulating tract of country, interesting to the eye of the geologist, and leading his imagination back to the time when the whole surface before him lay at the bottom of a stormy and ice-laden sea, when numerons currents, in their irresistible progress, scooped out the valleys, and the unequal denudation of the harder and softer strata contributed to impart to terra firma its present configuration. Sueh was one of the functions of the "drift-period." Passing the terraced fronts of the eastern termination of one of the ridges of the Kilpatrick range, a quarry at the roadside exposed the columnar strueture of the trap-rock, not unnsual in other parts of the district, as at the Pillar Craig above the village of Strathblane, and in the isolated hill of Dunglass, opposite the Spout of Ballagan. In this instance the columus are arranged at various angles to the horizon. The finely-wooded heights bounding the Strathblane Valley on the south now came into view, while on the north were observed the conical height
of Dongoye, and the long, unbroken front of the Campsie fills, rising, terrace upon terrace, atreching from the barl's sat on the west towards kilsyth on the east, and forming one of the primeipal features of this part of the country. The numerous shens with which the hlanks of these hills are scarred exhibit much pieturespuc heanty, and aflord not a few interesting sections of the stratitied rocks and overlying trap, while, in their deep recesses, nestle many fine specimens of botanical rarities.

On rounding the wooded heights of Carbeth-Guthrie, the road pursues a westerly direction, when we get a glimpse of the distant Grampians thromgh the valing of the Blane, cheering us with the anticipation that by the time we reach the brow of the hill overlooking the Whangie, we shall have a marenificent riew of that lmunturous sea of momatains, stretching from the Argy lishire coast on the south-west through Perthshire towards the distant northeavt. Haring arrived at the eramekeeper's lodere, the party put themselves under his guidance, and were conducted over the swelling heights of Aucheneden by the shortest route to the Whangic, permission having been kindly granted bey the proprietor, Jolm Wilson, Eisg, of Auchenclen, to visit the sugular chasm. The excursionists at length reached the western brow of the hill, and were amply rewarded for their toil by the magniticent prospeet spread ont before then. In the forerground the fertile valley of strathendrick is seen evtending from Lochlomond on the west towards Fintry valley and Stirling on the east, while in the rising gromad towarls Callander and Aberfoyle a tine vew is obtained of the Menteith district, with the lake of the "Port," and its three verdant islets reposing on its placid bosum in calm sequestered beanty. The most prominent expanse of water seen from this point is Lochtomond; and there is perhaps mother locality from which a more interesting and cx tensive siew of the gucen of senttish lakes may be olnamed. No intervening heights obatruet the eve, and lighted up as it was by the bright rays of the noon-day sun, its numerons islets, and ofjects on its surface even more minute, although at a considerable distanee, were distinetly visible to the unassisted sight ; and while the party was looking down upon them, the steamer, with its Jome line of smoke. was perecived threading its devions course with its living froisht of pleanureseckers. Among the lofy momatans that form the hackgronnd of this magniticent landscape, Bentomond stands out in bold relief, bearing on its mmmit lingering patches of the snows of winter. 'The rich traet of Inwland in the foreground, with its rerdant pastures and cultivated fichds, dutted wath comfortable farmateads and smm mansions, formed an agrecable eontrast io the rugerd grandene of the distant hills, mettiug away in the far north into those arrial tints that artists lore.

The winding recesses of the Whangie were explored, many of the party having traveracd the chasm several times, remarking the exaelness with which the opposite sides correspond, sud offering opinions as to the canse by which this remarkable fissure has been producel. The greater mumber then proceeded to refresh themselses at a conl and glasey spring that issues from the font of a werlant slope belom the Whangie, while a second party took exact measurements of its dimensions and bearinges. Maving done so, they found that the results corresponded very closely with those given in the "Statistical Accomet of the parish of Killearn. The Whangie may be descrihed as a considernble chasm or rift rumning paralled with the face of a cliff, in a slightly tortuons line, from morth to south, through the western shoulder of one of the ridges of the kilpatriek range, which emonsts of a splintery greenstone overlving old red sandatone, here forming the base of the hill, and eropping out a little farther to the unoth. The foree which has produed this terrible fissure has rent from the main body of the hill a huge wall of rock, varying from ten to twenty feet in thickness at the base, and gradually narrowing towards
the top. The width of the clasm, at the northern extremity, is about ten feet and a half, and it gradually narrows to about four feet at the other, widening out a little at the top. The length is about 350 feet, but may have been originally about ten feet more, as the extrenities of the wall appear to be considerably disintegrated. Its depth mas found at one point to be forty feet, but it contains a large quautity of débris from the upper part of the hill. The opposite walls are on the same level, and many of the angles are as sharp as if the rent had been the work of yesterday. This is, no doubt, orring to their sheltered position. On looking outside the main wall of the chasm, which is broken through in one or two places, a liue of huge blocks of rock is seen extended along the face of the cliff, and tumbled together in rugged confusion. Various conjectures have been adranced as to the cause of the fissure, some supposing it the result of a convulsive movement of the earth's crust, while others, who hare never visited the Whangie, have suggested the idea that it may origiually have been a crevice containing, in the manner of a gash vein, softer rock matter which has been carried off by aqueous or atmospheric agency. The Whangie might, no doubt, have been the result of local consulsion, bat there is no evidence in the appearance of its opposite walls of a violent upthrow or downthrow of either, or of any such matter ever laving been present. It seems from the first to have existed as an open fissure, and its position forbids the idea that it ever formed the channel of a flow of water. The most tenable hypothesis is that the subsidence of the sandstone, which appears, where exposed, to be of a thin-bedded and friable nature, may have left a long ledge of the overlying bed of trap without support, causing it to part gradually from the main body of the rock by its own weight, the accumulation of water in the fissure probably contributing to the result; but while it is erident that a large mass of the rock las been rent from the main hody of the hill, it does not appear, from the corresponding sides, to have sunk to a much lower level, and this can be well seen near the middle, where the fractured sides are most perfect. A little farther to the north, on the same side of the hill, several other fissures of inferior dimensions are said to have existed; but they have been filled up to prevent sheep from falling into them. One, however, is still partially open, and may extend about 100 feet along the hill-side, with a width of about four feet at its northern eud. Like the large rent, it lies north and south. It is difficult to account for these fissures, ereu by attributing them to subsidence, for the hill is in no place very precipitous, and the party could see no evidence of the rock having been nndermined either by aqueous or atmospheric ageucy. Leaving the grey, weather-beaten rocks of the Whangie and their speculations as to its origin behind, the excursionists wended their way to a point where the omnibuses were waiting, and proceeded to Finnich Glen. To those who have never seen this romantic glen, it would be difficult in words to convey an adequate idea of the grandeur of its scenery. It may be doubted if there be another glen in the West of Scotland that can at all compare with it. The mountain stream, in its descent to the valley of the Blane, has, for a long succession of ages, been gradually cutting its way, till it has attained a depth of about 100 feet. The walls of the glen are nearly vertical, and it would lave been next to impossible to descend safely to the bed of the strcam, had not the proprietor, Mr. Blackburn, of Killearn, considerately made a stair of about ninety steps through a rift in the rock for the accommodation of the visitors who frequent this romantic glen. The walls are in many places not more than from ten to twenty feet apart, and clothed with beautiful ferns and other cryptogamic plants of greenest hue, which harmonise delightfully with the bright red colour of the sandstone. The stream has scooped out a series of deep round cavities in the softer layers of rock all along its course, adding to the fairy-like features of this charming
ravine. It one point, where diverging eurrents had formerly existed when the bod of the stream stood at a higher level, a large mass of the sandstone has been separated from the walls of the glen, and now stands in the middle of the stream. It has been mamed the "Deril's I'ulpit," and is the primeipad renterevons for pie-nie parties. Our geologists, howerer, duly ceorcised this satmic res rion, athd hasingepent a pleasant hour in this sceluded spot, proceded hy their ommibuses atong the valley of strathblane, and hy the wooted hill of Dungoich, and the towering heights of Dunforne and Dungoyne.
l'assing on the right the wh rum of Dintreath Castle, with its iry-clad walls, and the "bige mak" of Blairwhush, they arriwed at Strathblane. Here the teams were mharnessed for anl hour, and most of the exemsionists profeeded on foot in sisit the spout of Ballagen, a short distance to the east, on the north side of the valler. The magnifiecut seetion of thin-bedded strata seen at the Spout proved extremely interesting. After procuring sereral varicties of gypum and other specimens, the party returned to Strathblane, and proceeded to Glasgow by Milngavie, highly delighted with the day's proceedings. Indeed, this has been the most successfil of all the excursions the society has ret had, whether we consider the number who joined in it, or the interest manifested in the localities visited.

It being the first to which ladies have been admitted, their cheerful presence added much to the general enjomment, while they were not behind the gentlemen in luenmotive power. It is to be hoped thit frequent opportunities may be atforded them of joining in future excursions of the society.

Tife: Woomope and Mamens Niterahists' Fifld Ciebs.-The members of the Woolhope and Malvern Naturalists' Field Clubs met at Ludlow on May 23 h d and 2 th, for two ficld-dars. The first excursion was to cxamine the Caradoe beds up the Onny Valler, and at Marsh Brook and Acton Scott. The Malvern members arrived on Wednesday night, proceeded by train next morming to Marsh Brook, and from thence walked to a quarry near Acton Seott, in the middle Caradoc formation, which is rich in fossil remains. From thenee the members retraced their steps to Marsh Brook, and examined the sections along the Jorderley Road. Those nearest the railway station are Caradoc, and a little further on are the beds of the Tongmynd or Rottom Rocks, all the beds of which were considered to be unfossiliferous until Mr. Salter, about two tears ago, discovered worn-tracks, and a portion of a Crustacean, in the grey beds immediately orerlying the olive shates. A little further along the road is a large quarry of Bala limedone, the heds of which are tilted up nearly vertical, and fin the lower side of the quarry the lowest beds of Caratne formation lic conformably to it, containing soveral scaree and now organisms, such as Trimuctrus comerntricus, a new Asaphus, a new Frnestella, and several other remains; from the lata limestone were procured several specimens of a new Linguld. From thener, erossing the River Unuy by the strpping-stones, and procereding by the side of the river, they examined the loose stones that are thrown down from seseral guarries of the Horderley Haes or Middle Caradoe, amongst whieh the beantiful oak-forn (l'olypudium dryopieris) grows inost luxuriantly. Abont a mule further down the siream (thoush up the beds) the eelebrated Onny section was reached, ahowing the l'urple Shate or I sower Wenloek, the l'entamerna lun cstome, and the uppermont beds of the Caradoe, all in one contimins section. From, the Caraloc were procired some fine specimens of Trinurlens ronconfricus, and from the P'urple Shale Orthis bitaba, Einerinurus punctalus, leptiona lirregate, drypa relientarie, and Petraiat bina. The Pentamerns limestone is here a very thin band, containing only Pentamerns undatus; thence a walk of about a míle and a half to Craven Arms and back to Ludlow pea train, concluded the first day's excursion.

The second day's trip was first to Mocktree. After examining the fine sections of Aymestry limestone, and Lower Ludlow rock, the party proceeded to Leintwardine, where they separated for a short time, Mr. Symonds and Mr. Lightbody going on further to Pedwardine, to examine the small uphearal of Lower Lilandeilo flags, containing Dictyonema sociale in abundance, and a small species of Lingulella. The remainder of the party went on to Church Hill. The Church Hill quarrics have been more productive of new organisms than auy other section in this locality; twelve new species of Star-fish, several Encrinites, a few Ceratiocarides, and two or three specimens of Limuloides, an organism allied to the king-crabs of our existing seas, have been foumd there. It was in these beds of the Lower Ludlow formation that the oldest known Pteraspis was found. After Mr. Lighthody joined again the party, they continued on towards Ludlow, through the beautiful grounds belonging to Downton Castle, in which are some fine sections of Upper Lndlow rock. At the lower end of the Walks near Downton Castle Bridge, the Upper Ludlow Bone Bed is well exposed, and immediately overlying it is the Trochus bed, from which several small, but perfect, fish-heads have been obtained. A short walk from here to the Forge Bridge, and back to Ludlow by carriage, concluded the second day's excursion, through a most interesting locality both to the geologist and the botanist.

Worcestershire Naturalists' Club.- The first meeting of this Club of practical observers was held May 15, at Malvern, when a large number of members responded to the hospitable invitation of Dr. Grindrod to breakfast with him at Townsend House. The officers of the club for the ensuing year are as follows :-The Rev. David Melville, rector of Great Witley, President; Rev. A. H. Wimaington Ingram, F.G.S., and Edwin Lees, Esq., F.L.S., VicePresidents ; and William Matthews, Esq., A.M., F.G.S., Hon. Secretary. Dr. Grindrod exhibited his unique collection of Silurian fossils, which had been arranged and classified according to the rocks in which they had been found purposely for the occasion. He indicated his intention to display his extensive collection in a building about to be erected for the purpose, which at certain times would be freely open to the public. The party proceeded up the hiils to the pass of the Wych, descending the western declivity to the Great Winnings quarry. In the way down, an ancient coral-recf in the Wenlock deposits attracted much attention, and both here and at the Winnings numerous specimens of fossil corals and testacea were collected, and some good trilobites. The intercst of the day was chiefly for the geologists, a party of whom stayed behind at the Winnings, being loaded too much for further progress. The botanists then made a traverse to Brockhill Wood, where, breaking throngh the briars, they found themselves in the romantic Purlien Lane, a place of double interest,", botanical and geological. Dr. Grindrod called attention to the "bone-bed" at the end of the lane, and the succession of strata from the Ludlow Rocks to the Old Red. The next advance was to the deserted mansion of the Cliffes, where ruin and decay suggested that the estate was or had been "in Chancery." The party next made a traverse to Mathon Church.
After the dinner at West Malvern, Dr. Grindrod then made some observations on geological matters, ending with the advantages to be derived from constant devotion to any pursuit, and proposed to enrol in their number a clever working man, of Cradley, Jacob Gill, who had been of great service in collecting and securing raluable fossils, which was done.

NOTES AND QUERIES.

Tine Competitinn of the Mosaic Curoxilogy.- ink,-Will you inform me in your next number on what data the computation of the Mosaic chronology is made to give a period of some 5.100 or 6,000 years since? I hink we ought in the present state of relationship betwern geology and the bible to look earefully at hoth sides of the question in every aspect.-Yours truly, Jinw. Alles: Pridporl.
The I'resident of the Geologieal Societr, Mr. Leonard Hormer, in the last ammal address, treated at some length on this subject. We give his remarks without comment of our own.
" Modern discoreries in cthonology and philology afford enmulating proofs of the very remote antiquity of the human race. The Rev Dr. Willians, in his review of Runsen's 'Pblical Researches,' nhererves:--'There is mo peint in which areherologists of atl shades were so nearly mamimons as in the belief that cur Biblical chronology was 100 narrow in its limits; and the enlargement of our views, deduced from begptian records, is extendel hy our author's reasonines on the development of commeree and goverument, and still more of lanmages, and physieal features of race. How many years are needed to deselope modern lirench ont of Latin, and Latin ilsclf imit of its original crude forms! How unlike is English to Wichsh, and Grech to sitherrit, yet all indubitahly of one family of languages! What years were required to ereate the existing divergence of members of this fanily! How many more for other families, separated by a wite gulf from this, yet retaining trafes of a primeral aborigimal athinity, to have developed themselves, cilher in priority ur collaterally! The same eonsemantal roots, appearing cither as verthe intlected with great varicty of grammatical form, or as ununs with case-mindes in some langhages and with nome in others, pleall as cunvincingly as the suceession of strata in grology for mormons lapses of time.
"There undembtedly exists a widespread belief that the first existenee of man helongs to a peried not very remote from history or tradition. Viwery disrovery which threw a doubt on the eorrectuess of that belief was, matil very recenily, regarded, even lyw well-instrueted geolegists, as an imperfert chservation, in which coneromitani ciremmstanees liste hern overlocked, which would have shown that the inference of a great antiquity was erromenes: hor have those who were led to make such interences heen nlways exempt from the charge of irreverently maintaining ginions at sariance with sacred Writ. Th what nause can we ascribe this inerectulity? How docs it arises that, while the statementu of geralogistu that oulder urganic hodies existed millions of years age are tacitly arefoted, their eromelutions as to man having existed many thonsands of years agen sheruld he reereived with hesitation hy some geologists, and be altogecher repudiated lye ne inconuiderable mumber among otlier edneated elawe of societ! : it is true that negative pronf is brought forward that human bumes have never been fommel assoriated with those of extinet amimals: lime granting thi, to be correce, which recent disenteries show that it is not (and the ranty of their coerurences is capable of bwing areombted for on many renasmalle gromidx), atill ngainat surf merely negative evidener we have undemiable pronfa, in numerous places, of the erisienere of such an association with man's works, and even many instaneres of his lasing applied the bones of
such animals to his wants. My orn couriction is, that this wide-spread belief of the recent existence of man is to be ascribed, so far at least as this country is concerned, to the impression made by the lesson taught in early youth, the sonudness of which is not questioned in after life, by that marginal note in our Bibles orer against the first verse of the first chapter of the Book of Genesis, that 'In the begiuning God created the hearen aud the earth' [four thousand and four years before the birth of Christ]. It is more than probable that of the many millions of persons who read the English Bible, a very large proportion look with the same reverence upon that marginal note as they do upon the verse with which it is comected.
"It will be useful to look into the history of this date of four thousand and four rears, given with so much precision for the creation, not of this our earth only, but of the universe, and to inquire into the authority by which an addition of so much import is made to the sacred text.
"The author of the chrouology given in the margin of our Bibles was Usher, Archbishop of Armagh. I make no allusion to any part of the learned prelate's system, except the date he assigns for the creatiou of the world: that date comes properly within the prorince of the geologist; for, as the almost religious belief in its accuracy is an obstacle to the acceptance of the conclusions to which he is led by a careful study of the facts which the structure of the earth exhibits, he is fairly entitled to deal with it.
"In the eighth rolume of the Archbishop's works, there is a treatise with the following title:--'Anuales Veteris Testamenti, a prima mundi origine deducti,' and in p. 13 of that treatise we find the following seutence:-' In principio creavit Deus coelum et terram, quod temporis principium, juxta nostram chronologiam, iucidit in noctis illius initium, quæ rigesinum tertium diem Octobris præcessit, in anno periodi Julianæ i10.' Then follows:--'Primo igitur sæculi die, Octobris rigesima tertia, feria prima, cum supremo coelo creavit Deus angelos : deinde summo operis fastigio primum perfecto, ad ima mundanæ hujus fabricæ fundamenta progressus mïrandus artifex, infimum hune globum ex abysso et terra conflatum constituit.'
"Iu the eleventh volume of the same edition of the prelate's works there is a treatise with the title 'Chronologia Sacra,' in the second chapter of which the Archbishop thus settles the number of years, before the birth of Christ, for the creation of the world :-"Ita a vespera primum mundi diem aperiente, usque ad mediam noctem initium prebentem, 25 , quidem diei Decembris, quo
 4. et horas 6 . Kalendis vero Januariis anni periodi Julianæ 47 lt. (a quibus vulgaris æræ christianæ exordium deducimus) annos 4003 . menses 2 . dies 11 . et horas 6 . decurrisse colligimus.' This, therefore, is the authority upon which the confident belief is founded, that man could not possibly have existed upon the earth for a longer period than considerably less than four thousand years в. c.
"But this determination of the Archbishop is only one of many dates which chronologists, in their rain calculations, have presumed to assign to this the most stupendous of all events, to attempt to form a faint idea of which, in ansthing relating to it, will ever be gross presumption and folly. In the wellknown work, 'L'art de rérifier les Dates,' the following passage occurs:'Les chronologistes sont loin d'être d'accord sur le nombre des années du monde. Desrignoles (Chronologie de l'Histoire Sainte, préface) assure qu'il a recueillé plus de 200 caleuls differents, dont le plus court ne compte que 3453 ans depuis la création jusqu'à l'ère vulgaire, et le plus long en suppose 69st.' There then follows a 'Table des années écoulées depuis Adam jusqu'à la naissance de Jésus Christ, selon le calcul des principaux chronologistes,' numbering 108 , beginning with
－Mphonse X，roi de Castille，mort le at Avril，12S 1，Lans les ＇lables de Jean Muller，appelé anssi Regiomontanus and emding with
－Lonis Lippoman，savant Vónitien，mort en 15.5 t 3616．＇
＂The Rer．Dr．Hales，in his＇New Analysis of Chronology＇，gives a similar． list of＇Epoels of the Creation，＇and adds：－＇Here are uphards of one hundred and twenty differest opinions，and the list might be swelled to three humbed．This specmen，howerer，is abmantly sullicient to show the dis－ graceful discordance of chronolugers even in this prime cra．＇
＂I have endewomed，by inguiries at Oxford，Cambridge，Edinburgh，and at the Quten＇s printers in London，to aseertain by what specitic anthority， royal or reelesiastical，the date of 400 f was added to the first verse in Genesis in the authorized rertion，and J have not been able to diseover that any record exists of such an anhority．In lewis＇s＇Complete History of the＇Transla－ tions of the Holy Bible into English，＇it is stated，in p．319，that，to an edition in folio of the Bible，publisted in long，under the direction of Arehbishop Tomison，Dr．Lloyd，Bishop of Woreester，added ehromolngieal dates at the head of the sreeral columns，and on the margin of the title of fienesis the followiug：－＇Year before the common year of Christ，f00t．＇＇This cdition is to be sen in the British Musenm：it was printed by Charles Bill and the executrix of Thomas Newcomb，deceased，printers to the King＇s Most Exeel－ lent Majestr．
＂The eopy of the lible in the Bodleian Library，Oxford，in whech that date time appers orer agzinst the first verse of Genesis，hears the date of 1727 ； but there is mo dombt that for more than a century and a half that unathorized marginal note has lwen alded，up to the present ime．
＂I have thas laid before you the origin of this settled point in Saered Mis－ tory as taught at this day in our sehools，and，from its juxta－position to the text of the Bible，held in veneration by millions，there is every reason to believe，as an undoubted truth．The stady of geology has beeome so general that those who are instrmed in its mere clements cannot fail to see the dis－ crepaney betwern this date and the truths which geology reveals．The youth is told in the momine at school，probably by his own minister of religion，as 1 myself hase witnessed，that not more than abomt six thonsmol years have clapsed sime the ereation of the world．In the erening he may attend a lee－ thre ond gerbloge，very gessibly by one of the ninety－there elergymen who are Fidlowa of this socief y and hear that，in a work just isnmel from the press a Lecture by a I＇rofesori in the I＇niversity of Osford，delivered before the Viec－ （＇hamedtor of the Eniversity of（ambrider），it is stated that＇the probable lengeth of time reguired for the production of the strata of emal，sandstome， shate，amb jromstone in Somb Wale is half a millim of vears．＇It is thus eays to sere what a confusion munt be ereated in the yonth＇s mind，and that he will iumomarily ask himself，＂Which of the two statements am I（e）believe？＇ There can be wery little dombt what his deci－won would be：for he found the lecturer restug his statenif ut on umistakeable repords preserved in the great． book of Nature，the gemine meormptible register of fiod＇s works：whereas his sehool imstructor had adduced no evidenere from the saered toxt for his averment．To remore any intecuracy in notes accompanying the authorized veraon of our Bhble is surely an imperative duty．The retention of the mar－ gimal note in question is by mo mams a matter of indifference：it is mutrue， and therefore it is mischievons．If in future edtitions this erromeons date be renosed，the ommsion of any other will best express that antire ignorance of －The IBgimnige＇whi h no liuman power will ever be able to dispel．
＂I emment eonelude his subject hefter than by gnoting the elequent words of we of the most ahbe and accomplished of omr issociates，the Rev．Adam

Sedgwick, who, in the Appendix to his Diseourse on the Studies of the University of Cambridge, thus expresses himself :-
"Between the first creation of the earth and that day in which it pleased God to place man upon it, who shall dare to define the interval? On this question Scripture is silent; but that silenee destroys not the meaning of those physical monuments of his power that God has put before our eyes, giving us, at the same time, faculties whereby we may interpret them and comprehend their meaning. In the present condition of our knowledge, a statement like this is surely enough to satisfy the reasonable scruples of a religions man. But let us for a moment suppose that there are some religions difficulties in the couclusions of geology. How, then, are we to solve them? Not by making a world after a pattern of our own, not by shifting and shuffling the solid strata of the earth, and then dealing them out in such a way as to play the game of an iguorant hypothesis ; not by shutting our eyes to facts, or denying the evidence of our senses, but by patient investigation, carried on in the sincere love of truth, and by learning to reject every consequence not warranted by direct physical evidence. Pursued in this spirit, geology can neither lead to any false conclusions, nor offend against any religious truth."

Evidences or Deluge-Geology of Stoxehayen.-Dear Sir,-May I trouble you with the two following queries? -

1. What evidence have we, geologieal or otherwise, apart from the history of the Bible, of the existence of the Deluge? The traditions of all nations, whether in the new or old world, would seem to point to it ; but are they confirmed by direct evidence from the surface of the globe? If so, are we to suppose its action to have been local or general over the whole world, and what date can we assign to it? In no book ean I find any clear answer to these questions.
2. Can you inform me whether there is any special interest in the geology of the country aroung Stonehaven, in Kincardineshire, and whether I could find any published account of it? Hoping you will excuse the trouble, believe me respectfully yours, S. M.
3. As the Biblical Deluge is supposed to have taken place in the East, it has been looked for in the ralley of the Euphrates, and other great valleys, and such evidence with regard to the Euphrates valley as seems to bear on the subject, las been brought forward, if our memory serves us rightly, in Mr. William Ainsworth's "Reseaches in Assyria, Babylonia, and Chaldea," published in 1835.

In Mr. Vernon Harcourt's work on the Deluge a great deal of information is brought together on the subject of the Mosaic Deluge.

Geological evidence generally tends to disprove the Universality of the Deluge. Thus we have cones of volcanic ashes of early tertiary date still existing in central France entirely undisturbed, and modified only by atmospheric agencies.
2. Stoneharen stands on the northernmost extension of the Old Red of Forfar and Kincardineshire. The general stratigraphical features of the Old Red of this district, and a notice of the ehief localities of fossils, have lately been given by the Rev. Hugh Nitchell, of Craig, in the Journal of the Geological Society (No. 66, p. 45, 1861). Some papers also on this subject have appeared in the "Geologist," namely, "On the Flagstones of Forfarshire," by Mr. Mitchell (vol. ii., p. 149, 1859), and "Notiee of New Fossils from the Lower Old Red Sandstone of Seotland" (vol. iii., p. 273), by the same author; and "On the Old Red Sandstone and its Fossil Fish in Forfarshire, by Mr. J. Powrie (vol. iii., p. 336).

Balruddery, Tealing, Glammis, Carmylie, Leysmill, Carsegowrie, Brechen and Cauterland, are noted localities in Kincardine and Forfar for fossil fishes.

The coast from Stomehaven to Aberdecn affords a most interesting exposure of the structure of the (irampians. The Old Red sumdstone of Stonchaven is suceeded by the clay-slate of Carron Joint and that in turn by mica-slate and sheiss, all of them frequently traversed by dykes of 1 rap, porphyry, quart\%, mul eramite. This subject is noticed in Nicol's "Guide to the (icologry of Sontlaml," p. Int, dec., and in the Geological Society's Journat, vol. xi., p. í It.
 that most of your readers will be glat to hear of the discovery of a second sperimen of the hitherto unique jaw of the Stereognathus Ooliticus. Such a specimen I lately had brought to me by a yome fremd among other fossils for maming. On obtaining it from him, I showed it to my Priend Protesor Hnxtey, who very kimdly worked the specimen out from the enelosing matrix. At first he believed it to be a new species altorether; but he tells me now, froon further examination and comparison with the only other known specimen that he considers this also to be the Stereognathus Oulitiens. It shoutd be remarked that my specimen has one more tooth than the origimal fossil, althongh the erowns of the little molars are not in quite so perfect a state of preservalion. There is about the same amount of the jaw-hone preservel, which is clearly exposed, and in whieh the double fangs of the teeth (so characteristic of the mammatian class) may be seen embedded. The locality from which my specimen comes is rather meertain; but shells and other fossits which were asociated with it, and the appearance of the matrix itself prove it to be from the Sinncolidd Slate.-I remain, sir, yours \&e., R, R.Nr, Lambeater.

Gencorit uf Abuma.-sin, Could you kindly inform me, throngh the medium of your invaluable "Notes and (Guerics," what the principal geological features of Irabia eonsist in: or refer me to any book, paper, or pamphlet where I conld find anything on the geologe of that comery? Also whe ther the deserts in the interiou are of tertiary formation or not? "If you could amswer me these questions yout would much oblige me. Yours, \&e., M. R. A., Newport Pagmall.

In the iournad of the Royal Cicographical Suciely, vol. ix., p. 192, 1434, is a paper on the Somehern Coast of Arabia and the shores of the Red sua, in which geological observations are phentiful.

The couth-east coast of Arabia has been treated of geologically (by Dr. H. J. Carter), in the Journal of the Bombay Branch of the Asiatic society, for January, 145\%.

With resperet to grologieal maps of Arabin, we may mention the " Geogmostische Karte des Petraischen Arabien (by d. Russegger, 1517, Schweizhart, Stuttgarl).

The chicf geological features in Arabia appear to emsist of -1 , gramitic and motamorphic rock' (espreially near the coast-line and in the simai distriet); 2 , saudstone of undetermined age; 3, eretacrous rocks of considerable extent; \mathfrak{F}. mammulitic and other tertiary strata in abundance ; 5, post-pliucene sands, sime of them rich in shefls and foraminifera : some at least of the desert-sands belong to the last.
 us in this district, durme the smmer scason, when we are favoured with a werk's recteation, to visit some distriet in seareh of its geological treasures. We are this yrar anxious 10 sisit ther east-coast of Yorkshire, but more particolarly Whitby and searborough: none of ns, however, are aequainted with the formation of that distriet, and from the books which we have we can obtath very litule information.

If yom or some of your lrarned correspondents could, through the medimm of roirr most valuable publication (which is taken by several, and read by erery member of our socicty), five us some information as to the rocks of the
coast I have mentioned, and a short account of the fossils which they contain, it would, to our young society, be a vers great farour and a very great boon; and if you could recommend to us some cheap geological guide to that district, erery one of us would be greatly obliged to you.-Yours truly, A Yousg Geologist, Huddersfield.

The coast of Iorkshire is full of geological interest; and, indeed, supplies typical sections of the oolites, and types of the oolitic fossils, which, though they bear a close relationship to those of the south-west of England, hare their special characteristics. Prof. Phillips's work on Yorkshire (Illustrations of the Geology of Yorkshire, 2 rols., 4to) is the text-book for geologists visiting that coast. It coutains a map, sections, and several plates of fossils. It was first published in 1529; and there was a new edition two or three years since. A larger and far better geological map of Yorkshire was published by Prof. Phillips in 1S53, and can be got of Monkhouse, York; this must be the tourist's pocket-companion. Another work by the same author gives much information of the same country, namely, "The Rivers, Mountains, and Seacoast of Yorkshire," 1553 ; it is well illustrated.

In 1922, Messrs. Young and Bird published "A Geological Survey of the Yorkshire Coast" (tto, Whitby), and this is still referred to for the sake of the figures and fossils in it, and other information.

In the Journal of the Geological Society of London (rol. xr., p. 4, plates $1,2,3)$, Mr. Leckenby gave an account and figures of the fossils of the Kelloway Rock of Yorkshire; and in the 15th rol. of the same Journal (p. 1, \&c.), Dr. T. Wright compared the oolites of Gloucestershire with those of Yorkshire, and gave sereral sections, lists of fossils, and much information, with references to other writers on the same subject.

The east coast of Yorkshire consists chiefly of oolitic and cretaceous strata, with a large quantity of boulder-clay on its sonthern portion, just north of the Humber. On account of the richness of its fossils and the good derelopment of its beds, the oolitic strata of Yorkshire have been regarded as type sections for many rears.

The northem portion of the Yorkshire coast consists, for a few miles south of the Tees, of New Red Sandstone. This is soon corered up by the Lias, rich with iron-ore and full of fossils. The Great or Lower Oolite covers the Lias, and, together with it, is to be seen in the coast-sections along by Whitby to Robin Hood's Bay. The Oolite continues south of this along by Scarborough, showring its different stages; and the Middle Oolite then comes on, and in its turn is, at Filey Bay, covered up by the Kimmeridge Clay (of the Upper Oolite). The Speeton Clar, the Red Chalk, and the White Chalk, can then be seen in successiou; and for an account of these we refer our correspondent to the "Geologist," (rol. vii., p. 262, \&c.), where the Rer. Mr. Wiltshire has given a detailed account, more especially of the Red Chalk and the Speeton Clay of Yorkshire, Lincolnshire, and Norfolk. The Tertiary Crag of Bridlington, and the Boulder-clay of Holderness, are other objects of interest to the geologist, but are not so easily studied, perhaps, by the tourist as are the Oolitic and Liassic strata of Whitbs, Scarborougl, and their respective neighbourhoods.

New Trilobites.-Sir,-In the last month's number of the "Geologist," Mr. Salter accuses me of publishing several of his MS. names of new species of trilobites, which had not been described. I was not aware that ther were undescribed, and that the names were not published, or most certainly I should not have drawn attention to them in the manner I did, and for which I offer him apology.

Mr. Salter speaks, in the same communication, of the "blundering" use of MS. names by me, all of which he says are wrong, but not having seen the
specimens refered to how is it possible that he ean know whether they are wrong or not.

The above specimens, together with many other species, I received from a pentleman residing in the immeliate locality, who is a very enthonsastic entfector of the Lower Sihurian fossils, and who I beliere was the discoverere of mose of the species found in that part, many of which I am aware hase been deseribed by Mr salter.

Mr. Salter's st yling the communications from me in your "Notes and Queries" advertisememts, is ather mistake ; but others know as well as myself how positively yon close the pages of your journal against any transactions of a mereantile character.-1 am, Sir, yours, \&e., James R. Gnegory.

New Mixerus. - The following seven species or varieties of minerals were deseribed in the nimth supplement to Professor Dana's Mineraloger, by Prof. (i S. Bush, and published in the May number of Sillimans' American Journal of science.

Dianite (Von Kobell). This new mineral deseribed by Von Kobell is a variety of tantalite, found at Tamelain Finland: the specific gravits of dianite is 5.5 , and that of tantalite 7.35 to 7%. The colour and streak of dianite is blackish erey, and of tantalite dark brownish red. Von Kobrll distinguishes a new metallic acid, which he proposes to call dianic acid, in this new mineral; and he also finds it in exenite, aschinite, and smarskite.

Iljelmite (Nortenskiold). This is a new tantalite from Kararfshof in Sweden, and is described by Nordenskiold-the colour jet-hlack: lusire metallie; fracture gramular; specific gravity 542, harducsa 5 5 ; streak blackish grey.

Horruesite (Haid.). A new hydrated arseniate of magnesia from the Banat. It was first recognised by Dr. Kempott on a specimen in the Imperial cabinet of Viema. It oceurs in talc-like, stellated, columar, and suow-white pearly masses, transparent, and optically hi-axial; the lustre on cleavage pearly; flexible. Specific gravity $2 \cdot 17 t$; harduess $15{ }^{5}$ to 1.0 .

Volanhylrite. A new mineral found in a decomposed wacke, from Schmelzerthal, ucar Homef, on the lhine, and first deseribed by Krantz. It is found amorphous, in irregular nodules, having a conchoidal fracture. Opaque; colour velvet-black to brownish black; streak blackish hrown: it does mot fall in pieres in water, and in small fagments adheres to the tongre ; in enmposition near presonnite.

Pinitoild (1. kmop). Thi is a new name to a roek-specimen from (hemnitz, in Sucony. Colour lech,- oil, and greenish-prey, passing into white andred:

Pisanite (kemgett). I)r. Kempent describes thin as a cupreous variety of eopperas.

I'ranophane (Wobloky). This new mineral is from a copper-mine at hupferberg, in silesia ; compact and amorphous. Colour homey-y yllow to siskingreen, in miernseopie errstals. specifie gravity $2 \cdot \tilde{7}$: harducss less than 300 ; listre vitemis to pearly:-I.K.S.
 of vour reatera who are likely in risit lorkshire during the ensuing vacation, to know that two new eaves have recently been disenvered in the mountainlimeano district of that combty- one at firemhow Hill, near Patcly Mridge, and the othere in littomblale, near Kilnsea Crag. The former enntains some of the finest specimens of stalactites ever met with in this eomenty, whel have fortumatels been to a grat extent preserved from the ruthless destruction of euriosity-seckers. The eavern in Iationdale has little to hoast of in stalactites, hut in form and extent it far execeds that of Greculiow Hill. It has already been traeed seven bundred feet into the hill, through the greater part of whieh

like shape,-indeed, through the whole length it is only necessary to stoop at one place.-Yours, \&c., H. C. Salyox, Keighley.
Fruits from the Chalk.-Sir,-Do you khow if any regetable remains beyond mere fragments of wood have been found in the English Chalk ?-Ed. Drake, Chatham.

Fossil-fruits have recently been found in the chalk near Rochester; and the Editor has collected some from the Lower Whitc Chalk of Dover.

REVIEWS.

Seasons vith the Sea-Horses; or, Sporting Adrentures in the Northern Seas. By James Lamont, Esq., F.G.S. London: Hurst and Blackett, 1 S61.

It is mot often that we get much geological information from the authors of "Wild Sports" in the north, east, sonth, and west, many as they are now-adays. In this case, howerer, Mr. Lamont, though confessedly an amateur in science, knew how to use his eyes and hands, not only in stalking, harpooning, and such like, but in seeing, noting, and collecting whatever he met with of interest to the zoologist and geologist. The lively narrative of sporting adrentures among the seals, walruses, bears, and reindeer of Spitzbergen, with which Mr. Lamont here supplies us, is full of natural history information, ranging from the jelly-fish to the progressive-derelopment-theory; but geology seems to have especial charms for him-next to rifle-shooting. Without entering into all the details of the geological materials which our author has brought together, and the results obtained both by his own observations thereon, and by the exact determination of his specimens by more practised geologists, as shomin in the appendix to his work, and in the Journal of the Geological Society for November, 1860, we may point out the following as the more interesting points in the work before us, as far as relates to our farourite science.
The size and conditions of some of the great glaciers are noticed, as well as the effects produced by them to some extent; the nature and relative position of the trap-rocks and carboniferous rocks (sandstone, shale, coal, and fossiliferous limestone) of the sonthern part of Spitzbergen; and especially the occurrence of drift-wood and of bones and skeletons of the whale, walrus, \&c., on the dry land, at considerable elerations above the present sea-lerel; sometimes a hundred feet abore the sea, and half-a-mile inland. Mr. Lamont remarks that on one of the Thousand Islands four or five miles east-south-east of Black Point, besides a great deal of drift-wood lying "f far abore high-watermark, and in positions where it could not possibly have been driveu by storms in the present relative levels of land and water, numbers of whales' bones also lay upon this island, from the sea-lcrel up to the top of the rocks, which may have been thirty-five to forty feet in height. Those bones lying high above the sea-level were invariably much more decayed and moss-gromn than those lower down. Some were of enormons size. In one slight depression of the island, about ten fect above the sea-level, I counted eleven enormous jaw-bones, all lying irregularly, and mixed indiscriminately with many rertebre, ribs, and pieces of skulls. Of course it will be understood that these bones which I mention in different parts of this narrative were not fossilized. We found them in many parts of Spitzbergen, and at all eievations up to that of two
humdred feet above the sea. I bronght home many specimens, which are now in the musemm of the feological society. Conld an approximation to the age of these homes be in any way arrived at, they would give some chronological dats for determining the the wheh the land wherem they are found has been in curging from the sea and attaning its present lesel. My own impression, for many reasons, is that the whole of spitzbergen has been gradually rising within the last few homdred vears, and that this upheaval is still contiming. It is, perhaps, impossible to judge of the length of time which such enormons bones may endure in a climate like this, where they are bound up in ies for cight or nine months out of the twelve; but allowing, at a guess, four hundred years for bones lying at an clevation of forty feet (which is about the highest at which I have found entire skeletons), and adding twelre feet of water for the whale to have thoated in when he died there, we shall arrive at thirteen feet pere century as the rate of clevation. From the position of the eleven jawbones, ife., which I have just mentioned, and from the fact of so many lying together in a slight hollow, I am inclined to believe that these are the remains * of whales killed by men, and that they were towed into this hollow (then a shallow bare for the purpose of being flensed there. We learn from the accounts of the carly whale-fishers that their usual practice was to flense their whales in the bays; ind, in fact, that the whales were so abundant close to the shore that the ships did not require to leave their anchorage in the bays at all. It was abont the sear 16.50 that the whale-fishery in the bays of spizzereen was in its prime ; thus, supposing these whales to have been killed in that hay two hmadred years ago, allowing three fathoms (the rery minimum) for the ship to have anchored in, and adding the ten feet which the bones are now abois the sea-level, we have twenty-eight feet of clevation in two hundred years, or very nearly the same rate as 1 arrived at by the other example." - Page 200, ri sem.)

With regard to the disappearance of the whate ($\mathrm{H}_{\text {ysticetus) from the shores }}$ of Spitzhergen, Mr. Lamont remarks: "I helieve ithe principal reason to be that the scas around Spisabereen hrie become fon shallum for them: this is the general belief of the sealern frequenturg the eoast, only they generally 'put the crart before the horse, by snying that the 'spat is going back.' I have heard the same remark made by the aniters and fishermen on the west eoast of Norway, where Sir C'harles Lyell ('I'riuciples of (ieology,' p. 506) has shown to demonstration that the eoast-line is rising at the rate of four feet per eenturs. On this island 1 observed a further most interesting proof of its rlevation. This was a sort of trench or furmow of atbout a hamdred yards longe, three or four feet derp, and about four feet bromi, which was plonghed up anougst the brulders: it was ahout twenty feet aboue the seaterel, and extended from north-east in somth-west, heing exactly the lene in which the current-borne iof travels at the presemt diay : so that I presume there is me doubt it must hare loen eansed hy the pascare of a heary iecoloerg while the island lay under "ater." "This far has M. Lamont contributed informasion towards the elucidation of the probleme eonnected with the reenent upheaval of the European area a cubject of hich intere-t mot-at-daye, espereally in emmection with the guestion of the relatase suluguty of the stome implements of human manufacture found in rave and ervirl almos the presont sea-locel.

The sonthe malf of -puthergen appeare to eomoist chietly of Carboniferons
 mumerone Abaractoritic apecimens to England (now in the mnsemm of the Ginlogeal society) : and, from a comparison of his observations with the enllection of rocks made in the stmthern part of Spizhergen by Parry and Foster, in 142π, it would appoar that the trap-rocks, sandstomes, shates, and limestomes of the ennth are repueselled in the merth by marble and complact limestone,
hard sandstone and quartzite, mica-slate, diorite, porphyry, and granite (see Quart. Jour. Gecl. Soc., vol. xri., p. 442).

Of the Permian strata Mr. Lamont found but little eridence (one rolled fossiliferous boulder), though M. Robert some rears ago brought to France many fossils determined by MI. de Koninck to be of Permian age. On the other hand, M. Robert's collection seems to have been very poor in Carbomiferous specimens.

We observe in the list of errata belonging to rol xri. of the Geological Society's Journal that, in the list of specimens brought by M. Lamont from Spitzbergen, "Ammonite (?)", should be substituted for "Aviculopecten (?)" in one instance. This specimen, though doubtfully determined, appears to indicate the existence of strata of Secondary age in this aretic island.
M. Lamont's interesting and instructive book is dedicated to Sir C. Lyell, with a warm acknowledgement of the pleasure derived from the "delightful 'Principles of Geology'.........my unvarying and instructive companion during ten years of adrenturous wonderings,"-and with a modestly expressed hope that the author's abservations may in some way add to the strength of the arguments and demonstrations of that masterly work. That they do so, we think can be readily shown, and Mr. Lamont has our thanks for what he has already done, and our best wishes for the success of his future journeyings among the wildernesses of nature where his love of sport may lead him. To his friend, the author of the 'Principles,' also, MI. Lamont's work must be one of many agreeable evidences of the goodly harvest of facts gathered by welleducated amateurs in all parts of the world, that come in from time to time as the result of geological knowledge obtained by a careful study of the 'Principies of Geology.'

SPIRIT OF GOOD BOOKS.

Private copies lave been sent us of two very inportant papers by Mr. Evans and Mr. Prestwrich, printed in the Transactions of the Antiquaries and of the Royal Societies. Mr. Prestwich's paper was read in May, 1859, and our private copy from the author reached us about a month ago. To say that it lad not lost some of its interest by the long delay would not be true; for these valuable papers, instead of coming fresh in subject before the world, fall comparatively dead and flat upon the public ear, and are sought for only br the learned, who are arixious to see what emendations the authors hare made in their passage through the press-what additional materials they have gathered and added between their reading and their publication. Mr. Evans was somewhat more fortunate than Mr. Prestwich, his paper being read somewhat later, and printed somewhat sooner.

We do not make these remarks to detract from the value of what these gentlemen have done, or the real worth their papers possess at this moment, but it is well to observe the misfortune to the authors themselves that by the common and general discussing of the subject during the long interral of two years, their labours originally the first and the most reliable should have thus lost the attraction they justly merit, and should be fated to be put amongst the heary quartos on the library shelves, instead of being sought for and read in the family circles and homes of the inquiring aud educated classes.

The great value of Mr. I'restwich's paper is in the minute details of the sections and recorraphical areas of distribution of the flint implement beds at Amiens, Abberille, and Hoxne. The sections at Abbeville and Amicus are tirst accurately described.

Map of the Amiens' Wistrict.
"Abheville and Amirns are both situated in the valley of the Somme, the first at a distanee of about fourteen miles, and the second of forty-one miles, from the sea. The surrounding distriet consists of gently madulating elevated plains of chalk, capped here and there by outliers of tertiary strata, and elsewhere partly hare and partly covered by a few feet of finc light red or yellow luam and clay, in places mixed with angular fragurnts of flints. The river valleys are narrow, often exhibit on their tlanks thirk deposits of loan and gravil, while the middle is nsually a flat level of marshand peat overlyiug cravel. The loam, briek-carth, or loess, forms a wery marked feature in 1 his is matly hare chatk district, being principally accumulated in theck irregular and local masses on the sides and flamks of the vallers. This is especially the ease for some distance both above and below Amicus, as well as up the greater mumber of the lateral valleys. It extends to various clevations. A bed of gravel also spready over some of the lower hills flanking the valley of the Solme. For full particulars of the geologer of the district, I beg, however, to refer to the works of M. Buteux and Dr. Ravin.
"The fall of the fomme valley is very gradual, its elevation at Abbeville whove the level of mean tide of the sea heing righteen feet, at Amiens sixty feet. Between these towns the mean width of the valley, which varies but litele, is rather lese tham a mile. The hills rise gradually to liegghts generally of from two humded to four handred feet, and nowhere exceed six hundred to six humbed mad fifty fert abowe the sea-lewel, and that more in the interior of the department. The pite in which the flint implements have hitherto been obeerved are all in or near the main valley of the Somme.
"Alberille.-Ameordeng 10.3 . Bomelier de Perthes, the prineipal localities where flint implements hiase been found are, the rillage of Menchecourt, a suburt) at the foot of the hill on the north-west side of Abbeville, the fomm of

Abbeville, the rising ground on the southeast side of the town on which is situated the Champ de Mars, the Moulin Quignon, and the suburb of St. Gilles, and Mautort on the west.
"There are two pits at Mautort where flint implements have been found, one a shallow one, no longer worked, in the valley near the church, and another one on the side of the hill on the road leading to Moyenville, and at a height probably about equal to that of Moulin Quignon, or about 90 feet above the valley. The section, which was badly exposed on the two occasions when I was there, consists probably of -1. Brown saudy clay and a few angular fragments of flint, 6 feet. 2. Subangular ochreous and ferruginous flint-gravel, 4 feet. 3. White and yellow sand, irregular, 3 feet. 4. Coarse light sandy, chalky, and marly flint-gravel; no bones: flint implements said to be met with at a depth of six to eight feet; reposing upon an irregular surface of chalk, 12 ? feet. The fint implements here are remarkable for their bright white colour. The bed of gravel ceases at this elevation, but the hill rises to a height of two hundred and fifty-two feet, showing chalk withaslight cover ing of redclayand flints. I also visited Druca
and St. Riquier. Near the former place there is a bed thirty feet thick of sand and gravel, hut we conld hear of no flint implements or fossil bones. Nor were we more successfulat St. Riquier, but our risit there was too short.
"Monchecourt has been long celrbrated for its mammalian remains, of which a large eollection was made by M. Baillon. Many of these specimens were rxamined and deseribed by Cuvier. The chalk hills rise immediately above the village to the beight of two huudred and fourtecn feet. They are capped to the depth of a few feet by driff-loan and clays; the upper part of their slope is bare, and the lower part is covered by the deposit we have to describe, and this passes under the recent peat and silt deposits of the valley. One of the largest of the Menchecourt pits is that of M. Dufour, towards the further end of the village, and on the right hand side in proceeding from Abbeville. Au extensive section of the upper beds is there exhibited. The variatiou in the thickness of the strata is shown in the section of M. Lereille's pit (fig. 3), situated on about the same level, amt at the further end of the village.

Fig. 3.-Secte it of n pit ne Menchenomet, near Abreville. Ileight of rection 32 feet.
"The gravelly elay l, heermene more persistent and thicker as it slopes down into the ralles. The loam c, on the comtrary, is cut off gradually ly 1 , and thine out; its maximum thickness is from twenty-five to twenty-cight feet. The sand d varice from two to cight feet, and is thickest about the middle of the pit. The gravel e is of a nearly uniform thickness of half to one fort; it apparenly does not range up to the chalk, which, at the cond of M. Jufour's fit, has been met with directly under the sand d. Of the marl f I examined but few sections, as the diggings do not go deeper than e: it appears to be rather local. The gravel g was reached only in the trench opened. On the
opposite side of the road to the other pit, a well was dug through twentyfive feet of gravel and sand, but no exact particulars of it were kept. A few yards beyond this the gravel passes under the great mass of silt and peat filling the valley of the Somme. In the other direction (i.e., up the hill), the chalk comes to the surface at the distance of a few yards beyond and above the pits; but whether it forms a cliff agaiust which the pleistocene beds abut, or whether it passes by a rapid slope under them, there is no evidence to show.
"No organic remains lave been found in the upper clay and rubble, $b b$; The loam c contains a few mammalian remains. The only specimens, however, collected at present are teeth of horse and bones of ruminants and of Elephants, all much decomposed. Some flint implements are recorded from th bed, and shells of Clausilia nigricans, Helix orbustorum, Helix hispida, and Pupa muscorum. Of these the Helix and Pupa are common, and the Clausilia very rare.
"To the sands and gravels d and e, which may be considered as one bed, the greatest interest attaches, on account of the flint implements found in them, and the abundance of mammalian remains, land, freshwater, and marine shrlls. The bones mostly occur in or on the seam of flint-gravel e : they are often entire, but the bulk are in fragments. The land and freshwater shells are most abundant in the sand d; while the marine shells are more common in the gravel e, although a few are scattered throngh d.
"Returning back through Abbeville, and ascending the gently sloping ground on the east of the town, Moulin Quignon is shortly reached, where, at a height of a hundred and six feet above t.le mean level of the sea at St. Valery, is a bed of gravel showing this section.

Fig. 4.-Gravel-pit adjoining the Moulin Quignon, near Abbeville.

[^48]the rontrary, possesses an open and unobstructed view of some distanee around, and is then separated, by a slight depression, from the higher hills to the sonthward. The pits are of eonsiderable extent, and have been long worked for brick-earth, sand, and gravel. The total thickness of all the beds, which repose upon a very irregular and eroded surface of elaalk, varies from about twenty to thity feet. The worked tlints are found chiefly in the lower bed of gravel, more particularly in the lower part of it or near the chalk, where also the greater number of bones are foumd, hut this is by mo menns a general rule. A considerable number of teeth and bones are ilso met with in the sand and marl above the gravel.

Fig. s.-Section in n pit at St. Achenl, on the bide neare the Cagny rond.

"The blocks of sandstone are very uumerous and large, especially in the pits nearest the high road, some measuring as much as three to four feet in length, and weighing half to one ton.

Fig. 7.-Section at St. Acheul : side of the field adjoining the Monastery.
"In the cast of the field the sand c thins out, and is replaced by the gravel d, as shown in section fig. 7, where a good many remains of the elephant have been found, and but few flint implements. The beds here and throughout the field, although varying in thickness, have the same general composition as described in figs 5 and 6 . (d is a local sand seam).
"One chief object in risiting the pits was to discorer for myself, if possible, flint implements in situ, or failing in that, to be able to certify to their discovery by the workmen. The long fresh faces of gravel afford, together with the digging for gravel in daily operation, ready and convenient sections for observation. On my first visit, notwithstauding a careful personal search, I found neither bones nor worked flints. I, however, obtained a number of the latter from the men, some of which were dug out whilst I was there; and in the orerlying sand I found numerous land and freshwater shells.
"Eutire bones are comparatively rare in these pits, but fragments, more or less worn, are tolerably common. The greater ummber of the bones are soft, light, and friable, and without any addition to their own earthy constituents; and having lost their animal matter, they mostly adhere strongly to the tougue. Some, however, have received an additional portion of carbouate of lime, whereby their weight is considerably increased. The enamel of the teeth is generally but little changed. Some of the fossils are more or less bleached; others are coloured by the peroxide of iron present in some layers of the gravel."
[Supplement to the "Geologist," No. 42]

In his risume of the nature and value of the evidenee, Mr. Prest widh sars:-
"It Is escomtial, at a pretiminary tep, to recollect that the argment does but rest upon the esidence of skill, bat upon the evidence of design. The shitt beinge rude for the thints are only chipped into form and in mo derree eromad down) is mot alwats crident at first sigh, and heuee the existence of design has beren sometimes demed. Flints from the chalk hille of the district itself realily suppliet the matroial of wheh the flint implements are formed. The exterior of all chalk-flints invariably presente a white carthy crust, from which sinall fos-ils frecuently project, while the interior of the llime is black or dusky, but elear or semi-transparent. The fracture is conchoidal or splintery, and there is no tendency to break in one direction rather than in another. It may happen that a hattered tlint (by whatever natural canse produced) should give thakes or splinters closely rescmibling simple forms produced by one or two hows applied artificiatly. But here the coineidenee must eease; for it is ohvious that blows applied by hazard and resulting from natural eamses, as in a matio of gravel, wond meecsatily multiply their direction of strike in proportim as the blows themselves were madiphied, and eonserpently the shape of the flint would tend, upto a certain peint, to becone more and more irregular ; whereas, on the fontrary, blows applied by design, and with a given objeet in view, would tend to give to the flint more and more finish, form, and evident art. So with respect to the flints in the gravel the more benken the more irregular, whereas, on the contrary, with the flint inglements the more they are chiped and broken the wearer is the design.
"With regaril th the pu-sibility of the thint-implements resulting from natural wear, I have already mentioned that in many of the sperimens the outere enat of the thint is freptuently adapted and Irft, when possible or eomvenient, in the fini-hed instrument, and such original surfares show so little traer of wear that small delientr. fossils, so ofern fomed projerting on them, still remain untouchet. If the flim hat bey so extensively fathemed by wear, how tould one pertion, and atways a prominem pat, hate remainal unworn, whike other prortions have heen so larecly abraded? lireides, the tendency of wear, if sullici auly long continued, is ultimately in refluee the flints tu the remended form of prbbles, a condition of things imempatible with the retention uf the shary points mad entting colges of these imple monts.
" limalls, we hats tor consider whe ther it in jossbhe for the thint implements

 the eravel ; and further, whiler the remains of the larere ctinet mamals ondil have heen derised from some wher beds, and therefore be of anterior dacerthe that inglewerts.
 rial exasations: 2d dls, hy ronts an the gromed 'To amblemb aceustomed to
 butweon the fresh nat mifonm apparamee of melisturlxal heds, and the mixed and emfund mone of mate gremel, inderemtent? of ther owenreme of atry

 show the herak of contimuts. In the At. delent pits, the several slinions of
 and gravel, ed, rach present distmet dwasomal lincs amd differences in entour. dow these lucs and this bededng eontime minterruptedly over the portion of the losier grasel where the flont implements are fomed. 'there is no treak, no dist urthance, and the smath the heate fresils in the sande ormain urinjured, exeept at such placea where the eround has heren dug for brick-carth or wherwise excavated, and then the duturbanere is sulliciently npparemt. At St. Acheul
part of the field was occupied for several centuries as a Gallo-Roman burying ground. But the old senlptures rarely extend deeper than the brick-earth and gravel b. Some fine specimens of stone coffins (of the hard and sandy lower chalk) remain on the ground, the surrounding brick-earth having been excavated. Of the wooden coffins nothing but the ironwork remains. Roman coins, and fragments of old pottery are found on or near the surface, and the new ground is, in places, strewed with human bones. The following sections in M. Freville's pits, show how distinct the line is between the disturbed and undisturbed ground.

Fig. 8.--Section in the pit near the high road at St. Acheul.
"The remaining question is whether the fossil bones may have been derived from an older deposit, presents a contingeney requiring especial notice. That such a case is possible is evident from the circumstance of fossils and debris of various tertiary strata being found in the gravel. Still there are, I think, valid objections to this supposition. 1. The fragments of bones, although constautly found with their sharp angles worn and blunted, never assume a rounded pebble-form, or exhibit an extent of wear materially differing from or exceeding that to which the flint-implements have been subjected; while, as a general rule, the entire bones and the teeth are either not rolled at all, or are so slightly so, as rarely to be in any way iujured by attrition. If the bones were really derived from au older bed, then consequently they would in general be worn as much as any other materials derived from such a source,-a wear necessarily in excess of that of the newer portion of the gravel,- whereas, on the contrary, the boncs are amongst the least worn substances in it. 2. Neither do the bones or teeth show any mineral character, nor is there any mineral substance adhering to them, different to that which would be imparted by the matrix in which they are now imbedded. Nor, if they had only been originally subjected to their actual extent of mineral change, would they have been in a better condition to resist destruction by subsequent exposure and wear than they are now. The teeth of the Elephant are mostly much decomposed, and tend, without great care, to fall to pieces on exposure. Many of the bones are also very friable, the greater number being porous and free from any foreign matter. 3. No older beds that could have furnished such mammalian remains are known to exist in the district. 4. The delicate and friable shells found associated with the bones at St. Acheul and Menchecourt, and that could not
possibly have withstood any transfer, are such as are associated with similar remains rhewhere in France and in England, where we have no rason fo doubt. the comtemporancity of the two seto of organisms. 5. At st. Aehent part of the lower jaw with the tecth, and comsiderable lemgthe (four and tive feet) of the maks of Ei primigenime hawe been fommed. At. Mencheeomrt the hones of the leg, lying in thior matural position, and nearly the whole skeleton of a lihmocerue, were found entire,- the first beine an improbable, and the secomd an impossible contingency, had the remains of the ammel been washed out or removed from some udir deposit. (i) Lastly, the extinct mammalia are of species which ocent, both in England and France, only in the latest geologieal deposits, whereas if these remains were lere extrancous, we should expeet to find some species peculiar to deposits of anterior date.

Mr. Prestwich contimes, in his geolorical considerations of the question:-
"I should not wish, until after fuller study of the district, to enter on the question regarding the mode of formation of the above-deseribed deposits of Wherille and Smiens, beyond pointing out, that, at the former place, the evidence of the lower beds of Neneliceourt having been deposited partly in fresh water, and partly in salt or brackish water, seems sufticiontly clear and distinct. Apart from the latter condition, the Et. Achenl studs (r), as well as the lower eravel (d) containing the tlint-implements, may also be attributed to a like aecomulation under fresh water. The upper beds (b) in both eases are, I believe, of entirely ditterent origin, and belong to a class of phenomena of far wider extent and erenerality. At the same time, while postpening the more theoretical questions, the one eonceming the relative age of the deposits cam, 10 a eertain extent, be considered independently upen the evidence of the organie remains and of correlation; and certain general conclusions may be ventured upon.
"It is probable that subsequently to that juase of the Glacial period marked lyy the Boulder clay, the area of dry land became more extended, and on it there lived the Dile, huss primigenins and E. antiquus, Lihinoceros lichorimus, IIyrna spelief, with pperies of Jerer, Horse, and other animals, mostly of extinet, but some of species not to he distinguished from the recent; whilst the waters of both sea and land were tomanted almost exclusively by shells of recent species still eommon in this and adjacent rombtries. The remains of this old surface we find in deposits, which everswhere contain a similar group of organic remains, and oecor mostly in old vallers or at moderate clevations. Ther are newer overtaid ber other fossiliferons depouts, and I beliese them all to helomer to a state of thinge whel imenediately preseded the present order. One fera-
 tion of the surfare, yet they are alway more or lese imdependent of it. They are oftem near prosent line of dramatere yot conld mot, as at whote, possibly have been formed mader the ir operatem. The deposits deseribed in the precedug jages are, there is little doubt, of this she, mat they have many ina-
 blanee (the marine characterg gart) to thone of Fishortom, near Salishury. The deposit at 81 . Acheul is like, in many respects, the Ilford and the libentford beile, whilst that of Monlm (inigunime it. (iilles closely resembles the gravel-beds at Crogden, Wandsuonth Common, and some of her places near Senten.
"The gravels of Moulan Quigmon and St. Aeloent are placed respectively cightr-eight and ichtrymene feet ahove the valley of the Somme, are not commanded by any higher gromud immediandy adjacent, and are out of reach of all ruming water, or of any [na-ible interferemer from agents at present in action. At Menchereourt and si Rorhe, on the contrary, the heds are phaerd afgeinst the side of the chalk hills, and slope from an height of about sixty feet down to

Fig. 10.-Scetion across the valley of the Waveney at Hoxne.
the ralley. Still these lower-level deposits are, although not to the same degree, quite heyond the ageney of present river action, and are independent of recent changes.
"It is probable that the rarions beds, although on these different levels, belong to the same general period, and may be nearly symehronous. Ilad I, however, been asked to decide upon jhysieal evidence alone, I might have been disposed to consider the gravels on the low hills of Moulin Qutignon and St. Acheul as a stage amterior to those of Menchecourt and st. Roch; hut although I throw out the suggestion for the purpose of directing attention to the point, as one not to be overlooked, it is one which could not be deeided without further evidence, and which I should hesitate at present to adopt.
"On my return from France, my attention was directed by Mr. Evans to another ease of a very remarkable character, teseribed, so far back as the first year in this century, in a paper of great valne for the indepentent and corroborative evidence it atiords, and for the bold and suggestive views of the athor. Although known to antiquaries, its geological bearmes had escaped notice. It redates to a discovery made, and commmicated to the Society of Antiquaries, by Mr. John Frere, F.R.S., F.S.A., under the title of " Account of Flint II eapous discovered at Hoxne in Suffolk."

Map of the Moxne district
"I lost no lime in visiting Horne, a pretty village five miles eastward of Diss (Map, J'late xi.). 'The old brick pit is about half a mile south of the village, en the road in Face, adjoining the park and on the property of Sir Idward Kerrison. It is still worked, but the section is necessarily in some
degree altered from what it was in Mr. Frere's time. (For section of pit, see Fig. 11.
"The present digryings show:- α. Surface-soil, traces of sand and gravel. b. Brown and greyish clay, not calcareous,-used for brick-earth; with an irregular central carbonaceous or peaty seam. Two flint-implements are marked in the position assigned to them by the workmen, by whom they were found last winter. c. Yellow sub-angular fliut-gravel, with a certain proportion of small chalk pebbles, and a few pebbles of siliceous sandstone, quartz, and other

Fig. 11.-Section in south-west corner of Hoxne brickfield, 1859.
old rocks. Bones of Mammalia. The matrix of this bed, in places, consists of clay like b, It thins out to the westward. d. Bluish and grey calcareons clay, in some places very peaty; lower part with seams or partings of sand. Wood and regetable remains. Land and freshwater shells. Bones of Mammalia. e. Grarel like c, but smaller, more worn, and with more chalk pebbles. f. Calcareous grey clay, more or less peaty, with freshwater shells (I had a horing made in this bed to a depth of seventeen feet, but no bottom was reached).
"I was fortunate in meeting with an old man who had worked in the pit since 1S01. On showing him a small ovoid flint-implement from Abberilie, he stated that many similar stones were formerly met with here, but they were larger and more pointed. Such specimens were now rare ; only two had been found, at a depth of seven and ten feet from the surface in the clay (b), in the course of the precoding winter, and they had not been kept. However, after a short search in a rubbish heap, the men recovered one specimen. On a subsequent visit with Mr. Evans we were more successful. We had a trench dug on the east of the field to the depth of eleven feet, and in examining the ground as it was thrown out by the men, Mr. Evans discovered in the bed of gravel, No. 4, a flint-implement perfect except the point, which had been broken off by the pick of the workmen and could not be recovered. This
trench, which was of further importance as proving the superposition of these beds to the Boulder clay, gave the following section:-

Both in the gravel c and in the clay d bones of mammalia are still not unfrequently met with. I obtained a fragment of a rib of a deer and part of the tooth of a Lorse, and 1 afterwards saw, in the collection of Mr. T. Amyott of Diss, the astragalus of an elephant, which from the matrix in its interstices evidently came from the bluish caleareous elay d. Pieces of wood, some of considerable size, are found in this latter bed. Amongst them may be recognised species of oak, yew, and fir; together with small seed-vessels. In the lower part of this bed are thin seams or partings of sand full of shells, perfect but very friable, of the following recent land and freshwater species:-Cyclas cornea, Pisidium amnicum, T̈no (fragmentary), Bithenia tentaculuta, IIclix nitidula, II. hispidu, Limneus palustris, L. truncatulus, Planorbis albus, P. spirovbis, Saccinea putris, I'alrata piscinalis.

According to Mr. Frere, the flint-implements were discovered in gravelly soil underlying sand with shells and bones, and overlying a peaty clay. 'This wonld secmin some, but not in all respects, to agree with cither c or e of the present section. Both overlic peaty elays. The men, however, say that it is not in those beds, but higher up in (b) that they now tind the flimt-implements. The gravel ρ is below all the beds worked. I had an exeavation made in it, lut without suceess; nor was my search in the other beds more successful on $m y$ first visit.
"The general evidence of this ease certainly wants the eompleteness which the French deposits afford, but still there is every reason to believe it to be an analogous ease. Unfortunately the old part of the pit is now worked out and overgrown, but it is to be hoped that a full and eflicient exploration of this interesting spot may some day be made. Mr. Livans and I had several trenehes dug, but mueh more is yet required. In one on the somblh side of the fiedd, the lorick-carth (1 , was only four feet thiek, and was owerlaid by three to four feet of ochreous drift-sind and gravel, and underlaid hy two and a-half fore of small erancl (composed in great part of small chath pebbles) resting upon a gree clay. The other trench, on the east side, whibuted a bed of yellow sand with a few flints, three and a-half fect thick, pasaner into oehreons gravel one foot, and under it a seans of grey clay one foot thick, and then another bed of gravel, at the top of which we were stopped by water. At a distance of a hamered and fiftry yards from this spot, and on the other side of the small stream, is a jit in which the boulder elay is dug, and where no other beds are "xposed."

THE GEOLOGIST.

AUGUST, 1861.

SUGGESTIONS ON THE PRACTICAL UTILITY OF A COMBINATION OF GEOLOGICAL SOCIETIES.

Br the Editor.

We all know that whatever we do to do well we must do earnestly. It is not a thing taken in hand now and then, by fits and starts, that ever reaches the perfection necessary to give it prominence and raise it above things ordinary.

A London society, simply because it is a London society, is not therefore composed of more talent than a provincial society; nor, if it be, is that talent necessarily more effectually applied than it would be by any other society whatever. But as the metropolis is the centre and focus of the English ordinary population, so we think its learned societies ought to be the centres and foci of all the provincial societies. By this we do not advocate that the London societies should at all control the actions of any of the other societies; but we can not but think that the greatest good woald arise from a combination of all the provincial Geological Societies and Field Clubs with that which ought to be their natural head-the London Geologists' Association. If the Geological Society itself could be made the great centre of attraction, so much the better; but the exclusive
nature of that institution, and the antique system upon which its laws and regulations are founded, seem to prohibit, at least, for the present, any hope of its giving that invaluable help which it has all the materials in its hands for doing. 'Those means are confined as unased jewels within a strong easket by the obstructive bonds of chartered regulations. The intentional purpose of the Geologists' Association is, however, more in accordance with the wants and wishes of the Provincial Societies and Field Cluhs, and it is more than probable, that had the Loudon Association shown itself more energetic and worthy of leadership, some proposition for union and combination might hare emanated from geologists in the provinees; but a comparison of the labours aceomplished by the Glasgow, the Dublin, the Lirerpool, Manchester, Cornwall, and Malvem Clubs would display such superior energy and talent on their parts as would rather entitle any one of them to such pre-eminence. They have done much grool work. What has the London Geologists' Association to show? Surely it would not be too much at this season to expeet aceckly worling evenrsiuns by the London Society? Cheap trains leare town on Saturdays in numerous directions; and even if excursion trains were wanting, ordinary fares to most of the interesting points which would be selected for a single day's work would be within the compass of the poorest of the present members, or any that are likely to join. They are snch as any working man could afford. There are Grays and Ilford, New Cross and Croydon, to work at for mammalia and flint implenents; Woolwich and Erith, Dulwich and Reading, for tertiary leds; Reigate and Redhill for Lower Greensand; Charlton and Gravesend for Chalk. At further ranges there are Farringelon, Hastings, Bedford, Northampton, Harwich, Dover, Herno Bay, cum mullisuliis. Fat snch latomes mast be continuons and parproseful, not desultory: Setting aside propositions for exenrsions such as these, would there not le a great advantage in establisling ctmual mertinga of all the provincial clubs moder the direction of the London Association, such as the British Areharologists have instituterl for the rotaries of their science. The phace of meeting might be selected amongst the localities of the Field Clubs themselves, say Malverm, or Glasgow, or Manchester, or Chester, or Canterbury, or the Isle of Wight-anywhere where there was a provincial society
in combination with the metropolitan head-quarters. Take Malvern first as an example. There the London Association would go, and would be joined by the Worcester, Cotteswold, Leicester, and other Societies around, and by the members of those more distant societies, such as the Kent, the Cornish, the Scotch and Irish, who felt interest in the geology of that instructive region.

Mr. Salter is now pointing out in our columns good work to be done on the Longmynds. If the London Association inaugurated an excursion there under efficient leadership, say even, perhaps, under that of Mr. Salter himself, would there not be a hundred or more geologists from all parts of England who would be ready and willing to enjoy a week's work on the mountains of Shropshire?

The constitution of the Geological Society is framed for the publishing of accomplished results, and there is an mherent dignity in the fixity of its meetings ; but the geologists of the Association combined, if we understood their original purpose rightly, for mutual instruction and active work.

Let it not be understood that we are advocating mere gatherings. A concourse of people accumulated at one spot for the purpose of strolling over a country and dining together at the end of their ramble, does no more than promote good fellowship. It does almost nothing for science, not even so much as one stalwart arm would do in solitude by itself. But the work on such occasions should be contemplated and designed beforehand, and the geologists of the party should, like trained soldiers, be each put to his proper duty. Suppose a party of geologists at Dover, what good would they be likely to do scrambling along the cliffs one after the other? Give each member of the party a particular duty to do-a particular stratum to examine, a section to measure and draw in detail, a tract of country to examine and map. Send out an exploring party to find cuttings or sections, faults or fissures; another party to level and take dips. With such an organized party surveying the ground, marking every bed, and labelling every fossil, no field-day would be a dies non, but each would be "a red-letter day" for geology. If the Geologists' Association has been slothful, let them buckle on their armour and set-to even this summer. There is yet time for them to work out their proper destiny and attain their proper position. The last meet-
ing was deroted to the consideration of the best kinds of hammers, let the next produce some scheme for using then to some purpose. We wish the Society well, and it is therefore in true friendship wo nrge it to assume the proper dignity of labour for which it is so admirably suited.

ON THE DEVONLAN AGE OF THE WORLD.

Br W. Peagelli, F.G.S.*

The rocks composing the earth's crust contain a history and represent time-a history of charges numerous, varied, and important: changes in the distribution of land and water; in the thermal conditions of the world; and in the character of the organic tribes which have successively peopled it. The time required for these mutations must have been rast beyond human eomprehension, requiring, for its expression, units of a higher order than years or centuries. In the existing state of our knowlelge it is impossible to consert geolugieal into astronomical time: it is at present, and perhaps always will be, beyond our power to determine how many rotations on its axis, or how many revolntions round the sun the earth made between any two recognised and well-marked events in its geological history. Nevertheless it is possible, and eminer:tly convenient, to break up geolugical time into great periods: it must not be supposed, however, that such perionts are necessarily equal in chronologieal, organic, or lithological value; or separated from one another hy broally marked lines of demarcation; or that either their cormencements or terminations in different and widely separated districts were strictly synchronons.

One of the turms in tho chromological scries of the geologist is known as the Devonian, that which preceeded it the Silurian, and the succeeding one the Carboniferons period; and these, with some others of less importance, beloug to the Paleerzoic or ancient-life epoch, or gronp of periods. The Devonian is, therefore a chapterit may tro called the middle chapter-in the first volume of tho organic history of the earth. It is this chapter, containing tho history of the "Devonian Age of the World," which is to furnish materinal for this article.

The period takes its name from the fact that it represents the era

[^49]during which the limestones, slates, and associated sandstones of North aud South Devon were depositcd. As nearly as can be determined, contemporary rocks occur in Cornwall, Herefordshire, Wales, Scotland, Ireland, France, Belgium, Germany, Russia, Turkey, Siberia, Tartary, China, Central and Sonth Africa, Australia, Tasmania, Falkland Isles, Brazils, and various parts of North America.

The history of the period has been largely and ably illustrated by Hugh Miller, De la Beche, Lonsdale, Sedgwick, Murchison, Austen, Phillips, Rogers, Bigsby, and many others.

It appears to have been a period in which red deposits prevailed, the colour being due to the presence of the peroxide of iron. In this respect it is contrasted strongly with the Silurian beds below and the Carboniferous limestone above; the change, however, is in neither case uniformally sudden, so that by the test of colour alone it is not easy to draw a sharp line of separation between the Devonian and the more ancient or more modern system. The red colour is less prevalent in Devonshire,-this is especially the case in South Devon, where the deposits are chiefly clay-slates, and limestones, commonly grey or more or less blue. The characteristic red rocks are well developed in Herefordshire and many parts of Scotland, where they have been carefully studied under the name of " Old Red Sandstone," a term now generally regarded as a chronological synonyme for " Devonian."

Red colours, however, are by no means confined to the period now under notice ; this, indeed, is implied by the epithet "Old Red," used for the purpose of distinguishing the deposits to which it is applied from others of the same colour above, and therefore more modern than, the Carboniferous formation; and which were formerly known, as they are still occasionally, as the New Red Sandstone. Here, again, it was necessary to speak of the Upper and Lower. New Red, now the Triassic and Permian systems.

Nor are still more modern deposits destitute of this hue, as has been pointed out by Sir C. Lyell, when speaking of the Upper Eocene formation of Auvergne.*

The thickness of the Devonian rocks has been estimated at ten thonsand feet in Herefordshire ; at least twelve thousand feet in Ireland, and eleven thousand nine hundred and fifty feet in North America.

Considerable variety of opinion has prevailed respecting the age of the rocks of North and South Devon and Cornwall; uor is this surprising, since they are completely isolated, frequently display great metamorphism and mechanical violence, and have very few, if any, fossils in common with rocks, now known to be, of the same age elsewhere in the British Isles. Thanks, however, to the labours of Mr. Lonsdale, Professor Sedgwick, Sir R. I. Murchison, and others, they have been determined to be, as has been already stated,

* Manual, 5th Edition, page 109.
the elaronolocrieal equivalents of the "Old Red" of Merefordshire and
 Scontand does mot yiehl the shells, comals and sponges so abondant in Devonshire; nor are the ichthyolites, with whel the seotel rocks perm. fomed in the hater district: this, howerer, hats ceased to be a ch iomolagionl dithenty, sinee the anthor of "'siluria" found the fossits Chameteristic of eacli of the areas lying together in the same Devonian beds in Russin.*

It is lout right to ald that many geologists well acquainted with the Dewnshire rocks have acecpted this chronological ilecision in a more or less modified form. Thus, the late sur H. de la Beehe recrarded " The bulk of the Devonian and Cornish rocks as at least in prate equivalent to the lower lods of the Carloniferons limestone, to the passage-bets between the Old Red Sandstone and C'arboniferous limestone of Ireland, South Wales, fe., and also to somo portion of the higher part of the Old Red Sandstones of Herefordshime and adjacent districts.' \dagger The late Rev. David Williams considered the Devonian system as occupying "an chormous interval between the Old Red siandstone and the Mountain-limestone," +

The late Mr. D). Sharpe. Frofessor Jukes, and Mr. Austen, havo adrocated the view that the rocks of Barnstaple in North Devon, and South Petherwin in Cormwalh, helong to tho C:arboniterons syotem; Whilst Mr. Salter wontd modify this, and class the uprer portion of the lamastaple eroup only ats Comoniferons. The ehronology of the Barnstaple abd Petherwin leels will again come umber notice, when discussing the distribution of the fossils of Devon and Cornwall.

That life existed on the earth during the era of the Deronian rock: is evidenced by the fossils they eontain; mess, with the anthor of "Onphalles." we hold themi to be prombonic. Inteed, the introduction of life dates very much earlier than this, since no fewer than rery mearly one thonsamd speries of organisms are recorded as having become extinet in Britain alone, in fre-Devonian sones. The following table exhibits the ammont and variely of life in the period moler consideration, as compared with the fama and flora now existing.

The fienres in the 1 st, and, atul dith columens are copied from
 paene it ; nad thooe in the shel, the, Th, and siht, are compiled from I'rofnsur Morvis's Catulughe of Pritiah Finsils. It has been thought luest to take soo lithertes with the originals, so that the anthom alone are responsible for the correctness of the figures, which though prosibly inemaet in a fiew eatses, are on the whole the best that can lee commanded.

	Species．				Genera．			
	$\stackrel{\stackrel{8}{E}}{\text { E }}$			$\begin{aligned} & \dot{0} \\ & \stackrel{3}{0} \\ & 0 \\ & \ddot{0} \end{aligned}$			官	
8 （Cellalares	9，100	6	1	\ldots	． 7	2	1	\ldots
	10，629	49	\ldots	．．．	50	19	．．．	\ldots
$\underset{z}{\text { a }}$（Dicotrledones．．．	49，674		9		－	\because	－	
（Amorphozoa	300	11	9	9	33	6	1	4.
－Infusoria	500	．．．	．．．	\ldots	．．．	．．	\cdots	\ldots
¢ Foraminifera	1，000	81						
䮃 Zoophyta．．	430	81	50	49	188	23	20	20
¢ Entozoa	1，500	．．．	\ldots	．．．	．．．	．．．	．．．	．．
－Acalepha ．．．	210		15					
Echinodermata	498	82	15	15	165	18	6	6
．Annelida	770	8	．．．	．．．	10	4	\ldots	．．．
¢ Cirripedia	107	1			9	1		
，Crustacea	684	85	12	11	124	26	9	8
Myriopoda	200	．．．	\ldots	\ldots	．．．	\ldots	\ldots	\ldots
${ }_{4}^{2}$ Arachnida	600	\ldots	\ldots	\ldots	．．．	\ldots	\ldots	
Insecta．．	65，000		11		\cdots			
Bryozoa	380	55	11	11	147	22	7	7
－Tunicata	71							
¢ Brachiopoda	48	131	109	108	2，729	16	17	16
三\｛ Lamellibranchiata	2，413	287	50	49	119	35	18	17
\bigcirc Pteropoda	62	13			210	3	ㄲ．	
A Gasteropoda	8，82？	278	47	47	32	34	14	1.1
．（Cephalopoda	128	270	48	48	2，109	9	5	5
¢ Pisces	8，000	110	91	．．．	14	47	34	．．．
\％Reptilia	1，055	．．．	．．．	．．．	．．．	．．．	．．．	\ldots
O Ares	7，900	\ldots	\ldots	\cdots	．．．	\ldots	\cdots	\ldots
\bigcirc	2，030	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	\ldots
Totals	171，211	1，46s	＋13	3.17		265	13	97

It appears，then，that all Deronian fossils are referrible to existing clusses；hence the organisms which long since passed into extinction， and those which now exist，are parts of one whole；and，so far as these fossils testify，there are no extinct classes．Of the twenty－ seven classes into which the present fauna and flora of the world are divided，fifteen are represented and twelve unrepresented by the Devonian series：＊the latter are divisible into three groups，namely， Minute groups，as infusoria and foraminifera；Perishable，as entozoa， acalephæ，and others；and Complex，as reptilia，ares，and mammalia． It would be premature to assert that the first did not then exist．It is a question for the microscopist；and it may be donbted whether his attention has been so far given to it as to warrant any definitive opinion on it．Perishable forms can scarcely be hoped for in a fossil state，but it is not easy to dispose of the negative eridence respecting the Complex－the higher－organisms．True，that all the Devonian beds with which we can be said to be well acquainted are of marine
＊Decotyledonous fossil plants hare recently been found by Dr．Dawson in the Devonian rocks of Canada．See Quart．Journ．Geol．Soc．，rol．xr．，page 484.
origin; that they lave not been thoronghly explored; and also that the occurrence of terrestrial organisms in marine-deposits must be the exeeption, and hy no means the rule; still, it is not casy to explain away the facts that nothing amalogons to the oceanic mammalia of the existing fauna, or the marine reptiles of the mesozoic eproch, wecur in these old rocks; that even fish are not met with below the veryuppermost heds of the Silurian system;-the "passageBeds" between it and the Deronian series-that below the middle Silurian rocks are poor in fossils, both specially and individually; in propurtion as they are ancient;--fossil-powerty bring in fact a function of antiquity - that the Longmynd rocks, in no respect ill-alapted for the preservation of organic renains, have, in all their vast thickness, yidded no more than some nine or ten species; that whilst the presence of phosphates may be fairly expected in strata in which organioms were onece entombed, Professor Danbeny failed to deteet the presence of any such salts in the Welsh slates; unhess we suppose that the most ancient fossaliferons rocks with which we are acynainted were conval in their orggin with the earliest introduction of life on the grobe; that life was at first, and for a very lengthemed period, representel in the world by invertebrate animals and comparatively humble plants exelusively; and that there has been, on the whole, a "progressiun" from simple to complex forms as we pass from ancient owarls moxdern times.

But wen if we provisionally adopt this doctrine of organic progrowions. it must he with important limitations and qualifieations. Ahmitting that the evidence at present before us is to the efleet that the invertebrata appeared on the stage of life long heffere the vertehrata : and that, of the latter fish, were infroduced carlier than reptiles, which in their turn held sway in the world for a considerable periond antecedent to the advent of mammals: still the humblest representatwes of each elass were not always the first to : ppar, ns, for example, in the elans Pises. Amongst the invertebrates also, the lowly elasses do uot invarially appear earlier, or in greater specifice or individual derelopment than those of higher mank. as will hereafter be shown.

It mat be remembered also that the argument for progression is entiely negative, and would the valucless in the presenee of an "ppoming p"sitise fact ; so that, nfter all, perhaps the only safo werdict in the great case of Progression zersus Enifurmity, is "Nonprosen."

Of the elasses represented in the Dewnian series, Amorphozon, Anmelda, Cirripedian, and Pteropenta, som to hase been suecifically unimpurtant, whilat the remainder were compraratively rich in species.* Epuality in spreific weath in the sarions classes, however, by no muans ohtains now any more than in the cartier age moder consideration.

In some catere it nppears that clacses poor then are still. poor, as
*Sce Table 2 nd column of figures.

Amorphozoa and others ; others rich then are poor now, as Brachiopoda and Cephalopoda : whilst Casteropoda, Lamellibranchiata, \&e., abounding in species in existing seas, were formerly by no means thas characterized.* In order to show this numerical relation of the Deronian and existing species, the fifth column of figures, headed Dev. Spe., Liv. S'pe., in the table, has been calculated thus:- the number of species in each elass in the existing fanna, has, for the present purpose, been regarded as normal and put $=1,000$, and the number in each of the Devonian elasses equated to this; so that when compared with the specific development of the classes of the present day those of the Deronian age of the world stand, in ascending order, thus:-Cirripedia, Amelida, Pisces, Gasteropoda. Amorphozoa. Lamellibranchiata, Crustacea, Bryozoa, Echinodermata, Zoophyta, Pteropoda, Cephalopoda, and Brachiopoda. It will be scen also that the number of species in the two last exceeds, and in a high ratio, those of the same classes in existing seas; whilst those of Gasteropoda and Lamellibranchiata are more than correspondingly abnormally small. Here we have an example of a high class-Cephalapoda-preceding a lower one-Gasteropoda.

Though when the general fossil census was last taken, the Devonian rocks throughout the world yielded so many as one thousand four hundred and sixty-eight species $; \dagger$ ret if this number is considered in relation to the great thickness of the deposits of the period, the Deronian strata are poorer in species than either the Carboniferous or Upper and Middle Silurian; for example, for every one thousand feet in thickness the British Middle Silurian beds contain seventy-nine species; Upper Silurian ninety-six; Devonian forty-four; and Carboniferous one hundred and twenty. As a rule, deposits charged with peroxide of iron are poor in fossils; the red limestone of Petit Tor near Torquay, however, is an exception to this, as it is frequently crowded with Orthoceratites and other Cephalopods.
It is usual to divide the Deronian system into Lower, Middle, and Upper groups, and this triple division has been applied to Devon and Cornwall, especially by Professor Sedgwick, who recognizes the first, or lowest, in the slates and limestones extending from Plymouth to Torquay, in the limestones of Ilfracombe and Linton, the red sandstones of the north coast, and in the slates of Looe, Polperro, and Fowey, in Cornwall. This he designates the "Plymonth group."

The middle division consists of the slates extending from Dartmouth to the metamorphic schists of the Start and Bolt and the slates and purple and greenish sand-rock, stretching in North Devon from Morte Bay, east and west across the country : this is termed the "Dartmonth gronp," and is probably without fossils.

The upper includes the rocks ranging from Baggy point by Barnstaple, and the limestone beds and fossiliferons slates of South Petherwin in Cornwall: this is known as the "Barnstaple or

[^50]Petherwin gronp," and is not supposed to have any equivalent in South Devon.* Acecpting this chromolnge, at least for the present, there are, when considered geographieally as woll as chromolorieally. what mat be termed five fossilifirons Deronian areas in the two cometios namely one of the " Plymonth" ase, in eath of the districts. South Devon, North Devon, and Cornwall: and one of the ${ }^{-1}$ Bame staple" are in wach ofthe two last: these, as a mather of eonsenionce. may be termed Lower Somth Devon, Lower North Iteron, Lower Cornwall, Upper North Devon, and Cpper ('ommall.

Three hundred and forty-seven speries of fossils, belonginer to ninety-seven gedera: forty nine fimilies and nine classes of anmals, all invertebrate, are recorded as having been fomm in the five areas taken torgether. Of these, two hmudred and ninety-six specios are pecmliar to one or other of the aleas; and the remaining fify-one common to two or more of them. Not a single species is common to all the areas : and only one, a comal, to fome of them. 'The mumhers found in each, local and pecoliar, ane as helow :-

	L.S.I).	L.N.D.	L. C.	U.N.D.	U.C.
Prouliar	$1!1$	5	7	\%10	13
Total	$2 \because 6$	15	15	\%	73

Nomore than cight species have heen fonme eommon to Tower South Devon and bower ('ornwall, closely eomected as they are chronologeally and geographioally. 'Jhis, however. wan searedy br considered remarkable sine the minoral characters of the deposits are very disimilar; the Cormish beds are all but exelusively slates, whilst ※nth tewon is rich in limestone. It is not easy to aeenmet for the fact that the two contemporary-scarecty-dissimilar, and not widely-aprarated-deposits of Lower south and North Devon havo alse mo more than cight species in eommon: and that whilst as many as two humded and twenty-six species are formd in the former, no mone than fifteen oneme in the latter.

The organic conneetion between the mpper bets of Divon and Cornwall is greater than in the eace of muy other pair of areas. athl is what might have beren lonked for, from the facts that they are in all re-pects closely adlied.

Sixtyeseren of the Devon and Commall speries are reoorded as ocenring in continemal Einroper and sexen in North dmerica. Six of the seren are included in the laropean sixty-serven, and one of the six has been fomme atsi in Austalia: henee the womber common of Jevon and Cornwall, taken as a whole, and dintriets heyond the Britinh Inles, is greater than that common to the five areas of the two combties, in the ration of sixty ecight to fifty-one, -that is of form in there.

Of the there hmmerel and forty-sesen speries, cight are Silurian forms and fifty-risht Carhoniforoms : none of the former momber are included in the latter. The remainder, asl, are intermediate in character to those characturistio of the two periods just named, as

* Quart. Jour. Geal. Sue., mol. viii., p. 3.
was first announced by Mr. Lonsdale a quarter of a century ago. The evidence, therefore, of the fossils on the chronology of the rocks in which they were inhmed is, first, that they are of an age intermediate to the Silurian and Carboniferous,-that is, they are the equivalents of the Old Red Sandstone, second, that they are organically connected with both these periods; and third, that the connection is closer with the last than with the first. It seems probable, therefore, that whilst there is an ample development of Middle and Upper Devonian beds in the two counties, the lower group is less fully represented, and that the lowest beds of the district do not constitute the basement of the system.

Assuming that the South Devon beds are more ancient than those of Petherwin or Barnstaple-and probably no geologist entertains a doubt on this point-it follows that all the fossils common to the first, and either or both of the others, must be regarded as contributions from it to them: now this number is both absolutely and relatively greater in Petherwin than in Barnstaple. Again, of the two, the latter area has contributed the greatest number of species to the Carboniferous fauna. Hence, tried by either of the above as tests of relative age, Petherwin and Barnstaple are not strictly contemporary, but the former is more ancient than the latter; which is in unison with the opinion of Sir R. Murchison and Mr. Salter, based on other and, perhaps, more reliable data.* Indeed, Barnstaple has a smaller number of forms in common with South Devon than with the Carboniferous beds; hence it may be considered as rather belonging to the latter than to the Devonian series; or, possibly may have to be regarded as "Passage beds" between them.

The Deronian fossils of Devon and Cornwall belong to ninetyseven genera, as has been already stated. Of these, twenty-four are (in Britain) peculiar to the Devonian era; fourteen common to the Silurian and Devonian; forty-one to the Silurian, Devonian, and Carboniferous; and eighteen to the two last only. Hence thirtyeight genera die out, and forty-two commence existence in the Devonian age of the world. Several of the genera of the two last divisions pass upwards into Neozoic, and even recent times. Twentyseren genera are recorded in British Silurian and Carboniferous lists which do not appear to have been represented in the Devonian fauna; an indication, perhaps, of the " imperfection of the geological record." Few of the genera, not restricted to it, have their maximnm specific development in the Devonian era, and the period is remarkable for the specific poverty of its genera; it falls below both the Silurian and Carboniferous period, and especially the latter, in both these respects. Generically, as well as specifically, the Devonian fossils of Devon and Cornwall have rather Carboniferous than Silurian affinities.

According to the catalogues Devon and Cornwall have yielded nine species of sponges, belonging to four genera; there is reason to
bedieve that in greater number really exists．No fossils belonging to this chase appear to have been fond at Petherwin or Barmstaple： ner are any of the species known to belong to the Silmian or Carboni－ ferems series．Polished sections frempently show these orgamisms surmmender foreign bodies，in most cases cormls．

In 1htis，Mr．Peach bronght certain fossils，which Mr．Conch hat then recently discovered in shate－rocks near Polperro in Comwall， before the（icological section of the British Assuciation，during its meeting at Cork．They were pronounced to be ichthyolites：and this，pertaps，the more readily from the fact that whilst the con－ temporary rocks of seothand had yiedded fossil－fish in great mombers． No more than，if so much as，the faintest trace of organisms of this class hat heen found in I）evonshire and Cormwall；and this without the apparance of any reason for such absence．

Mr．Peach traced these fussils from near Fower harbour to＇lalland stands，about two miles west of Looe．Subsequently they have heen fomm，at ly no means wide intervals，along the entire coast of Com－ wall from＇Talland sands to Rame Head，near Plymonth sound．They hatere also heen met with，lut in small quantities，at Cliff on the left bank of the river Fowey，at Bedruthen on the nowth coast of Corn－ wall，and at Mudstone Bay，near Brixham，in Sonth Devon．

Specimens were sent to the late Mr．Hugh Miller，who，at tirst inclined to contirm their ichthyie chams．－stating indeed，of one Fpecimen，that＂It he had fomed it in the Lower Old Red simdstone of Cromarty，he would have no hesitation in regarding it as a frag－ ment of some dermal phate of Asterolepis ；＂but on receiving a larger and more complete series，he prepared a paper on them，which was read before the Royad Plysieal society of Edinhmrgh，in which ho ＂dnubted whether their true place in the scale of being had been determined．＂and promoneed them＂the most puzaling things he had ever seen；ridelles on wheh to exercise the ingrmity of the palaroutolorist．＂Soon afterwards Professor Mecing and Mr．（＂arter subjerted them to a chase microseopie semtiny，which resmhed in the fossils being pronounced to be oponges meroly：A nen gemus． Noymmilifynm，was established for their receptim，of which they were fonmed to constitute two species．S．crmolioum and S．Centrot． These foreils are fomend in slate－rock－mily．

The remarkable forsil formerly komwin as siphormiles tesselutus， has abo experioned a varioty of fortme among syatematists． Rumomer says it has been asscigned on Insida．In a note to Sir R． TT．De la Beche＂s paper on＂Phe（ientoge of Tor ：and Bablacombe Bays，＂the late Mr Proderip sass＂It is mot impossible that the fowil here referred to may have belonerel to the Timientu．＊Professur Phillips，after Mr．Ansten，placed it，provisionally，amongst the Spharonites，a germs of the family Cystidese，belonging to the （＇ystuidia，an extinct order of Eehinodermata．Sir R．J．Murehisom， more recently，says，＂It is not，howoror，a Cystidean，that family

[^51]
being confined to the Silurian rocks; but is, perhaps, a complex sponge."* The fossil is, accordingly, catalogued at present under the name of Sphuerospongia tesselutus. It occurs in the limestone beds at Lummaton, near Torquay, and at Woolborough Quarry, near Newton; one fine specimen recently found at the latler locality; shows that it is cup-shaped, the calyx. which unfortunately is somerwat broken, is elliptical,-haring, at the top, its greatest diameter, about two and three-fourths inches, the least two inches, and narrowing almost to a point at the bottom. The depth of the cup is about one and a quarter inch. The walls are about one-twentieth of an inch thick; the inner surface is divided into a net-work of quadrilateral meshes, by the interlacing of, what may be termed, vertical and hoirizontal ribs. The former are, with slight rariations, about threetwentieths of an inch apart, and are of two kinds, - primary, extending: from the bottom to the top of the cup; and secondary, springing from rarious heights in the side or wall. The primary cycle consisis of sixteen; the secondaries occur in pairs one on each side of a primary, of which they seem to be two branches issuing from the same node; these in like manner, occasionally give off similar branches. The horizontal ribs are less prominent, somewhat thinner and closer thau the verticals; they are about one tenth of an inch asunder. Not unfrequently some irregularity is observable in their arrangement, being occasionally more or less out of horizontal, and not always at quite the same level on the opposite sides of the same rertical; so that as often as otherwise, they are not in one and the same straight line. In fact they sometimes remind one of the "bridging-pieces" which builders insert transversely between the flooring joists in houses for the purpose of securing stability. The surfaces of both sets of ribs, as well as the interstices, are corered with granules. Imagine the cup to be a gigautic calyx of some species of coral belonging to the sub-order Zountharia tabulata, as, for example, Heliolites porosa ; then do the rertical ribs represent the rudimentary septa, and the horizontal ones the tabulæ, which must be considered as rudimentary also. \ddagger

The beautiful specimen of this fossil figured in the Transactions of the Geol. Soc., vol. iii.. part 1st, plate xx., fig. 1; and also in Professor Phillips' "Palæozoic Fossils," plate lix., is lodged in the Jermyn Street Museum.

The genus istromatopora, formerly regarded as belonging to the corals, but now remored to the sponges, contain fire Devonian species, all of which appear to be confined to British localities, with the exception of S. concentrica, which occurs also in the Fifel. It is extremely abundant in the South Deron limestones, and not unfrequently attains a very great size.

[^52]\ddagger This is merely meant as illustrative, and not as a suggestion that the fossil is a coral.

In the Devoniand depesits thronghont the world :thent one humbed and tity -puceice of finsil corals have been fomme finty-nime of which oerer in lesom and cornwall. 'Twenty-there of these are fomend in continental Fimope, and six in Americat five of the six are inctudent in the binmpen twente-three and one of the five has been met with in Anstralia. Tha Britioh Deromian comals helone to twenty genema,
 and $\%$. тй")
 all of which have a wide gewgraphical range. f: Cimht!ussii frequently attains a very laree sizn ; maseses upwards of two feet in diameter are sumetimes met with. It is alsu remarkable for its great distribution in spate oeeming in Devonshire, at Nehon and Vise in Framers, at at Millar in Spain, in the Gumal, in the states of Uhin and Kenturky in America, and in New Sonth Wales: yet it was contined in the
 Silurian speceis. Formicornis is remarkable for its great abundance in certan locelities: at Bat Ogwell, near Newtom, a wery ronsiderable mass of limestome seems to be entirely componed of it, to the almuat total exchusion of ofher fissils. fit fithent oecens atso in Lower silurian rocks in Fouth Withe, amd in Lpper Silurian in shrophire.

 are with organims of much later times: it is a small inher of sitality, separated hy a yast ocean of time from the organic cominent to which
 Tompay ; at Ogwedl. near Newton : and in great almulance, and of ereat size at fane in Cormwall; but hats not been found anywhere in limateme.

 such manluen at one locality knewn as the Lant's bind, near Tor-
 Dhionimu promed. I' Jomithentia is the only British Deromian coral lut fimend in sombl Derom.
 Sithrion rocks at well is in themonin: its erval vertical range surgeata the hedief that it pumemed a hardy plastic comstitution, seemen it had lised throngh changes such its imust have been introdued duringe lapme of tume great as those repreathed by the terms "Silurim" and "Dewonim ;" and from such a constitution it might
 thedes, it sems to have been particularly limited in this latter x,-pert, thus cont rasting strongly with F'unsits stinl! ! inssii, which, as has trem stated, ciremmavigated the globe daring the Devobian age,

TH そLIEAD WITHEIES JF BRONTEUS FLABELIJFR I'mestone, Wootrorough, Vent Vewion Abobai, S. Devon.
Siedinex form the incoumens
In Tore by 5 . Thachae, FG.
formed part of both the Silurian and Devonian faunas, was confined to a very limited district in each period.

Mhustoiden and Crinoider are the only orders of Echinodermata found in Devon and Cornwall; the first is represented by a single species, Pentremites oculis, and this is only met with in the Barmstaple area; it occurs also in the Carboniferous period, as do all the other species of the gemis.

Fourteen species of Crinoilea belonging to five genera and two families have been formd in Deron and Cornwall; two of these occur also in continental Enrope in rocks of the same age, and five in carboniferons beds; but not one seems to have been derived from the Silurian series. Parts of the stems are extremely numerous occasionally, both in the slates and limestones; bodies are very much less frequently found, and arms seldom if ever. Good examples of the body of Hexacrimus interscapularis, but without stem or arms, have been found in the Woolborough quarry near Newton.

Excepting Cypritina servato-striutu. found at South Petherwin, all the crustacea of the two counties are Trilobites. No traces of Pterygotus, Eurypterus or Estheria-fonnd in other British Devonian localities-lare been met with. The trilobites belong to ten species, seven genera, and six families; hence the genera and families are very limited in specific development. With the single exception of Phacops grumutus, formd at Petherwin, they all occur in South Devon, and are all confined to the Devonian era excepting Plitlipsia Brognicurtii, which is also met with in carboniferous beds in many and widely-separated European localities; this was eminently a carboniferons genus having no Silurian representative, but in all other cases the generic affinity was with the Silurian age. Indeed, the trilobitic form of life had passed its culminating point before the commencement of the Devonian age of the world-the evening of the group had already begun: no fewer than a hundred and seventecn species had previously become extinct in Britain alone; of these, ninetyeight belonged to twenty-one gencra and seven families, which had also entirely disappeared from the earth.

Phacops latifrons occurs in the calcareons slates at Roseland Tale, near Liskeard, in Cornwall, where it seems to have attained considerable dimensions: in many cases the eyes, though somewhat flattened, are otherwise well preserved, not a facet being scratched. It has also been found at Croyde and Barnstaple in North Devon, and in clay-slate at Black Hall, near Totnes.

The tail of Bronteus tubellifer is by no means rare in the limestone of Woolborough, near Nerrton, and Lummaton, near Torquay; no part of the thorax seems to have been met with, but one example of a tolerably distinct head with eyes was found at the former locality.

Trimerocephalus lecris, the only British species belonging to the genus, occurs under somewhat remarkable circumstances. So far as is at present known, it has been found only in one locality, namely, on the flanks of a hill called Knowles, near Newton, and no other fossil of any kind has been seen there. On this point our knowledge
is expersed hy saring there is but oue lexality for the fossil, ant but one fossil fir the locality. Dlany hmotrels of specemens haso been fimbl and but two intanese are known to have neemed in whid the hat was athached to the thomx. On splitting a stome, and
 juat mamed. the head is mot visible : or what is much more ferpuenty fhe was ome half the stome is tiomd to contain the thomace and dat unterd, and the imf itsisin of the hearl, whilst in the other half are finmi th. head amd the impursim of the bedy and always in such a way as to show that the head had heen severed from the body. remown as shom distance from it, as if drawn or pushed formad, amd inverted. In the eases where the head has mot heen visible, it has gemerally happened that it has been conceated hy a mere film of the imbedding matrix, and ean be lound with a litte care. When so forme it tells the same story. 'There are never any indications of yes: not moferpently the tail appears sumewhat truncaterl. as if its tirminal marein were slightly fobled or tucked muler. It is elear 1hat an insernom of the head might have heen eftected by a semiIatation efther at right angles to the axis of the hotly on in the direce fion of that axis: fant as the raterour margin of the heal is always fomm wareat the thorax, it is clear that the motion mast hato heron of ila - latter kinl. The rock in wheh the fossils oecor has heen fonmmend hy Dr. Sorly and others to he a voleanic ash, amb the whbont reference to, or knowletere of, any speculations reaperting the fine:- comneeted with the trilobites. Kinowles Itill, on the flanks of which they ocemp, is a mass of greenstome, and is matiod as such in tha map published by the (ieologreal Surver.

Acomeline to Bummeister: it is probable " that these ammals (trilolifa) moved only by swimming; that they swan close bemeath the
 dhwhwards. that they made and of their puwer of rolling theme s. lves into a hall as a defoner agamst attacks fons alowe and that

 ly suppuing that a shower of voleance ashes, filling into the ancient Dexonion sea in the Niwton are at, almerla a hoal of these tribohitres
 themelves up for defenee; that the contimation of the shower, and
 crans in the rollealonp peame : that their contre of gravity was so stuated as taranse flem to sink to the hottom on their backs: that this were inlmmal in the hape of ashos bhich, hy acemmating
 flaten the haly, and, with rery lew and slight weeptions. the tail :1tn: to dielocente the la arl (the line of mion of the hemd and hady treing the line of hat re fance), ant, affer the mamer in which slaty cianane in mocks is probably prodneed, for thoust it some

[^53]
TRIMERGCdiPlIALUS IANIS

远

Fr man, n Onat, I. तl kna!

little distance formard from the body. By such a process, the head would be inverted, and in such a way that the severed parts would take the relative positions which hare been described.

All the Britislı Deronian Cephalopoda are Trtrabranchicte, and every family of the order occurs anongst them. Nautitide is represented by two genera, Clymenia and Nautilus. The former contained eleren species, all confined, in Devon and Cornwall, to Petherwin. The genus appears to have been restricted to Deronian times. Oithoceratidee also had two genera, Oithoceras and C'yitocerus. The first contained twelte species. of which one is recorded as occurring in continental Europe, and three in carboniferous rocks. It does not appear that any have been found in Lower Cornwall or Lower North Devon. They differ much in the inclination of the sides, the septal distances, the situation and character of the siphunculus, and the inclination of the septa to the sides of the shell, though it is possille that the obliquity of the septa may hare been caused by distortion, it is scarcely probrble, seeing that in different specimens from different localities the amount or degree of obliquity appears to be constant. In one species the siphunculus is remarkable as forming a discontinuous line in passing from chamber to chamber. This genus was richer in species, and many attained a larger size in the Silurian and Carboniferous, than in the age under consideration. Cyptoceras had thirteen British Devonian species, all of which, excepting only C. rusticum, probably a synonym for Oithoceras arcuatum, are in Britain confined to South Deron. Species belonging to this genus occur before and after, but it attained its maximum specific development in, the Devonian age. The family Ammonitide was represented by the single genus Goniatites, the first born of the family, and which dates its advent in this period, when, in the British isles, it numbered ten species, all of which are met with in Deron and Cornwall: one of them ocenrs in continental Europe, and three passed upwards into Carboniferous times, when the genus attained its maximum development; it outlived the Palæozoic epoch, and finally disappeared in the Triassic period.

Want of time has rendered it necessary to pass over the other classes of mollusca, as well as the entire flora of the period; and from the same cause attention has been mainly given to the Devonian beds of the South of Bxitain.

Though. with the exception of a scale of Holoptychius, found, according to Professor Phillips, at Meadfoot, near Torquay, and another at Baggy point, in North Deron, ichthyolites are not recorded as occurring in the Deronian rocks of Deron and Cornwall, it is nevertheless certain that fish did exist within the area during the period under consideration; as a fossil found a few years since in the Steganorictynm beds near Looe, in Cornwall, has been pronounced by Sir Philip Egerton and other eminent palæontologists to be an ichthyodorulite, or defence-spine of a fish; and it is probable that other, though less well marked, specimens have been met with in the same district.

The age of the world, then, which we have laen ennsiderine, was comparative ly an wery car one : prion to the growth of that flora of unparalleled luxmance which has been tram-muted interema, and the Weprition of the iron-stone on frepmently, and in such almulanere. found interstratified with the coal-heds: a periuet cantion that that in which were elaborated and locelized so very mond of the materials rontaining that forec, and strength, and durahility which give a form and character to the civilization of onr own times; -anterior to those pages, at once historicel and predictive, in which was pre-written se mach of the history of comutries and mations the if wery remotely distamt in the future, and seen only by the eye of Prescience.

Yet it was by no means the infiney of the world; it hat been preceded by times of vast duration, represented by milos, in thickness. of sedimentary rocks; all necessarily presupposinge demulation, and, therefore, an erpual amonut of still more ancient rocks ; carlire times so great that in the area of modern Britain alone very marly one thonsamt organic species- thousand distinct forms of life hat performed their parts and passed into utter extinetion; not only species, but erenera, families, and even order: had entirely passed away ; the world had arrealy become old to, and for, them ; the extermal conditions to which they were adapted hatd disappeared. and hat empelled their withelrawal also-gradually, slowly: and suceessively; whilat their vacated niches were, ome aftor ansher, necepial by new forms adipted to the new ciremstances.

That the age was itelf one of inealculable dnration is evilenced by the facts that in some localities it is mensured by fully two miles, vertical, of sedimentary matter, eminently aml umistakahly detrital; and in others hy vast piles of limestone, the result of the slowly contructive lalours of the stmall coral polype. If we may assmme that then, as now, recef-huildines eomals diel not labour in depths exceeding from twinty to thirty fathoms, we are fromished with a somerling-line that enahkes ins forlhom stas that no longer exiat: and since, in some instances these limestome beds make up magregate thickness rery greatly excoeding this, fet erory statum chanty
 that the Darwinian hepethesin of areas of shw mat hog-romtinned sub-idence which so fiflectomely aplaine the phemmena of the coral-
 rentuined for, surilan phenomena in the liritish area during the Devonian age of the worth.

That it was a di-tinet organie perimel is seen ly its fossils, for the. mont part peonlior ant ehnatw rintic, sed intermediate in gerneral facies to thom of the Kiburan mal Cartraiforms ages; bat it was not ionlated from eithur san some of its finms of life wern derived from the former and a atill Ereat 1 momber transmitted to the lattor: the three great Palazoic priode graduate inte one another, ild ming as softly as do the time of the rainhow, amb emphaticenlly fleny that from the commencement of the first to the termination of the lasi
ICHTHYCDORU工TE FROIV IHE CHLCRITIC SIATE F LUTVE. CORN:'ALE
n the cullection of W Penselly, TGS
there was any unirersal synchronous catastrophe or cataclysm such as to depopulate the entire world.

From some cause, at present unknown, and perhaps eren unguessed, it was not an actively vital period; in fact, it fell below what may be called the normal degree of organic productiveness. Compared with those above and those below, its strata are poor in fossils in proportion to their thickness, and the genera are similarly sterile in species.

Possibly the climate was somewhat warmer than now, though the evidence of this is very treacherous. Exogenous trees existed then, and by their rings of woody matter, implying activity and stimulus, and the separability of those rings, indicating rest and the suspension of the force which causes growth, suggest the idea of changes of temperature characterized by periodicity - in fine, a change of seasons; the earth travelling round the sun under the inflaence of his attraction, and having then as well as now her axis inclined to the plane of her orbit.*

The beautiful patterns of the coral genera, Heliolites, Acervularia, Smithia, Spongophyllum, and others; and the exquisite forms of the Crinoidea, are so many revelations of the existence of beauty in those early pre-human times. So far as man is concerned-

> "Full many a flower is born to blush unseen, And waste its sweetness on the desert air." \dagger

And then, too, animals were furnished with weapons and other means of dejence, implying the co-existence of organs of offence. Violence, Fear, Terror, and Pain occupied the earth; the threads of Death were from the first inworen in the web of Life, and the commission " to kill and eat" is as old as the organic creation.

FOSSILS IN THE "AZOIC" ROCKS.

Sir,-I hasten to communicate a new and most interesting fact regarding the oldest rocks; and I do so for the sake of securing the credit of its discovery to the excellent Keeper of the paleontological collection of the Royal Bohemian Museum, Prague-Dr. Antonio Fritsch, who well known on the continent as an authority on birds, is also an ardent paleontologist. Three summers back, he went over with me the old Silurian ground of Shropshire and the Malverns, and he convinced me that he knew his own rich district well, by the frequent comparisons he made between the different parts of

[^54]it and our British strata. Bexept M. Barrande, indeed, the prince of pahcontolugists, nu one has entered more heartily into Bohemian genlogy, especially of itsolder roeks, than my friend. We visitedall the principal silurian localities together. Dr. Fritseh commenting as he went, till we eame to the vencrable "Stiper Stomes" and the overlying Tremadoe rocks of Shetve in Shropshire. Eenen these last. thengh they have not yet distinguished them by a separate name in Bohemia, he recomised as identical with the lowest bands of their secomel famm I 1 . and in the main I believe he is quite right

The lingula flags we were unable to visit. lint Church Stretton was within reach; and when, on the very last half-lay we hat to spare, we walked up the Cariing Mill brook and fommt the A Inm-lides in place, he could searcely believe his cyes.

Where ther were. however.- the certain records of a sandy shore gone hy. And we obtained enough to convince him that it was worth while to search his nwn "azoie" meks. He has hately been appointed to a new oflice in the Musemm, Int has used the little leisure necorded him to seareh earefully for these ohd traces. In a hetter receised to-day (July sth) he telis me "In our Cambriam stratum f; I have at length found marks of amelides! and I beg you to write me in what hook you have published the Armic lites spmisus from Church stretton."

Dr. Fritachs Sikeuh of Buhenian Arenierilite.
All doubt is set at rest hy the slightseseteh he has sent. Theme are the domble holes characteristic of these old worm hurows. The tubular hollows leading to them are seren on the sides of the slat, and are identical with thene of the Sentithor or Armicmlites figured in Hall's American Palemonology, on in the last edition of "Silmia."

So certain is it, that stealy research will be rewarded in the most barren formations. Now the sane diligence must be given hy ome Canadian conains to the Huronian rocks of Iake Suprerior. In faet, we mast leave off calling rocks awic. They only want lumting, in proportion as they nie old.

I beliere most fully that these coincidenens in organic remains orem wide areas are net areindental. 'The famm of the "\%me primordiale" or Limgula flage, has turned up, the satne great group of trilohites whereser it has been searched; and this, which is an oder formation still (perhaps much older), has shown, wherever it has
been carefully examined, an extraordinary abundance of worm-burrows, to the exclusion almost of all other forms. I expect, however, to hear of Olthamia and Polieopyye next, for Dr. Fritsch is not the man to leave a stone unturned. It is altogether a most welcome piece of information. .

Now the summer months are fairly in, and the holidays beginning, may I put in a plea for the Cambrian rocks of the Longmynd? The more hammers the better; and if every piece of rock on the top of Round Hill, just beyond Callow Hill, were examined for the Patceopyge, it would be worth while; or better still, the neighbouring gullies on the line of strike. The old marks of hammers will easily guide explorers; and the establishment or refutation of the existence of this, the oldest of all crustaceans, would be alike desirable.
J. W. Salter.

HUMAN REMALNS IN THE DRIFT OF THE VALE OF BELVOIR.

Dear Sir,-In accordance with my promise, I send you all the particulars I can glean relative to the human skull said to have been found in the valley of the Trent, near Newark, many feet down in the drift, and mingled with bones of extinct mammals. Of the vast importance of such a discovery I was fully aware, therefore immediately my friend W. Ingram, Esq., of Belvoir Castle, laid the circumstances before me, I, perhaps somewhat too hastily, sent off an account thereof for your magazine. Of that, however, your readers must judge. I knew that 1I. Boucher de Perthes has, in the editions of his descriptive works on the "Flint Implements," repeatedly said, in answer to the taunting question of his theoretical opponents, "How is it you never find the bones of man with these flints and bones?"-" Wait! They must be present somewhere. Wait and they will yet be found." During the last few years numerous results have issued. Mr. Horner's researches in the valley of the Nile sufficiently prove the great age of man, and the large extension required beyond the six thousand years of Archbishop Usher. If the story of the flint-implements be true, the history of man upon the earth must date back to a period immensely remote. Moreover, the length of time indicated by the heiroglyphies of Egypt and the calculations of the Chinese is by these discoveries verified. After years of poohpoohing, fucts have transpired in quick succession, establishing what before was for the most part theory founded upon inferences; and now, upon the same old inferences, theories are drawn out and brilt up in a new way to prove the lowness in the scale of intellect of the makers of the flint-implements; in other words, that that race of men was in the scale of being the step between the gorilla and the
"nirecer." And what for? Simply to prove the development theory of the " Vestiges," Lamarek, and so on back to the time of Demoneritus; for these development theories are not new to the work: they are the old hypothesis dressed up in a new fashion. Howerer, as it is not my propose at mesent to dispute the ancestry some modern authors hawe chosen for themselves, I pass on, especially as I have a strong personal ohjection to any such lineage for mysiclf.

On Monday the 17 th inst. I set out in company with Mrr. James Plant, of Leceester, for Belroir Castle. We walked across the comtry from Melton to Croxton, where a friend met us for the purpose of driving ns to some of the localities in the neighborhood best adapted for geological observation, the weather heing all a geologist could desire. We were tolerably astomeled at the immense mass of typical Lias fossils which we saw near the village of Rednile; Ammonites. Terelmatulu, Phayncomelle. Plugiostoma, P'ecten, IForliolar, Belemnites, Griphed, Lriculu. and fossil wood and eoprolites lengemet with in aboudance. Ingrh Miller has told us how he was enchanted with andenchamed in the Wren's-nest at Dudley by a slab of Silmian limestone crowded with the remains of palazozo life. So similar sensations cerept over myself in this liassic lmpial ground. Thence we passed to another interesting locality at Wooksthorpe Inickyard, where some beantilul specements of - Immonitus. Pentuctinites, and a variety of other fossils may be fomed in the lian elay. These are evecedingly delicate and small. hat not firiable. We visited other places more or less interest not necessary to deseribe heres and the next moming procected to Newark, to inspeet, if possible, the bones and skull referred to in my last commmuication ; but in this we fated, as theib owner, Dr. Beevor, had sent them to be mate into a hat and cloak stand for his hall, placing the skull on the top. A singular appropriation, which ean only be accomed for by the fact that the doctor takes no interest in gerologieal matters, and was not aware of the seientifie value of the bones

Пe has, howewer, promised fo forward them to Mr. Ingram of Belsoir, who will forward them to you lor inspertion.

The particulars I give below are well sulastantiated, and mot the slightest dombt can by any means be thrown on them, as the lacts are all well attested. 'This following is a rough sketch of the district, showing the lends of the river. 'Ithe (ireat Nonthern Railway diverted the conree of the river th the chamel shown hy the dotted lines, and in digering for the fomblation of the hridge over the new channel the workmen enme upun the pemains in question.

The whole of the operations were on Mr. Chowler's farm, at Masklaan, near Newark, amd I merht, in justice, fo remark that Mr. Chowler was exeocelingly kind and polite in affording wis all the in bomation we requireal.

The section shows the depthat which these homes were come nuen, In he much greater than was shated in your Junc number, being twenty-five feet insteal of twelve feet.

Plan of the district at Muskham, near Jewark.

Section across the locality where the bones and human skull were found. a, loam; b, clay ; c, pulpy silt, rery soft, and gravels.

The pit sunk was about fifteen feet square, and at the bottom a ten feet rod could be driven in with the hand alone, so soft was the material. The divisions between the loam, clay, and silt had never been disturbed from its first deposition. This was particularly noted. Within a few yards of the spot this soft stuff gave place to fine gravel and sand, the clay and loam continuous as before. In some portions of this valley the gravel and sand comes up to within a few inches of the surface, and the clar is wanting; but this is not the case in this immediate locality. This soft. pulpy matter indicates a percolating connection between the "reaches" and the river. Suffice it then to say that at this depth of twenty-five feet, the antlers of a reindeer were found four feet long: sundry other large bones, supposed to be those of Bos Elephas, Equus, dc., and numerous copro-
lites (:), on mone pobably fossil fimit: also a veryme eathenware
 Beseor promonnese to he that wita female. Whane is very umankahle, ha sals the oryans of cantion and firmoses were vory largely deve-
 of intellectasl pwos: Now this is the most important thing in the whole matter. hecanse it clashas so discordanty with the theory that man of the thint-implement 'eredod of the " drift' was so low in the scale ns necessarily to come in betweon the gorilla and the negro. Alas! for the theory, if this, the only lmman home fort fomed, so fatly contradiets it.* We can still exclaim with Burns, that
" I man's a man for a' that."
And furthermore, let the grand string of Terence ring in our ears:
" Horoo sum, nihil hmmanma me alictum puto!"
And it will come ont, I helieve, clearer and clearer that throner mo " hatneal selection" in the "smogle for exisicuce," can man by any means be at splatid derclopment of some anterion (xisterace referahle hack to the monat, thence to the combination of certatn ebements: ind so on backwinds mi infintlo.

FOASUL DEER'S HORN IT C'AC'TON, SHOWING MARKS OF HUMAN OPMRATIONS.

 Tramsmatahle." has kindly entruated on my care is viry interesting

 in the emura of dredging for cement-stomes. Dr: Brece las at forlion of the thak of a mactoden ($:$) and some fish-liones and feeth,
 spot is two miles from the shore, and is catled "The Wrallet."

The hom in preation was not shed, bat has a peryion of the bone of the shall guthering to it. It has been rhated away from the skull,
 remarkable fisature. The most intereating poont is flat the three branches of the hom hase laxe rame off with perfectly dean conts perperndirulanly to their axts, the polished smefaes of the seetions being

\qquad
quite uninjured. When it was shown to me, it was suggested that it had been dredged up before, the horns sawn off, and the base thrown back into the sea; but, on applying a lens, I perceived on the samn surface a portion of the peculiar sandy matrix bound together with oxide of iron, which adheres to all the fossil hones from Clacton.

Of course it would be very difficult to prore a geological antiquity for these saw cuts, because a film of iron left in the process of a recent sawing might, in undergoing oxidation, have cemented some grains of sand together; but the general condition of the surfaces, leads me to think that we have before us the work of an ancient man, and he not rery unskilled in the use of his tools. The girth of the base of the bone is nine inches.

When I called upon you on the 10 th inst., to leave with you the specimen of the deer's-horn for making an illustration, you were so good as to point out to me an incision and hollowing out of one of the cut faces with the apparent intention of fixing a flint implement of some kind in it, and at the same time you directed my attention to some specimens in the British Museum. As these illustrate the possible use for which Dr. Brees' specimen may have been intended, I will shortly describe them. The specimens are four in number. None of them are so old as the drift. The first is from the Lake dwellings recently discovered at Neufchatel in Switzerland; it is a portion of deer's-horn of a very remarkable form. From a to b is three and a half inches, and from c to d three inches. The hole to carry the stone axe at c reaches upwards into the portion, d, which was intended for insertion into a stout wooden handle, so that the axe would stand at right angles to the handle, and the shoulder, $a b$, would resist the momentum of the blow.
The other three specimens are from superficial deposits of the valley of the Somme. From a to b is four inches, and from d to e two and a
 quarter inches. $b c$ is a flint celt rubbed perfectly smooth inserted in a hole at b. d is a branch of the horm cut off, and the stump pierced with a small hole to carry the handle of the axe.*
The other two specimens are from the same locality, and of a very similar form. The flint celts have fallen out. They appear at present with rude flake-shaped implements inserted into them, but these are evidently not the original ones, and the plaster of Paris into which they are fixed is easily discernible. In all these axes it is

[^55]remarkable that the holes for the hamles are very small, as if the handles had been pliable like the hazel-stiek handles they use in some districts for stone hammers to crack llints for road menting.

It has nceured to me that the smonth faces of the sumfaces in 1re. Brees' specimen may have been cut after having been choppeal off. and that they do mot notessmity imply the use of a saw. They were not rublul down. The marks of entting are phan, amd they are a little hollowet out in the direction of the edge of the instrmment with which the cuts were made, as you wonld nlmost inevitably hollow the end of a stick if you attempted to cut it flat with a common knife.

I must not omit to mention the kinduess with whieh the curatorof the Antiquities department of the Mnserm snpplied the information I required respecting the specimens there.

CORRESPON゙DENCE

ON THE DISCOYERY OF MACRAUCHENIA IN BOLIVIA.

Sin,-As you inserted a report of the leeture hy l'rofessor Iluxley, on which the following remarks are limulenl, perhaps you will not shjoct to give place to them uluo; they alperared in the last mumber of the "Amals of Natmal History."

In the Felorunry number of the "Quarterly Inurmal of the fieolugical Soeciety," a report of a paper appeared, mad ly l'rof. Ilnxliy on November 21, lago, rrepmeting "n now species of Aluerauclumin (1\%. luplivionsis), sbtained by Mr. Forlus from the mines of Corocoro, in Bolivia." In this paper the following note is insormerl:-
"As the Ginnaco ranges iuto the highlands, it may mot bre a ton anguine expectation to hope for the fiturn discovery of remains of the atrat S/arruachenie alan in Bolivia" (p. ה:3).

 prom ion that remmins of Marrauchenin putarhen ime am yot moliscovered in

 volume of the "Hiscoire du Voytge", Avo, l'aris, Ikis, that benes of Mitraterl. 5 , werv fomml at 'lorija, is Somth lholivin, imbediled in the woil with Masfoton

 fart. If the romana decrin d by l'rof. Iluxley should poove to be of a distinet sperina, the fact whald be not wery ly that "a amall nad a large specieg of Aucherovil nammal misul the mountains and the plains of South America respectively," bot that two marly smmlar speccus of Marrumelienine co-cxisted in the haflinda of Bolisia daring the Post-pleistocene epoch. As Tarija, on the eastern
slopes of the Bohivian Andes, is almost berond the limits of the geographical range of Guanaco, which is by no means such a denizen of the plains as Prof. Huxley would infer, the existence of a fossil Auchenoid mammal (a so-called hueso de gigante") at that place is a fact of much more importance than the existence of a similar animal at Corocoro, in the elevated valleys of the Aymará country, at the foot of the enormous Illimani.

As Mr. Forbes, in the memoir preceding Prof. Huxley's, mentions at great length the Salinas, the volcanic origin of common salt, and the physical geography of Peru and Bolivia, I may be permitted to indicate that much valuable information on these subjects is to be found in Mr. W. Bollaert's "Antiquities and Ethnology of South America," Svo, London, 1860, and in his paper in the "Journal of the Royal Geographical Society," vol. xxi., 1851, with a map. Apparently the researches of both MIM. Castelnau and Bollaert have been unknown to Messrs. Forbes and Huxley.
The specific name boliviensis, applied by Prof. Huxley to the smaller form, will no doubt be abrogated by succeeding naturalists, as founded on a misconception of the geographical distribntion of the genus.

Prof. Huxley, impagning the philosophical laws of "correlation of structure" as defined by Cavier and Owen, suggests that, upon the Cuvierian method of induction, a palæontologist, reasoning alone from the cervical vertebra of Macrauchenia, would have confidently predicted its Cameloid affinities. But when Prof. Huxley founds an argument, put hypothetically into the mouth of an ideal adversary, upon a structure so liable to rariation as the perforation by a blood-vessel of a cervical vertebra, it can hardly be accepted as a correct exemplification of the principal which Cuvier has so successfully applied. The non-perforation of a cervical vertebra by an artery is certainly not such a character, subserving an important purpose, and denoting ordinal distinction, as the presence of a marsupial bone in an opossum, with which Prof. Huxley compares it. The analogy which it is attempted to deduce, as adverse to the principles of correlation, therefore totally fails, whilst this high law of comparative anatomy, "aussi certaine qu'aucune autre en physique ou en morale," remains unimpaired by the re-discovery of Macrauchenian remains in the Andes.

Your obedient serrant,
Juld-strect, Brunswick-square, June 24.
Charles Carter Blake.

GEOLOGICAL TVIDENCES OF THE DELUGE OF NOAH.

Dear Sir,-Although it is a rule with me to abstain from mixing up biblical and geological questions, believing it to be unwise, and by no means calculated to be of service to either, I am for once induced by the first query of your correspondent S. M., in the last number of the "Geologist," to depart somewhat from this rule.

The query to which I refer is, "What evidence have we, geological or otherwise, apart from the history of the Bible of the existence of the Deluge ?" Now, waving the question of the universality of the Deluge, I would ask, What geological evidence of this event does the Biblical narrative warrant our expecting? True, we are told that "All the fountains of the great deep were broken up, and the windows (flood-gates in the margin) were opened;" but these, I apprehend, are poetical-what if I say hyperbolical-expressions simply intended to convey an idea of the rapid and great rising of the waters.

When Noah sent forth the dove the second time, we learn that "The dove came into him in the evening; and, 10 , in her mouth was an olive-leaf plucked off; so Noah knew that the waters were abated from off the earth." Now the olive-leaf
could only warant the inforeneo Noah drew from it－and，as then sequel shows correctly－in tho suppsition that the dove hal mot：fomm it thating，a waif，mu the dilu．ial whers，bat had pluekel it．from a tree still stambine in its place amb， indee growing．The Deluge，then，was no equal to the aprooting，breaking，
 phenom such as m in would the likely to recognizo many yeurs afterwats its its elleets，and the prools of its existener．

I am，Sir，yours，se．，
I，imerna，Torquay，Jicly 3ral，Istil．Wn．Pexgehly．

SPIR1TOF（i）O円BOOK゙ふ。

MR．PRESTWICE＇S AND MR，EVANES PAP\＆R（ON FLANT LMPLEMENTS．

（Contimued from Inge 8：8．）

Thas Bonder clay caps all the hills around and forms a low table－land，through which the valleys are cut．Its very meven base rests on white and yellow sands and gravil（5）．In some places，howerer，thick beds of wehtemis amb forruginoms subangular flint ravel，will subordinate beds of sand，form low hills sabtending the main platem aloner the ralley of the Wavener．This gravel（2）is newer than the boulder elay againt wheh it usually shopes off， romine，in thin patcher，upeme uf the lateral valleys．
＂The top of the freshater deposit of Itoxne reaches within six or eight fert of the summit of the hill，of which it forms an mbroken and miform part． The adjacent hills are of abobl the same height，and there is mo gromed above a few feet higher for some miles arombl．No existing dramage，mor any possible with this eoufegration of surfare，conld have formed these clays and grawe beds，at the relative lewel they now nempy．
＂since writing the above，I have had the pit and the intermediate gromed on the 11 aveney lewedtet．The top uf the pit proves to be fores－two feet abous
 twelse feet above the sea．With Sir Diduad Kemison＇s comrterms permissem， we had alon sereral frenches dhes in the park in trace the evtention of the freshwater theposit：Allugher there have been sisteen tremehes amt borings male in and around the pit．－（Memoher，I frio．）
＂The presener and ahmondanere of perfect shells of I＇elrotu and Bithimia，and the quantity of vegotable mattor rember it protable that these beds were acen－ mubleal hy in alow streat，or a small maraly lake or there，into which lame． shella，the remaina of lamd－animats，and dreftel wod were carried down．The materials of this freshwater deposit are mainly such as would be produced and sorted by the slow weariver away of the lionder clay．The clays and marls and the＂associated them eratorl，＂whth the prhbles of chatk，of gitartz，and of lard and lone，are materible just such an the artificial washine of the adjace int Bember hey mens proxluese in the satur lield a pure calearems chay on the one hand，and a hogy of rongh craved ant llints，and wher roup prohlos，on the other．The level of the limbler elay in the adjument fiedt is fower than the
＊＇Then resulen of thon opmeratione are embonlied in the plans and sections platex．of Mr．Yreatwich＇s paper．
brick-pit, whilst elsewhere around it rises highcr. The irregular patchs of sand and gravel on the top of the whole are not of local origin, but beloug, I believe, to the general superlicial drift of the district. A portion of the freshwater deposit has suffered denudation, -a denudation cridently of the date of that which formed the small rallcy ruming down by Hoxne to the Wareney, and connected with the general valley system of the district.
"This Hoxne section furnishes us with an important clue to the relative age of these several flint-implement bearing deposits. As far as we can now judge it is clearly newer than the Bonlder clay, and is probably ol ler than some portion of the supcricial sands and gravels. Probably of the same age, and much resembling the Hoxne deposit in many of its details, are the deposits at Mundesley, Copford, Lexden, and others in the South of England. They were all formed before the country had assumed exactly its present form of surface,before all its variety of hill and dale had been fashioned to their present shape. Even should the exact position of the worked flints at Hoxne prore to be above all the bone-bearing beds, and not in them, still they are contemporaneons with an old condition of surface, and that over the whole is spread a drift concomitant with a modification of that surface, and giving the stamp to some of the present minor features of the country, is in either case a very remarkable fact."

In his general conclusions, Mr. Prestwich states that "The flint-implements occur associated with the remains of land, freshwater, and marine Testacea, of species now living and most of them yet common in the same neighbourhood, and also with the remains of various Mammalia, - a few species now living, but more of extinct forms;" and further, that "the period at which their entombment took place was subsequent to the Boulder clay period, and to that extent post-glacial: and aiso that it was amongst the latest in geological time,-one apparently immediately anterior to the surface assuming its present form, so far as it regards some of the minor features.
"It is true that no remains of man himself have yet been found-that is still to be desired; but if it be admitted that the flint-implements are his work, the negative point becomes an argument of less value.
" Whilst abstaining from any general hypothesis in cxplanation of the phenomena, there is, however, one point to which I must refer before concluding, ilthough I cannot, at present, renture beyond a ferv generalitics respecting it. It might be supposed in assigning to man an appearance at such a period, it would of necessity imply his existence during long aces beyond all exact calculation; for we have been apt to place even the latest of our geological changes at a remote, and to us, unknown distance. The reasons on which such a riew has been held have been, mainly,-the great lapse of time considered requisite for the dying out of so many species of great mammals,- the circumstance that many of the smaller valleys have been excarated since they lived,the presumed non-existence of man himself,-and the great extent of the latter and more modern accumulations. But we have in this part of Europe no succession of strata to record a gradual dying out of the species, but much, on the contrary, which points to an abrupt end, and evidence only of relative not of actual time; while the recent valley-deposits, although often indicating considerable age, show rates of growth which, though variable, appear on the whole to hare been comparatively rapid. The evidence, in fact, as it at present stands, does not seem to me to necessitate the carrying of man back in past time, so much so as the bringing forward of the extinct animals towards our own time; my own previous opinion, founded on an independent study of the superficial drift or Plcistocene deposits, having likewise bcen certainly in favour of the latter view. There are numerous phenomena, which I can only consider as eridence of a sudden change, and of a rapid and transitory action and modification of the surface, at a comparatively recent geological period-a period

Whidh, if ihe foreroing lacts are truly interpereted, would seem neverthedess to hase beed marhed, before its end, by the presenee of Man on a land clothed with a weetation apparmely very smian to that now domrshing in like latim fes, ant whome waters wete inhalited by Testaceat atso of forms now lis ing: while on the surfiee of the land there lised Mammalia, of wheh some sperics are !et the asociates of man, ahthotsh areompanied by others, many of them of grizatic size amb of tome now ratinct."

Nr. P'ratwich's paper contains much morr valuable matter, and monch mone minute dotail, than we mathord space to grive. It is more fully fllustrated with excellemt plates, maps, sempens, and woodents, of more timish and detail 1han the merely eharaterisie sketenes whe made from them. We have given enongh, howere, to loing before one reaters the important features of his valuable priper. N'e now jass to that of Mr. Livans, printed in the Artherolusia.

- It hat heen erenerall! supprised that the last of the greal ereological changes touk phace at a period longenterede nt to the appearance of man upon the carth, and that the moditieations of the carilh's surtaee of whel he has been a witness hase been-wih the exeeption of those due dieedly to voleanie agenebut tritling and immaturial.
"The anbject of the present paper, the discovery of flim implements wronght by (he lame of man, in what ate mertamly umlistmed beds of gramed, sand, and clay, both on the continent and in this embery, fends to whow that such an opinion is erromems: and that in this recrion of the globe, at lant, its surfare hat umbergone far greater verissimmes sinee man's reation than has
 great interest beth to the eretergiat, as afterting maproximate date for the formation of thene apperticial beds of drift, ant as exemplifying the changes whed the ferma of this rexion han modergene since man apyerated amone its orempants ; and alse to the amtiquary, as fumbhing the earliest relies of the homan race with which he can hope to become acequated-reties of tribes of apparemly se remole a perind, that -

> Amiquity aploars to have lygmn
> Lomb after their primeval race was sur.

But beyond the limited rimete of those peruliarly interested ingenlogy or arehar ologe, this diseovery will dain the experial abtention of all who, whether on
 quastion of the amtignity of man mon ther canth.
 dermatome wel other mommals, whos hones ate so frequently fumbl in the moie recent geologed depeats. had indeat already mene than omee been hronght under the motece of serentate inumirers by the disensery of thint tlakes and implenemts aml fraturente of rule julters, in comjunction witls the remains of
 nent. Abcice the former mey be mentioned hent's ('atem near 'Torquay, and

 the estinet quadrupeds. In steme resifierme rates in the Prazils amilar dis-

 belongen to an serint tribe that was roesal will some of the extinct man malia.
"But it was always folt that there was a degree of uncertainty atlaching to
the cridcuce derived from the deposits in caverns, owing to the possibility of the relics of two or more entirely distinct periods becoming intermixed in such localities, either by the action of water or by the operations of the primitive hmman occupants of the cares, which prevented any judgment being firmly founded upon it.
"At the end of April, 1559, I joined Mr. Prestwich at Abherille, and with him inspected the collections of Mi. de Perthes, to mhose courtesy and hospitality we were largely eudebted, and also risited in his company sercral of the pits worked for grarel and saud in the neighbourhood of both Ibbeville and Amiens, in which the fliuts in question were asserted to have been found.
"The dritt-beds ocenrring in different localities in the neighbourhood of Abberille aud Amiens, do not appear to have been all deposited at the same time, but to be of at least two distinct ages; the series on the lower level being distinguished by the occurrence within it of the bones and tepth of the Elephas primigenius, or Siberian mammoth, and of other extinct animals. These mammaliferons beds of sand, loam, and gravel extend over a considerable tract of country on the slopes of the valley of the Somme, and are worked in several localities for the repair of the roads and for building purposes.
"One of the pits at St. Acheul occupies the site of a Gallo-Roman cemetery, which appears to have contimued in use for some centuries: large stone coffins, and the irou cramps of those in wood, are of frequent occurrence, but personal ornaments are rarely met with. Roman coins are found from time to time, some as carly as the reign of Claudins, and 1 purchased from one of the workmen a second-brass coin of Magnentius, with the letters amb in the exergue, showing that it had been struck at "Ambianrm," the name given in late Roman times to the ueighbouring town of Amiens, which by the Gauls was known as "Samarobriva."
"Let us now turn our attention to the fint implements alleged to have been discovered in the drift in company with the remains of what has usually been regarded an older world; and consider, first, how far in material, form, and workmanship they agree with or differ from the stone weapons and implements so commonly found throughout Enrope; and then enter upon an exaniuation of the evidence of the circumstances of their finding, and the means at our command for ascertaining their degree of antiquity.
"That ther really are implements fashioned by the hand of man, a single glance at a collection of them placed side by side, so as to show the analogy of form of the various specimens, wonld, I think, be sufficient to couvince even the most sceptical. There is a uniformity of slape, a correctuess of outline, and a sharpuess about the cutting edges and points, which camnot be duc to ansthing but design ; so that I need not stay to combat the opinion that might otherwise possibly have arisen that the weapon-like shapes of the flints were due to some natural configuration, or arose from some inherent tendency to a peculiar form of fracture.
"The material of which they have been formed, flint derired from the chalk, is the same as has been employed for the manufacture of cutting implements by uncivilized man in all ages, in countries where flint is to be found. Its hardness, and the readiness with which it may be fractured so as to present a cutting edge, have made it to be much in request among sarage tribes for this purpose; and in some instances tlint appears to have been brought from a distance when not found upou the spot. There is, therefore, nothing to distinguish these implements from the drift, as far as material is concerued, from those which have been called celts, except, perhaps, that the flints have not been selected with such care, nor are they so free from flaws as those from which the ordinary flint weapons of the Stone period were fashioned. There is, howerer, this to be remarked, that the aboriginal tribes of the Stone period
made nee of wher stomes beside flim, such as greenstome, syenite, porpherre cherslate, jade, dere, whereas the weamens from the drift are, as far as hats hitherto hern aseertained, cachusely of flint. As to fom, the implements from the dift myy, for combenience sake be clased moder thee hrads, thomeh there is no much sariety ammerg them that the elasees, weecially the serome and thima, way be wid whind or run ene into the of her. 'The elassifieation I propuse in as follows:-
"1. Plint thathes, apparently infended for armow-heade or knises.
"A. J'anted wrapums, sme probably lance- or spar-hems.

"In W1. de Pertlies' muschuw, and in the engravinge of his " Antigutés Celtigues at Antédilusiemus," mang ohler forms of what her comsiders to be
 my mind less certain in chatacter. The flints resembline in form varions nimmais, hirds, and other objeets, must, I think, be regamed ats the whee of aceidental coneretion and of the peenliar eolonring and fracture of thint, rather than as designedty fastionetl. This is, hewever, a question into which 1 nead
 an abmalace of implements fomed in the drift whel are eridenty the work of the hand of man, and that their formation eamot powibly be resuded as the
 athtipuit? has been satisfactorily proved, it will be a matter for further imestifertion whether the re are not other traces to be fomme of the raee of men who tashinned there implements, lienides the inpliments themedres.
 to their amak aim and diftiretees in form, when empared with thene of what, for comvenime sathe, I will call the stome ferioul.
"There is a rombilerable resemblame hetween the thint thates apparently intended for armen-heads mad kinise (there first of the clanes into which I have divided the imptements), and thene which when found in this cenmer of on the
 is, that whemer flimt is nset as atmetrial from whelh mplements are fashomed, many of the thakes or splinters arising from the chipping of the thin, are certain to presnt sharp paints or cutting edges, whirh bs ar race of neen lis ing princi-
 daris or arrows, or ma neffulfor conting purpuses: thes are an readily formen, and on well adnged for such use without ans further fanhienting, that they late locen employed in all agees just as stach frome off the dint. The wery simpley y of the form will, however, prosent the fabrieated at the carliest

 formatim, loy thor moller or peition. Flint llaken appratent? intended for

 hare engraver.
"Occasionally they are of

Flint from Menchecourt, Abbeville (full size).

These have receired from the workmen of St. Acheul the name of langues de chat, from their fancied resemblance in form to a cat's tongue. The sides of both kinds are brought to an edge by chipping, but are not so sharp as the point, and altogether these weapons seem better adapted for piercing than for cutting. In length they vary from about four inches to cight or even nine inches. Both shapes are generally more convex on one side than the other, the convexity in some cases almost amounting to a ridge; they are usually truncated at the base, and not unfrequently at that end show a portion of the original surface of the flint; in some specimens the butt-end is left very thick, as if to add impetus to any blow given with the implement. The remarkable feature about them is, their being adapted only VOL. IV.
to cut or pierce at the pounted end; whereas in the ordinary form of stone hatchet or celt, the cutting rdge is almost without exception at the broad end, while the more pinted end seens intended for insertion into the handle or socket, an the sids are gencrally mund a for flat, and not sharp.
"These spar-sh w, I wapons from the drift are, no the contrary, not at all adzpel for insertion into a socket, but are better calculated to be fed to a shaft or hantle, with a sop or bracket behind their truncated cud. Mans of them, indeed, seem to have been intended for use without any handle at all, the rounded end of the tlints from which they were formet hawing been left unchipped, and presenting a sort of matural handle. It is mearly useless to speculate on the purposes 10 which they were applied; but, attacked to poles, they would prove formidahle weapons for encounter with man or the larger animals, either in elose conlliet or thrown from a distance ats darts. It has been suggested br 31 . de Perthes, that some of them may have been med merels as wedres for splitting we of; or, again, ther may have benn employed in grubbings for esculent routs, or tilling the ground, assuming that the race who formed them was suffeient! advanced in eivilization. This much I think may be said of them with certaintr, that ther are not analogous in form with any of the ordinary implements of the so-ealled S one period.
"The same remark holds grod with regrid to the third chass into which I have divided these implements, viz., those with a cutting edge all round (pl. ii., No. 3). In general eontour they are naually oval, with one end more sharply curved than the other, and occasionally coming to a harp point, but there is a eonsiderable variety in their form, arisine probably from defeets in the flints from whieh they were shaped; the ruling idea is, howeser, that of the oral more or less pointad.
"They ar" ecenerally almost equally convex on the two sides, and at length rary from two to eight or mine mehes, though for the most part only about furr or fise inches long.
"It is to be romarked that among the implements discovered in the cavern called Kent's Hole, near Torquay, were some identical in form with those of the oval type from Abherille.
"A befure observed, in eharaeter they do not resemble my of the ordinary stone implements with which I am acquainted, though I believe some few of these also preecot a enttine calge all round. Int at the same tition are much thinner, and more trianeular than wal or ahmund-shaped in their form.
"As to the use whieh this chass of flint-implements from the draft was originally intended in fulfil, it is harel to speculate. The workmen who find them nsually eonsider them in have heen sling stomes, and such some of the smaller aizes may possbly have heen, whether propelled from an ordinary sling or from the end of a cleft itick; many, howerer, uedato be tom large for such a purpose, and were more probath intended for aves entime at cither coml, with the handle
 why it mieht be desirable to hase one and more promeal than the oftaer, as that one instrument could be applied to two hinds of work. II de P'erthes has suggested, that thy wight aton have been mounted as hatehets by insertion in a sarket acnoped oitt in a handle. But all this is eonjecture. In print of work manship, I think it wall he perecercal that the weapons or implements now under consid rath in difer considerably from thase of the so-called stone-period: of these lather, hef far the ereater mimber (with the execption of the arrowheade) are more or log groand, anl wen phished; some with the utmost care all over, but nearly all gromend suticiently to manere a clean rutting cilge. The The implothents frem the drift are, on the comray, so far as has heen hitherto observed never grouml, but the ir edges left in the rough state in whech they have been chipped from the fint.
"The manner in which ther have been fashioned appears to have been by blows from a rounded pebble mounted as a hammer, administered directly upon the edge of the implements, so as to strike off flakes on either side. At all events I have by this means reproduced some of the forms in flint, and the edges of the implement thus made present precisely the same character of fracture as those from the drift.

Oval-shaped flint implement from the valley of the Somme.
"In instances where (either from having been left aecidently unfinished, or from never having been intended to be ground) the weapons of the Stone period hase remained in their rough-hewn state, it will be cbserved that, with rery fer exceptions, thes are chipped out with a greater nicety and accuracy,
and with a nearer approach to an even surface，than those from the drift，and， rude as they may appear，joint to a higher degree of civilization than that of the race of then by whom these primitise weapons or implements were formed．
＂I think that enongh has heen said to make it apparent to all whon hate mate a stady of the stone imphements usially fomed（those of the so－estled Stone prodid that the spear－heads and sling stones，or axes or hy whatever name they are to be called，wheh are now brought mader their motiee，lawe hut litte in commen with the types already known；they will therefore be prepared to receive with less dist rust the cvitence that they are foum unter cirenmstances Which show that，in all prohahility，the race of men who fashoned them must hase passed away long hefore this portion of the carth was oecupied by the primitive tribes by whom the more polished forms of stone weapons were fabri－ cated，in what we have hitherto regarded as remote antiquity．
＊In the cultivated suil amd made ground above，and at mieh less depth from the surface，gromed and polished instruments，evidently belonging to the so－ called Stone perionl，have imderd bern fomd ；but this again only tends to prove that the shaped thints diseovered at meh greater depth belonged to some ot her race of men；ame inasmeh as they eertanly are mot the work of a suhsernem peeple，we have here again a testimeny that they mast be referred to some anteedent race，which had perished pertiaps ages hefore the Celtie ocenpation of the eonntry．The similatity in form between the thint－implements from the drift，and those found in the cavedeposits that I have previously mentioned，is also a circumatance well worthy of observation．＂

Mr．Livans then goes ower the genkgieal evidence furnished ly Mr．Prestwich， and details the funding of one implement，in situ，by Mr．Flower，wheh gromed it wonld be superthous for us to go over again，as the chief part of Mr．Liams＇ geologieal data is derived direetly from Mr．Mrestwich．

PROC゚ほほDN゙G OF゙ GほOLOGICM，SOCIETTES．

（ientoricula Soctety of Lonion：－Junc 19， 1 Gfil．

1．＂On the Lines of Detpest Water aromad the British lales．＂Py the liex．K．Viverest，FG．G

Jy drawing on a chate a lime frowercing the deepest somdinge alone the Enge

 an unequal onded he ragon l ligure is destibed aronnd the libitish lsles，and a pentacemal tienre aromed Ireland．I hexagonal polygon may be smilarly defined aromed the lale of trran．These lines were deseribed in detail by the anther，whe pented onf that the y limited areas similar to the pelygonal form that tomy or＂arthy bentes take in hrimking，where in the proces of cooling or in drying．The relations of the lemedred－fathom－line on the promenteries， the inteis．and genemal contome of the ceast were dwelt niwill and the bearings that cortain limes dramn arense the Britibl I－les from the projectine angles of the pelyen appur to hase rin the strike and suther condtions of the strata were deserbet．Aftir stane remarhs on the probable offect that shrinkage of the curth＇s crust muat tave on the ejeetion of molten rock，the anthor observed that in his opmiom，the amion of shrinkine is the onls one we know of that whll afford any solution of the phenomena treated of in this paper，namely，
long lines of depression accompanied by long lines of elevation, often, as in the case of the British Islcs, Spain and Portugal, and clscwhere, belonging to parts of huge polygons broken up into small ones, as if the surface of the earth had once formed part of a bisaltic causerray.

Sereral clarts, plans, and drawings were provided by the author in illustration of the paper.
2. "On the Ludlow Bone-bed and its Crustacean Remains." By J. Harley, M.B. Communicated by Prof. T. H. Huxler, Sec. G.S.

Of the two bone-beds occurring near Ludlow, the lower one (seen in Lad. ford-lane and on the north-east slopes of Whitecliff) is that which has supplied the author with the materials for this paper. Besides spines, teeth, and shagreen-like remains of fish, the author finds in the Ludlow bone-bed three kinds of minute organisms: lst, conical bodies, the same as the "Conodonts" of Pander; 2ndlr, bodies somerthat like the crown of a molar tooth; 3rdly, oblong plates. All these bodies possess the same chemical composition and microscopical structure, which is decidedly Crustucean. With Pterygotus they do not appear to have any relationship, unless some are the stomach-teeth; nor do they show any alliance with Trilobites; but with Ceratiocaris they have a great resemblance as to structural characters, and some of them were probably the minate secondary spines of the tail of that Phyllopod. The plate-like forms might have belonged to Squilloid or Limuloid Crustacems. To facilitate the recognition of these bodies Mr. Harley places them all in one provisional genus with the name of Astacoderma. A letter from Dr. Tolborth to the author was also read in confirmation of Mr. Harley's opinion that these bodies are identical with Dr. Pander's "Conodonts." Nnmerous original drawings illustrated the paper.
3. "On the Old Red Sandstone of Forfarshire." By James Powrie, Esq., F.G.S.

The author described the series of stratified rocks belonging to the Old Red Sandstone, upwards of three thousand feet in thickness, stretching southward from the Grampians to the coast of Fifeshire. 1st. Dark red grits (with cornstones and flagstones) equiralent to the English "tilestones." 2ndly. Thick conglomerates and the Arbroath paring-flags. Pterygotus anglicus, Stylonerus, Parka deripiens, Cephalaspis, Diplacanthus gracilis, and other fossils belong to this part of the series. 3rdly. Thick-bedded red sandstone (with cornstone) Cephulaspis and Pteraspis. ithly. Soft deep-red sandstones. 5thly. Spotted marls and shales: these beds are the uppermost, and may be the equiralents of the Holoptychian beds of Clashbinvie. The author showed that between the Grampians and the trappean hills of Bunnichen and Bumbarrow the series forms a great syncline; and between these hills and the sea the older beds are twice again brought to the surface; and he believes that the marls and sandstones at Whiteness are not unconformable, as Sir C. Lyell has represented them in his published section.
t. The Secretary gave a brief account of the discovery of an exposure of sandstone strata with two bands of clay full of calcareous nodules containing plentiful remains of Coccosteus, Glyptolepis, and other fishes belonging to the Old Red Sandstone, in a burn about two and a half miles from the Manse at Edderton, Ross-shre, on the south side of Durnoch Firth. This information was contained in a letter from the Rev. J. M. Joass, of Edderton, communicated by Sir R. I. Murchison, Y.P.G.S.
5. "On the Outburst of a Volcano near Edd, on the African coast of the Red Sea." By Capt. R. N. Playfair, R.N. Communicated by Sir R. I. Murchison, V.P.G.S.

At Edd, lat. 13 deg. 57 min . north, long. 41 deg. 4 min . east, about half-way between Massonah and the Straits of Bab-el-Mandel, earthquake-shocks
occurred on the niehte of the ith of Mar, or the moming of the Sth, during about an hour. At sumrise fine dust ledi, at lirst white, alterwards red; the dye was pitch-dark: and the dust was uearly keseederp. On the !th the fall of dust abaled: and at night fire and smoke were seen issming fon dehel Dubled, a mountan about a day's journey inland, and sounds like the tiring of camon were heard. It Perim these somme were heard at ahout two A.3. on the hth, and at loug intervals up to the 10 th or 1 lth . The dust was.also met with at sea; and along the entire coast of Yemen the dust fell for several days. Several shocks were felt on the Sth at Mokha and Hotaida.
6. "Nutice on the oceurrenee of an earthquake on the 201h of March, 1561, in Mendoza, Argentine Confederation, South Ameriea." By C. Murray, lisq. Communicated by the President.

At about a quarter to nine roclock, the first shock, preceded by a thunderclap destroyed the eity of Mendoza, killing (it is said) 1 mo-thirds of its sixteen thousand inhabitants. Alengether there were cightr-five shoeks in ten days. The land-wave appears to have come from the south-east. Scy spal fowns sonth. east of Buenos Arres felt slight shocks. No earthouake took place at Chile; but travellers erosing the Upallata l'ass of the Cortillemas met with a shower of ashes: the pass was nostructed by broken rocks, and chasms opened on all sides. At Buenos Irres, three handred and twentr-three leagnes from Mrendoza, and elowhere, it was nlserved in watch-makers' shops that the pendulums moving worth and somh were aceelerated; those mosing east and west were not allieted.
i. "In the inerease of L and un the Coromanded Coast." By J. IV. Dekes,

In the datriets of the Kisina and Condarery, the land presents a parallel series of ridges and hollows near the roast, not in relation to the riwers but to the eost-bue. Thrav may now be formed hy sedimentary deposit- similar to what are now taking place on the Coromandel eoast. By the strong curents nltorately ruming north and sonth, aceording to the monsoms, limes of sedinernt parallel with the coast are formed: and hy the ocessional interference of wiod and tides dams are thrown across the hollows, and the latter som become filled up. 'These parallel hands of roast-land become, in time, upheaved and more or less affected by atmospheric agencies.

NOTES AND QUERIES.

 Mr. Koberts" moteresting paper in "'lie Gimsur,kt," on "The Geographical Diatribution of lecrasple" ise. I hese visited one of the quarries mentioned by him, namely, at ('radley. I can mot eromedede with Mr. Ronberts, when he says that "frem Cradley cmly fragmonts of scmes may be obtaimed," nul that "good sentes are of rare necorrenee." (On the eomerary it is my noinion, and
 fish-rparries, and whe arer minan ed me to this epert, that this quarry, if not the remat, is at heast oufe of the weat productive quarries of Hereforthaire. The number of P'teraspis there is sumething astomishing. Eicery block one turns eontains three or funt firie sperimens. Not only ean "good sentes" be obtained, but specimens with both the rostrmu and lateral cornen attached are
not uncommon. Mr. Roberts' remarks also led me to infer that the specimens he had obtained or had seen from Cradley were either P. Lloydii or P. Lewisii. Now I obtained some twenty specimens or more, and all these were P. rostiatus; in fact I dilnst meet with one specimen of P. Lewisii or P. Lloydii. I would further remark that with regard to Cradley, Cephalaspis is by no means so abundant as its cousin, Pteraspis, though I did obtain three or four tolerable heads. Let me also inform those who are about to visit this quarry (and I hope many are), that if they are not content with the proceeds of their own labour they may obtain specimens both of Cephalaspis and Pteraspis from one, Jacob Gill, a respectable Scotchman residing on the spot, and who has obtained many fine spceimens. I hope now that I have shown that Cradley is a little more worthy of a visit thau Mr. Roberts makes out. Its situation, too, is so convenient, that many ought to visit it from Malvern, the distance between the two places being barely seven miles.-I remain, yours, \&c., E. R. Lankester.

Geology of Huddersfield.--In reply to your question of a "Young Geologist" in the July number, I may mention that along the Yorkshire coast from Spurn Point to Hartlepool the strata belongs to the Secondary Division, except a small portion called the Bridlington crag, discovered by the late Mr. Wilkinson, of Bridlington Quar. The strata above alluded to are orerlaid by Drift ; the greater proportion of which consists of a purple clay, mixed with fragments of "almost every kind of rock," both water-worn and sharp and angular, and rarying from pebbles to boulders of large size and weight; along with these are sometimes found bones of Mastodon, Elephant, Irish Elk, \&c., and here and there implements of fint.

At Spurn the beach is low and shingly. Kilusea crag and a new cave are great attractions between Dimlington Hill and Holmpton, where is a freshwater deposit ; and the like occurs at Witheningsea, Sandley Mere and Grinston Garth. Near Hornsey there is a submerged forest. At Skipsey, Barmston, and Auburn, various boues, of extinct animals are met with, as also are freshwater shells in abundance. When the tourist arrives at Bridlington he can examine the chalk in the various quarries at that place, and freshwater shells are to be found in the cliff ou both sides of Bridlington Harbour.

The Bridlington crag is met with near the north side of the north pier ; but this deposit can seldom be worked, owing to its being covered by sand and gravel thrown up by the sea. Some good specimens of the fossils are in the museum of Arthur Strickland Esq., at Bridlington Quay. Two miles northeast of Bridlington Quay is Sowerby, where, in the chalk, a little below high-water-mark, the collcetor will be rewarded with a fine series of fossil sponges, \&c. This locality must be visited from Bridlington, that being the safest road to Sowerby Cliffs. The next point of attraction is the great cave at Flamborough, called "Robin Lythes Hole," and three hundred fect long by and ninety feet high; besides which, there are to be seen large pillars of chalk, which once formed the entrance to other caves of even larger dimensions. From Flambro' the geologist must retrace his steps to Marton station, and proceeding to Speeton (four miles), will there find the far-famed Speeton Clay, sometimes considered as equivalent to the Gault, very rich in most beautiful fossils. Skirting the "beck," will be found red clay and chalk overlying a bed of grecnish grey chalk; the red chalk rising from the sea shore at about three miles from Speeton, \&c. No more can here be stated about this singular stratum of Red Chalk, but much more may be seen and found by a careful examination than has hitherto been reported in the Rev. Mr. Wiltshire's account. Yet that gentleman's paper will be a guide. The Speeton Clay is succeeded by the first member of Middle Oolite, the Coral Rag, and Calcareous Grit, which rocks form that remarkable and dangerous ruck called Filey Brig. From this point northward the strata continue to rise above the lerel of the sea, and
are suceceded he thick beds of Osford elay, resting on hard, sandy, and fermginone beds called kelloway rock, forming the bold romantic cliffs on which stamds Searborometh eastle. In émelusion we state that the young gendenen from Haddersited may, when they arrive at Whithy, for one shulling and sixpemee, purchase a book ealled "The Fossils of we Yorkshire lis Therribed from Nature," which book contuins a short outline of the givoluey of the lorkshire enast, illustrated with seetions, and intended as a ghuk for stragers. There is also a map, Mre Simpsom, price sixpence, to mey he had at silestor Remets', Whithy, or 'in Lomton of Whitaker and Co., Are Maria Lame- 1 am , sir, yours, de., E. Thomal, Bridlingtom.
() hid Ren Curnstose, tune 5th.-Received a visit from Nessrs. Powrie and ['age, whom] acempanied to the P'ark-kill Cornstone, and red and grey samhtones. The comstone is overlaid by a coarse yellow-coloured sandstone, with interaediate stripes of red and blue marls, and strikingle, as remarked hy Mr. Puwrie, resembles the lura Du beds, in contirmation of my own views. 'The true Hotoplychion Red, like Clashbimme, indieates and aboumls in the seales of this typieal tish. The Partind drcipiens tilestone, the first discovered hatsitat of this fiossil, was mext examined; where amongst the debris 1 succereded in finding a beantiful specimen of I'terygatus amyliens, the first of the kind ever deteeted in this portion of the deposit. The Balruddery and Traling beds constitute the extersion of the formation on the opposite slopes of the Tay.

Iume Lith.-Visited Mr. Powrie's hospitable mansion, and was tmy deliehted with his rich collection of the grey sandseme fossils. All the guarrien aromm, in a eiremmerence of thirty m:les, were examined durime my slay, and maty interetine sperimens whatincel, epperially from Farnell, so rich in Jean-
 Mr. Ionrrie's collection, oftamed lately in the quarries of Thrim Hill, and one of them with its long tapering tail aind eandal fin intermetiate to, but strikiugly reombline the I'rerosps.s and Cephaterspis of the same rock:
dith fith. Had an interesting and suceressful day at Dron, in Strathearn, aud ahout nine miles to the weatward of Park-hill. 'I'he tilesone deponit here dipe meder, sud is also interposed ameng the traps of the Ochil range. Thin nuarly heds of a blush and whith colour, of very lomer texture, are mixed up with hard laminated beds of thestomes and there is one thick bed of halfindurated clay of twenty foet nearly in thichness. I hase not observed this mud acemmulition in any on her lacality of the grey samblone series, and which indicates perhaps perentiar latoral conditions in the estanary or sea in wheh it was tepesited. Shella in the erement abmelanee are embedted in the mud; mans of them are very minnte and mieroseopie, others are quite eognizable by the ise and some are fully a quarter of an inch in tengeth. 1 regarded them at tirst as ernstace, but amm mowsineed they are trae shells, probably of the zentis C'vpricarthe or some athed form. The importaner of this disenvery in eine sentrith Devomion 4 stom is ereat, an the lirst of the condehifera found anyehere in the old Ked morth of the Tweed, (on explere it fully will be an ohjon of momet. Mr. H II. Howel, of tom (imologieal staff of Sirverors,
 - 1 rom Dr. Anderanin A Awhurghi Aotnler Ficoligierer.

THE GEOLOGIST.

SEPTEMBER, 1861.

THE TORBANE HILL MINERAL.

By the Editor.
"Not many years ago," Mr. Salter tells us in his admirable "Lecture on Coal," printed in this volume, "the 'bigwigs' in England were assembled in conclave, and the élite of science was called before them" to determine what certain "lumps of a blackish brown substance" were. Was it carbon? Was it shale? Was it cannel? Was it coall Now it was on Friday, the 29th July, 1853, that these "bigwigs" were assembled at Edinburgh to give evidence or opinion in the great trial of Gillespie against Russell. The issues put to the jury were, "Whether the defenders are tenants of certain minerals in the lands of Torbane Hill belonging to the pursuers under a missive of agreement? and whether in the course of the period between the term of Candlemas 1850 and the month of May 1852 the defenders wrought and put out from the same lands of Torbane Hill a valuable mineral substance not let to them by the said missire, to the loss, injury, and damage of the pursuers?" and the damages were laid at ten thousand pounds.

This, in simple language, amounted to this: Gillespie had let to the Russells certain lands, with the right to dig coals; but the Russells, after they got their lease, extracted another substance pre-
ferable to coal, for the distillation of parallin. Mr. Gillespic considered naturally enough that having let the land with the right to dig for coals, the extracting of another mineral for the purpose of making a mineral oil was the taking away of a property belonging to him; while, on the other haml, the Russells, knowing the valne of the sulistance, and the large reveme it was producing, claimed a right to it as being a kind of coul. 'Thus ten thousand pounds and a great revenue rested on the answer to the simple question, What is Come? This was the question the "higwigs" were called upon to answer, and on the whole a pretty mess they made of the attempt. It may scem an easy question to answer, and it may seem an easy thing to call things by their right names. We know, however, it is a very easy thing to call things by wrong names, and so many things have been called coal wrongly, that it is not surprising that the " bigwigs" were at sixes and sewens in their replies, and that the jury founded their werdiet on a reason totally irrelevant to the case. As the "bigwigg" could not agree as to what coal was, the jurymen went on the broad principle that everything hack that would hurn was coal, and decided that as the Torbnene hill substance was black. and had been sold in the market as Canmel coal, that therefore it must be coal. They found for the defendants accordingly. But tho Russels and the Gillespies enuld not agree even after this lucid decision, the one calling it coal, the other persisting that it was not, and so, after several years, they concurred at last on one point-the only one, we believe, they ever have concurred in-that thenecforth it should be called "The Thmane-uma, Meximar."

Our friend Mr. Salter seems to call it conl still. We do not. And if any of our readers feeling an interest in the phestion will glance over Mr. Salter's able Lecture on Coal, they will learn, if they did not know it before. How coal was made. They will see that the whl forests grew rank and laxurime, that the swamps and great shallow eatuaries of the earboniferons lands were densely filled with gigantic marshy plant and trces, and that it whs from the fallen leaves commingled with broken and uprooted stems-in shore, firnm the necumblated decay of a liring wegetation that the conl-beds were formed. Those masses of vugretable matter which we eall coal have ntways under them a heil of under-clay -the ancient subsoil on which
they grew; always orer them an orer-clay or roof, or a stratum of sand or sandstone-some kind of stratum or other to shorr they have been corered in. If we bear in mind Mr. Salter's teachings of their origin, we see at once how necessarily these conditions must be associated with true coal-beds. Now the accompanying section will show that while every bed of coal has an under- and an orerstratum. the Torbane hill mineral has neither. No subsoil for the regetation that formed it to grow in; no roof of shale or sand to corer in any mass of decaring leares and tree-stems.

We well remember the question being discussed at the Geological Society, and the witty reply of poor Edward Forbes, then president, when asked What in his opinion was coal? "That is a question for my Lord Coke to answer," was far nearer the truth than most people at that moment supposed. In the ash-coke or cinder-of coal there are traces of regetable stracture-the proofs of its origin. In the residue of bituminous shales and petroleums after burning there is no regetable structure to be seen-a proof that the origin and constitution is not the same. In geology at least the proof of everything is in itself, and had coal and all other bituminous subtances a common origin, they would all give the same results. It is interesting, then, to consider whether there are not beds of other mineral bituminous substances than coal, the history of which may be not only entertaining but instructive. For the question naturally arises, If the Torbanehill mineral is not coal, what is it? Anthracite is fossil coke. It is not coal becanse it is often called Welsh "coal," any more than coke from the coke-oren is coal. It was coal once, but it has lost its gas, and is not coal now. The Torbane Hill mineral is not anthracite, neither is it culm nor lignite. It may be a shale (we do not even think it is in the proper sense of that word) bat shale, however bituminous it may be, is not coal. Shale is a bed of laminated clar, and a bed of clay is not a deposit of regetable matter. Kimmeridge shale, highly bituminous as it is, is not çoal. Neither can any shale, howerer impregnated with bitumen, be coal. Are the Caithness flags coal? "Of course not." And yet they are so highly impregnated with bitumen that they are used for distillation in the same way as the Torbane Hill mineral. Some geologists say the bitumen in the Caithness flags is derived from fossil fish! True it

is the substance of the Caithness fish in the Caithness flags, as black and shining it lies on the surface of the split stone, is bitumen. But may not these fossils be bituminons casts of the moulds left in the flagstones by the fossil fish after their decomposition? In limestones is not the substance of the fossil fish carbonate of lime; in sandstone is it not silex-flint. . And were flint and carbonate of lime the constituents of the bones of those fish when they lived and swam in the ancient seas?

Were the bones of the living fish of the Caithness-flag period formed of bitumen? If so, what a singular fact is revealed to us"that in the ancient geological periods the fish formed their osseous skeletons, and the scales of their bodies sometimes of bitumen, sometimes of carbonate of lime, sometimes of flint, and perhaps occasionally of other mineral substances, as they appear to have used amy material which came to hand with utter indifference, while modern fish, on the contrary, have become excessively fastidious, and make their bones only of phosphate of lime."

The Torbane Hill mineral is certainly not Caithness flagstone, and if it be a shale it is certainly not coal. Neither is it "Cannel-coal ;" and, if it were, we might question that term. 1s Canmel "coal" coal?
"Cannel-coal" means candle-coal, and was so called because the miners cut the substance into strips, and used them as candles in their works. It is, however, very different in structure, appearance and fracture from common coal, and from which it is also distinguished by the products of its distillation.

There are large cannel oil-works at Kannaha, in Virginia. There are cannel oil-works in England, in France and many other places. But this use which "cannel" coal is put to is rery different from any of the general uses of coal. It is more in accordance with the use of bituminous shales, petroleums, Rangoon tar, and other substances which nobody dreams of calling coal.

But to return to the Torbane Hill mineral. It does not look like coal; does not burn like coal; is not bedded in the earth like coal; never was made like coal. And, assuredly, it is not coal.

If we wanted further aid than Geology to show the distinction between them we could call in the chemist, who would tell us that
coal naptlia consists of hydro-carbons, of the benzol class and the paratlin class: the greatest proportion being of the former, which las been extensively used for amiline and other dyes. He would tell us, tou, that for a long time the paraffin series was ton difficult to extract in any quantity, and was, therefore, suflered to remain in the pitch and tar; that subsequently, however, an Edinhurgh chemist stated that he had found a means of obtaining large quantities by the distillation of coal at low temperatures, but that when his method was tried commercially in Scotland it was foumd that the only mineral which could be used profitably ly his process was the Torbane Hill mineral! Hence there was au additional reason for the Russells attempting at the great trial to prove that substance to be conl, beeause it was the only substance commereially usable in the patented proeess, for which ordinary coml was wholly unfit. If we inquire further as to the products resalting from distillation, we find that coal gives ofl at low temperatures chicfly benzol oils, with a small proportion of paraftin, whint from the Torbane Hill mineral there are three series of hydrocarbons, the benzol, the paraflin, and aleohol, of which the proportions are large of paraftin and alcohol, but small of benzol. Indeed the two latter are the chief constituents in the products of all the similar mincrals to the Torbane Hill such as the Rangoon tar, the Trinidad Lake pitch, the Pensylvanian well-oils, and native petroleun and bitumen, while, as we have said, benzol products are characteristic of coal.

As the Torbane Hill mincmal is not coal ; as it is probably not hituminous shale even, it must have a history of its own, and would it uot be an interesting inguiry for geologists to make it ont to tre a depmet of the hardened bitmoner of a great pitch-lake like the great pitch lake of Trinidad?

Geologits hate never compared the phenomena of such districts as that of Trinidad, the Rangom tars, or the oil-well region of Pensylvania, in their bearings on the erigin of rarions hituminous shales, flagatones, aqphaltes nud other bituminons substanees certainly mol contos, and, whenever the impuiry is gone into, many extraordinary revelations will be made in gecological physical geography, and of the operations of nature in her secret and deep-seated laboratory.

CORRESPONDENCE.

FISH REMAINS.

Sir,-In the last number of the "Geologist," some observations were added to your interesting pages by Mr. E. R. Lankester, on the Pteraspis remains at Cradley; ho would lead geologists to believe that perfect plates of this fish are found there as plentifully as blackberries in the hedgerows. To use the words of your correspondent, "three or four fine specimens in every block that one turns." This is a little too strong; and differ's totally from our experience of the spot. The proper clue to the discrepancy would consist perhaps in an appeal to the "respectable Scotchman" who presides over this pisciferous domain, who would probably enlighten us in this instance; and certainly provide us with as rich a haul as Mr. Lankester had, and at the same rate, viz., in exchange for that current coin of the realm that Scotchmen are not a whit behind the rest of Her Majesty's lieges in loving. We should be much indebted to Mr. Lankester if he would inform us on what authority he calls these Cradley fish, P. rostratus, as we poor ignorami always thought them to be P. Lewisii and P. Lloydii. It is well that this note should appear, if it only save anv young enthusiast from instantly betaking himself to Cradley, fresh from your last number, and provided with too large a bag for the occasion. I believe, and the Quarry to us is familiar ground, that he would have his expectations clipped, and his temper tried. Still, do not, young geologist, turn aside from Cradley, but repair thither, with thy dinner in thy satchel, and thy hammer in thy pouch, prepared for a long day; and though thou verifiest not Mr. Lankester's account, forsooth, thou wilt not be disappointed.

Madieus.

ANNUAL MEETING OF GEOLOGISTS.

Darar Sir, - I am delighted to see the suggestions you have thrown out in last month's Geologist, and in order that something tangible may come of it, I would propose that a British Geological Association Meetiug be held next year at the ancient city of Hereford; on the same plan as the British Archæological Association Meetings. From the number of railways, and readiness of access, Hereford is advisable for the London geologists, as also for the members of the Liverpool, Manchester and Oswestry Clubs who could reach it in four hours time, while the Cotswold, Malvern, and Warwickshire Clubs are close by. If the members of these associations alone would join, a very respectable meeting would be the consequence: and I need not say that the Woolhope members, who have their headquarters at Hereford, would leave no stone unturned to welcome their brethren of the hammer. Excursion-trains might be run each day to places of well-known geological interest : to Church Stretton and the Longmynd Hills ; to Pontypool and the Sonth Wales Basin; to Newnham and the Triassic cliffs of the Severn; to the Malverns; to the Woolhope Valley of elevation; to the Usk Silurians; to the Ludlow district and the Clee Hills. I will venture to say that no place in the kingdom could offer a more varied or interesting neighbourhood in which such an association might inagurate its annual gatherings. Last, but not least, Hereford offers plenty of accommodation for any number of geologists that might attend.

I am, dear Sir, yours faithfully,
Beaufort, August 19. G. P. Bevan.

TIIE BIBLICAL DATE OF MAN゙S CRFATION.

Sun,- I eorrespontent's cnquiry in your July mumber, as to the anthority for the date of man's creation on the earth being placed at about $4,(1 \mathrm{ht})$ years before the Christian era, deserves, 1 humbly think, an answer mother clearer and more (0) the point than is contained in Mr. L. Horner's somewhat lengtly disenrso on this subject. That gentleman does not seem to be aware that there hare bein later commentators and eritics on the chronology of the bible than Arehhishop Usher: such as Fifyes-Clinton, lhown, and others, whose industry as well as acmmen ou such sulyeets it is simply ridienlous to ignore. As theso authors plainly show, any one may, without much trouble, verify for himself tho period of 1,0 (h) years, or therentonts, from the dates and notiees often supplied in the Bible itsclf. I give Ffynes Clinton's conclusions; but there are more nodern works on the sulyject:-

Therefore, adding these together, wo have, h.e. i,otil years. for the approximate date of the creation of man on the earth; I say approximate, becanse there are two slight gaps in the chronolngy, (marked A. and ub above), which ranmat be tilled \quad ul, with absolnte acemacy; but from intermal evideneo these could not have been much more than fo years in duration ; they mayhave been eren less; I have here allowed that period for them. I may add that the first two periods in the above list are nhtained by adding toget her the nges of the patriarcha before and after the flood, whon the eddest som of each was horn. The other dates are sumplied, more or less, directly from the libleitself.

It is also to lue obsorved that some of the wher ancient manaseripts of tho Seriptures give momewhat different periods from these: such e.g., as the Septuagint version, which adds (ift) yars more before the flond, and (ith) more after it; making therefore altogether hetwon $5,2(4)$ and $\overline{5}, 3$ He yours from the creation of man and the hirth of Christ: and rather over f, (the yenrs to the present time; and other manuscripts give, 1 lediewe, exen a mone extented turm that this ; but the dfferen between them all is mot very great, as compared, at last, with Geolngienl compatations nuld estimatos of time: and the question would turn on the romparative nuthority of the several mamseripts.

I do unt ste, therrifor, that iny me has a right to treat the receivenl perion of 4, (xh) yoars, or there thents, na a mere figment or imagining of Usher, or any rome else. As far ns the nuthurity efthe kithe grows, (which is, nt any rate, the most. ancient wrillen history in the world), $1,(100)$ or is, (GK) year (or ous the largest (omputation not much more), seems clearly tixerl us the perioul which elapsed Intween man's first alpwarance on the carth, and the beginning of tho Christan ега.

I mn, Sir, yours obediently,
AN Ot. SinsthuF. S.

PROCEEDINGS OF GEOLOGICAL SOCIETIES.

Geological Society of London.

In the report of the proceedings of the Geological Society of London, given in our last number (p. 365), we inserted the abstract of Mr. Powrie's paper on the Old Red Sandstone of Forfarshire, in which it was stated that the author " believed that the marls and sandstones at Whiteness (near Arbroath) are not unconformable, as Sir Charles Lyell has represented them in his published section."

We are requested by Mr. Powrie to state, that haring revisited Arbroath since his paper was read to the Geological Society, he has ascertained that Sir Charles Lyell's section was correct, and that the newer strata alluded to are uncomformable.-Ed. Geol.

Half a Day mith the Cotswold Club.

Field natural history excursions diffuse a knowledge of nature's fair creation; they are not rain pursuits; the sedentary professional man, who is fond of natural science, can therein comnteract that strain, stress and tension of the brain, which the wear and tear of life imposes. Besides, are they not agreeable rehicles of a mode of instruction not to be despised in these bookish days; of a kind of teaching, the value of which we can scarcely orerrate, namely, of that peripatetic species that the "stout stagyrite delighted in." Perhaps we are uot rash in suggesting that eren Aristotle may have been the first founder of field-clubs!-He certainly, it appears, lectured while walking; the members of his club were dubbed "the walking philosophers," or peripatetics, and as to their president's knowledge of natural history, why "rela ra sans dire:" since Cuvier, Forbes, Huxley and many another saran vouch for his careful study and sagacious insight; and have we not his "History of Animals" and other treatises akin to testify this. Whether further resemblance to our Field-clubs can be traced or not, it is not too much for us to indicate that perhaps they had their annual subscriptions, their dinners " la carte," and their ladies' days. The latter is at least problematical. The Athenians possessed their accomplished hetærias, and surely it is not too mild to conjecture that ladies may have been admitted to the lecturing saunters of that age !-Be that as it may, field-clubs are an ancient institution, and, with this powerful sanction for them as such, it was not without a heightened pitch of expectation that we determined to get off for a day's ramble with one of the West of England Societies. We were told by a member that they usually reckoned on doing from twelve to fifteen miles at a turn; this much is not an inordinate dose, thonght we, and will well oxygenate the blood. So we prepared to start ". over the hills and far away," and join the Cotteswold Society. This society does not rank among the ephemerals; it is of some standing ; its transactions are quoted; and it has inscribed on its list some choice names, such as Daubeny, Buckman, Strickland, Voelker, Wright, Brodie, and Symonds. Eren compared with the Tyne Club, if not superior, it may certainly be bracketed with it. And then, what a noble field for these explorers, learing out for the nonce the ecclesological, archælogical, botanical and entomological richness of the shire and only regarding the cathedral city of Gloucester. North,
south，eart and west of it lies work for the hammer．ILay Hill silurimes，Forest of Dean coal tiehl，hias sections at Wainlode and Wresthury of unsurpassable interest，mud that surerb range of oolite that so aplly and cuphonionsly desig． nates the club in question，the＂Cotteswold．＂Sillirian，Oolitic anal liassic delposits，not nere patches，all stiund within reach：and，as an im itation from Mr．A．Holland，M．P．for Eversham，had been aceepted for the elui）to dine at his mansion，Dumbleton Homse，it was considered that the Middle Lias would form a＂piece de resistance，＂with the＂entiees＂of Upper Liats．Nor was this the whole of the bill of fare．It would he tedious and egrotistieal on our part to intrude mere personal incidents；sufficient is it to recomnt that，at starting． carly in the morning，one of fair promise，and all things looking＂coulent de rose，＂we reached the station in grod time，but not the train．For while in－ quiring for the right carriage，on one plat form，like l＇rofessor Owen inguiring for the right whate，we learned th our montitication that our train had just glided of from the other platform，there being two stations at（iloneseter． Chewing the end of disappointment for three long hours was penance enough， and a degrec worse than a Mediterrancan lazarette．It came to an end at last． 1）．jection ceased－a start abmon noon enlivened our torpility，and we hergan to look about us．Soon sped we，from Gloucester＇s fair tower＂ye pride of （ilostyre and ye Westyrue lande，＂and rattled along the iron road．＂The Mid－ land rail formi（iloucester passing Ashehured a fer miles beyond Chedtenham， traverses the Vale of（ilnuester，with its thene brealth of eorn－land，its varied sechery，and eomforiable well－to－do looking farm homesteads．We some left behind is Rubin＇s Woreal Hill，then neared＇＂hosen Hill（so eallest in the ver－ nacular）a similar eminence but with a quaint little turretted elhureh on the the， perehed amid trees，making one wonder how the parsongets up there，for we could almost prestume nobody else ever gors．luokking ont of the earriage window one contd mow readily fall in with the idea of Murchisom as hering no fancy，that the Sciern was onice a strait of the cea，that Breda，Dumbledem and Churchutown were islands，Leckhampton a lufty eliff，and the Cheltenham gravel beds amerent shingle beaches．After a ceall at Chettomham we got io Ashehurch，and left the rail．Immediately outside the station，spoilt in effect hy its nearness，is a pretty iry clad church．Our destimation now wa．Dumblet on Hill，one of the nortliern ontliers of the Cotteswold region in the Vale of Fewhan．Through losing the morning train we hat seren miles of groment to get ower before we could join the party．Setting off on font，with a guol will， albeit sonewhat dannped in ardour by the thought that this now would only be half a day with the Cotteswoldians，we took the turnpike－roand aloug the valley．A gromp of mills catended to the right，more of leas elothed，some with belts of larch，some with yonue ashe coppiere；while，lonming to the Ieft，las Predon Hill，dividiuy the valew of filouerster and Livecham，nud the largest isolated hill in the district ；its oulline sharp agaimst the sky，forming
 embosomed in orchards． 1 well made road of lias martstone faced with Bristot stone（i．r．carhomiferms linestone）＂gave us gould walking，while eottageq of the true English charaneter were dispersed along the roadside with rhump of the homely hallotherk in dark puce or Icmon coloured blomens， sercenne，perlaps，a vicw of straw－eapped bechiersand with mostly a vigorons well tramed plum or apricot ngions the somit，and of the house，betokening， ne we thought，a kind and considerate landlord．We trust we are not wromp． Truvelingonward，ect：idin stoncheleps arranged by the roadside，were examinel； the materials prombuneed to be of Trift，and l＇lesuneene age，large pelbles they were，aval，smoneth and hard，breaking with achistoms fracture，nud show－ ing true erystalline structure．They seremed in be celleeted for road repair－ ing，but whence they were brought we did not aseertain，Piles of marlstone
from the neighbouring quarries on the hill now appeared alongside the road; these were quite a treat to look into, but sadly tantalizing withal. We anxiously peered at the semi-cnshrined fossils, and reluctantly left them, our small trimming hammers were unequal to the fras, which required a tool with at least a three or four pound head, to shiver such refractory stuff as tough marlstone rock. A pleasant sight was it to see busy teams and men in every field "carrying the wheat," some of these swarthy sons of the soil we descried under a hedge reposing; they were discussing, in an interval of labour, their cider and bread and cheese. Accosting them, we inquired the way to Beckford Inn. "Three mile," said one, a stalwart reaper ; " will'ee lend us your hammer ?""What to do," rejoined we, " to cut our bahyt (i.e. bait or food) wi"," said the fellor, good humourcdly. It could not be spared, so we pushed on, not omitting to entertain the inference that the dairy produce must be rery hard in those parts, and reached Beckford Inn. This well known hotel stands near the cross roads. Here, we thought, some track of the Cotteswoldlians must be detected. A young crinolined and ringletted danghter of Boniface appeared, and soon alleriated hopes and fears with news, "that the gents were gone up to Alderton stone quarry." Resuming our way-we had not gone far, ere we learnt from a cow-boy that the people were " np in the brickyard;" and fthere ther were sure enough, near upon thirty of them, scrutinizing mother earth, and intent upon their work. A very large "brick pit" it was, extending into the rery base of Dumbleton Hill. This, as I said before, is one of the outliers, moored as it were off the northern chain of the Cotteswold. The others are Bredon, Stanley, Oxeuton, Churchdown and Robin's Wood Hill, all truly isolated; a few others partake of the peninsular character. Their formation is identical; and what we shall say of Dumbleton will apply to the rest.

At the "Brickfield" they were excarating a fine stiff clay, making part of the Upper Lias, called "the A. raricostatus Zone," after the ammonite of that name, which perrades it. Some good Lias fossils were here turned ap, among which we noticed ammonites, crenatulæ, cuculleæ and gryphites; it also yielded to the explorers' harresacs some admixture of fossils of " marlstone type, indicating, as some thonght, the presence of true "passage-beds" between the Lower and Middle Lias, To this fast growing use of the expression "passagebeds" we renture to take exception, unless it be used with proper restriction. Every formation, every bed almost, is, in a certain sense, a "passage-bed." "Natura non facit saltum," Ascending the spur of the hill we quit the Lower Lias beds that form the lower floor of the vale and basement of the hill, thence passing over the marlstones of the middle Lias, near the top of which the marlstone rock is exposed by frequent quacrying for road-metal, we come to the Tpper Lias entablature of the Lill. This consists of blue and yellowish shales, through which, with irregular course, runs the "Fish-bed," a band of "cementstoncs," not worked in these parts, but of considerable economic value. They are worked in Yorkshire, at Boulogne, and particularly at De Vagoy, in France. Also in Canada and in the States of America. Roman cement is fabricated from them: they are first burnt, then ground to powder, and packed closely in air-tight barrels on account of their strong affinity for the moisture of the atmosphere. Tertiary concretions, it is well known, are also used for the same purpose.

Some of the party were now at the marlstone, of which I will say a word, The under zones of Middle Lias, from being destitute of ralue, are nerer excarated, and are, therefore, only to be got at in a chance drain, or deep ditch or lane cutting. Concealment is the rule till we come to the marlstone. This material is of undoubted toughress; the quarrymen call one bed of it the "Leather Bed;" still, unlike leather, it gives out a clear ringing sound from the impact of the hammer. Here the company, encouraged by the sight
of amm mite，belemites，myacites，and lima，wetrex，monolidar，modiola aud brachi pula，wiled away at the roek；and the eliek，elick of the hammer resonnded through the eoppies．

Memwhite，many of the wher hands，shuting their eyes to the blandish－ ments of the marlstone，push upward ant at tack the＂F゙ish Bed＂of the L＂pper Lias，which they well know contains the choicest specimens of fish，crustacean， and insect，nat，even of reptilian remains，for this is the＂sauriau Zone．＂

Ifptolipis innerntricus was now fombl by Mr．Norman；a fine Pachycormus by Mr．Hollamd，and a series of sertebra of a species of Ichyousturus by Mr． Moore．As a＂Saurian Zone，＂it is well hnown all throngh Europe，since nothing can be more constant and persistent than the course of the Epper Lias formation．Inlecd，nowhere can Geology point to a truer or more extended horizon．Under the shates we detect the Leptema Bed，a band of but few inches in thickness yet cmbacing monerons tiny slells，mostly brachopods， but some Nisuls，de．Under and orer the Fish Bed are shates remarkable for their perfece lamination；splitting them tpen with a rlasp knife we have under our eye，a table of contents，curious to note，and deeply instructive． Ripple－marked furrows，sea－weed，ever and suon disposed in places only whither the eddying of the current had drifted it，just as we may see any day on the strands of our own seagiet iste．To feed on these alga pastures are the ernstaceans）prawn－like in form amd size，in no contemptible muber ；and， as a final exemplitication of the cyelical law of life，here lurk the rapacious fish and predarenus epphalopod，the armed enttle and belemmite，with other such flesh－eaters，allured by the tempting bat．I fish that marvellously re－ scmbles many liquie forms is the eapelim（Vallotns rillowos）of our bresh fast tables，alike palatable to ms as to the stmenter Espumamx or Greenlander．＊
s）fossiliferms and prolifie are these shates and modnles，that one rould never tire of worhine at then，and when the company retied to Dumbleton Homse there was still a treat in store：ther were delighted with the umrivalled collection made by Miss Holland from the quaries adjacem，－a series of liassie forms of rare perfeetion and whene，arranged，ton，with that peenliar neatness and aceuracy that ladies alone pessess．This exquisite snite of fish－ bed fussils was the theme of admiration．It comprioed good reptilian remains， fish，cmistacea and insects，the later of transeendent delieacy．

We were much struck with a collection made by Mr．Holland at Mome 1，chame，in Siria．Many of the fossils were of the Jurassic caste，and ahost looked like intimate acquantaneses．

The naturulists now ascombled in the library ineluded some distinguislied men，besides the preaident of the＂Cottewold，＂Captain Ginise，were Mr．S．P． Wouduard，of the British Musemm，the Res．W．S．Somends，Iresident of the M Wen（luh．（＂harles Muore，of Bath，who so snrperised the＂salsimts＂of the Britush Assuciation sone time simer by his foret ellnge what orgmism rach fish－ thed nodule emtained，ere，with a blow from his hammer，he laid open before his astonished anditory the fosel he bad firedieted as its muelens． 1）rs Wrght，limach，lied and Warmer，the Rers．Aorwoed，Atwood，Hep－ worth，Dajor Marn ind，Mears，Dent，of Sudeles，Bowley，Copeland mad Walker．

Mr．Holleme haed provilul a shmptume repmat for his hrother naturalists，of Wheh about iwnetyight gentlemen partook．The after dimer the reathge of papers took phece after the msual pretiminary tomsts．One of cemsiderable intereat was by the Ris．W．A．smomes，F．（i．is，on the I）rifis of the Severn， Ason，IIse and I ak，genth well into the physieal geology of the district，and

[^56]recognizing with Prestwich, and working out the distinction between the high level and low lerel drifts of the Pleistocene cra, with pertinent observations on lacustrine and river action. Mr. Symonds strongly appealed to his fellow members to aid him with their individual observations, by noting particularly the organic contents of the drifts; a clue might thereby be obtained that would elucidate many of the pleistocene phenomena.

Thereon cnsued a discussion, sustained in a lively and crudite manner, by Messrs. Noore and Woodward, the latter contributing a just and discriminating account of the palæontological differences between high level and low level " mammalia," with geological remarks on the habits of the tropical Bison and the larger Pachisderms, such as Elephas antiquus and E. primigenius, glancinto at their aptitude for enduring the rigor of the glacial epoch.

Another paper was commmnicated by Mr. Frederick Smithe on the Upper Lias of Churchdown Hill, a similar formation to Dumbleton, the writer, after giving a brief resumé of the divisions and sub-divisions of the Lias and the synonyms of the subordinate zones as used by the chief European authors, restricted his attention to the "Ammonites communis Zone" of the Upper Lias, which reposes on the marlstone, and treated this zone in its development at Churchdown-first lithologicallr, theu palæontologically.

As to the included beds, the A communis Zone comprises (1), on top the Laminated Shales; (2), the Fish Beds within them; (3), the Leptæna Bed lying beneath the "Alga-bed;" (t), the Marlstone upper beds, embracing a course of siliceous nodules. The author had exhumed remains of Teleosaurus, and Pterodactytus, Coleia, a not uncommon Lias crustacean, Puchycormus, Tetragonalepis concentricus, Lepidolepis oralis and dapedius; also, Belemnosepia, Anmonites, and such molluscan forms as Ostraea, Nucula, Arca, Modiola, Monotis and Posidonomya.

Rostellaria being nearly the only gasteropod in the catalogue. In short, for a locality considered so poor in comparison with the Somersetshire deposits, not a bad harrest.

The president, at the close of a most enjoyable day, admitted to be one of the most delightful meets of the season, invited the members to attend, on the 17th of September, at Worcester, when Sir Charles Hastings, the Bishop of the diocese, and M. Chaillu, the African traveller, are expected.

N゙OTES AND QUERIES.

Stone Teapon in a Fossil Deer's Skull-Sir,-In the notice you took of my pamphlet in the "Geologist" of June last, entitled "Remarks on the Flint Instruments found at Amiens and Abberille in connection with the Glacial Theory," you consider that it rould be highly desirable for me to elucidate one remarkable statement made by a more particular statement of the facts. The statement you allude to I consider to be that in italics: "I can prove that the Irish Elk was contemporaneous with man, having seen a stone hammer sticking in the skull of one, and also the heads of others which had been perforated by the same kind of weapon."

I can nort give you full satisfaction on that subject, having now in my possession the identical stone hammer, or rather stone axe, or celt, which was
found in the frontal bone of that Megaeeros Mibernicus; the head itself, I am

Fif. 1. -Sione hatchet found in akull of Irish Filk. Scale, half minturul size.

Fig. 2.-Section of celt, showing the way it slopes at the large end.
sorry to say, was sold separately to the late Dr. Ball, of 'Trinity College, Dublin.

I beg to send you a sketch of the stome axe, or celt, and a copy of the certificate from Mr. Glemen, the person who found it, who also mentioned to me that the late Colonel Rruin of Oak Park, county Carlow, hut found upon his property the liead of a Megaecros having the frontal bome perforated hy a stome celt which weighed seven and a-half pounts, and was found sticking in the skull.

Cory of Mr. Cilemyoy's Certificatr.

 fine d, is hero it in unc imh and three-cquartera, when it aloglew to is puint.

Ar. (ilemon lises at Ň. 3, Suffolk-utrect, Dublin, and is a deater in minerals, \&e. I beloeve be has now iwn fine heads of the Megraerros Dlibernicus whach he would be elaul to sell to tuly of vimer readers who might have a desire on purchase lhem. - I remain, Sir, sour ohedient servant, R. Warcorop.

A Mosen Moss at Fabink. Very recently a moss hill, situated about two mbles frone the slomanan liailway station, and measuring in extent ahout 30 acrea, was hifeed her a flend, which rarrivel it to the distance of 500 yards. Heapes of the depesal lie about in every direetion, which for the time being has thocked up the romed. Thee hall was nevernomed and broken up by the water, which had bemaccumblated to an extracordmary degree, by the lieary rains of the previous four or five days. The st ramgeness of the oceurrence has attracted erowils to witness the efficis of so gigantic a removal.

Geology of Stoneharen.-Sir,-Observing an enquiry as to the uature of the geology of the neighbourhood of Stouehaven in the "Notes and Queries" of your number for July, by some one subscribing himself S.M., I send rou the annexed section extending across the Old Red formation of the county of Kincardine from the schists of the Cairn O'Mount, in the Grampian range, to the sea at Millton of Mathers, with a brief description of these formations as there found, hoping it may be useful to S.M. in aiding his researches there, as although the rocks at Stonehaven are identical both in character and order of sequence with those of the section, vet sereral unexplained irregularities exist, rendering this a rery interesting field for research.

It will be discerned from the section that the sandstones of Kincardineshire are twice brought up for the inspection of the geologist. Unconformably overlying the schists aud clay slates of the Grampians from which they are cut off by considerable trappean outbursts, they first dip at a rery high angle towards the south-east. Descending from the Grampians we rise in the series of rocks until we reach a synclinal line, crossing which we again pass orer the same formations, until; on reaching the sea at Millton of Mathers, the very lowermost beds of the series are again exposed. At that part of the section where the syncline exists the rocks are quite hidden by the orerlying Boulder clay-its exact positiou, I am, consequently, unable to point out; but from my knowledge of its direction in the neighbouring county of Forfar, where the same series of rocks are formed, I should expect it to pass along a little south of Fettercairn, Phaesdo House, \&c.

In describing these formations we will commence with the lowermost beds as found at either end of the section, ending with the uppermost at the syuclinal line. Thus first we have at the upper part of any line of section, a series of dull deep red grits, a, more or less indurated, represented at Millton of Mathers by soft sandstones and marls. Very low in these gritty beds is found a bed of concretionary limestone, y, which has formerly been wrought to some extent both at Clattering Brigg aud Millton of Mathers. I am not aware that any fossil has yet been found in these grits or limestones, near to the Clattering Brigg; but in a quarry from which rather indurated red flagstones hare been taken, the surfaces of these flagstones are occasioually found covered with the impressions of rain drops, the trails seemingly of crustacea and annelids, and often finely ripple-marked. Similar flags and occupying the same low place in these rocks, many beautifully covered with similar mark-
incs, were some tume ago saved from destruction by the pare of the Rew. Thugh Miechell, from a road then in the conrse of being made in the village of Ferredren in Forfarshire. These grits, of their representatives, pass mpards inte in emermonsly developed englomerate, r, immediately east of the line of section. The Tenalia range of hills is almost entirely composed of this; and to the somth it is again upheaved in very great mass in the Garvoek range, where, however, it is considerably broken mp hy iguems irruptions. The grey, bageg beds, with their shales and thin-bedded ilagstomes, \langle, from which the irhroaih parement has been so largly obadard, are interealated in the lower portions of this conglomerate: and although not so largely developed in the conglomerates of Kineardinesliire as in that of the eomnty of Forfar, yet these lagey heds are not umepresemed there: the fossiliferous depnsits of Cauterland Den, wheh the Rev. Hugh Mitchell's explorations have made so well known, lwhong to these beds they are also found in the rueks in the bay of stonehaven, where I have dug out pieces of shalle similar to that of Camerland Den, with Porkine deripiens, de., here, however, hley are ouly to he rearhed at low water. These heds are particularly interestiug as the only part of cither the Kineardineshire or Forfarshire rocks that have proved undoubtedly, in some instances, richly fumsiliferons- to them belong the Farnell :brales, with their beautifully preserved small gamoid and other lishose, crustacea, Se. The Tealing and Sidhaw blales, Which Mr. IV. Me Xienll's acute reserarelies have proved to be almost erpally rieds in ichthyie remains, the Lersmill llagstones, with their mequalled sperimens of Cephatappis, he Carmellie Quarrics from which the fiuset of all the specimens of I'eryyumes. Implieves has bern obtained, all form part of these intereatated
 into, reddish, generally highly mieaceons sandotomes, d, frem which oceaviomal specimens of Cephalaiopia may be obsaned; ;and these ngain by dull columed deep red samblomes and shailes, e, whese disintegration has agrain given the peestiarly red colone to the stil of that part of hincardineshire kucnu as the "How of the Mearns." These formathons are by no means of an unifurm dephth, lmt may in all reach a thickness of wot less than three thomsand fect.

In concluding this short sketch of the Oled Red Samblomes of Kineardineshire, 1 would point out a few of the leealities where, these may he munt profitahly extmuned. First in impertance is the seetime hy the cuast ; the well-detined strata in Stmelaven bay, in almost every imstaner dipping at nearly right angeses from the enast, emitain a record not eyen casily real. To the somfthe true presition of the eonglomerate, as expered in the clifts along by that fine old ruin, Dumoton Canle, is perthape mere diflicult to asecrtaincuery ravine and rivuled along the const would therefure require careffulls to be followed up, and whereser the rock way he expused, its charactere, pusition, and dip, if this can be charened, carrfilly takien down. The bed of the Carron congla fully to be ceplored, mad mone of fit anall tributarios left nuvisited, the ralway-chtlinge afined werral line sertions: Golloning the coast-line to the sonth-wost, the beed of ther strean falling into the sea, near hy katteline Harbour, may contain much valuable information : and lasks, the Bervie water, althongh affirding un comtmones section, shows the whole series in detached pertions. All quarrice should he risited, the sandbemes and shales fully exa mined, and, ahove all, the work won enemraged to preserve any enrious lowking markiugs that may ber fomme.
To the mere foussil-enllector the Fonfarshire and Kineardineshire rocks offer an uniusiting field, and many an honr's hard work will offen yicld barely a recogmizalle organisn) ; but in the true genlogist, an athondant return of pronfitalide infermation any be fund in studying the mature, secpucmere, an 1 relation of theser roeks as they are whblited in the brold wiffe and pieturesgue ravines along the const, - Yours, \&e., J. Yowrif.

New Fossil Locality of Mollusca in the Scottisii Old Red.-The new deposit of fossil organic remains in the Old Red Sandslone at Dron, as noticed by me in the last "Geologist," becomes, upon further examination, of the greatest interest as well as theoretic importance in a scientific point of view. I shall, therefore, in a few details give the substance of the discovery, showing the general bearings, relations, and character of the rocks in the district, and furmishing materials, whether of controversy or agreement, for future investigation among geologists.

The district in question occupies a central position in Strathearn, skirting the Ochils on the south, and trending northerly towards the hill of Moncreiffe, which forms an outlier of the Sidlaws. The intermediate space of nearly three miles in breadth, is filled with deep alluvial clays, peat, and gravels, and forms an extension of the Carse of Gowrie deposits intersected by the river Tay. An elevated ridge occurs at Dron, near the church, which rises steeply towards the west; it is about a mile in length, terminating in the red sandstone quarries of Pitkeathly, and separated by a deep hollow from the Ochil range of trapporphyry. The outcrop of the new fossil beds is on the slope to the south of this hollow, forming an insulated little basin of blue marly clays, interlaminated with hard micaceous flagstones, and showing all round indications of great denudation.

Extending the view eastward, the basin-estuary of the Tay opens up widely, enclosing the various members of the Old Red Sandstone series-the conglomerate of Glenferg, the yellow-spotted beds of Abernethy, the comstone of Clunie and Newbigh, the tilestones of Parkhill, and all of which have their correspondents at Clashbennie, Meurie, Inchture, Balruddery, Tealing, Carmylie, and Forfar. The intermediate space westerly, from the Ochils to the Grampians, averaging fifteen to twenty miles in breadth, is occupied with the lower Devonian series, embracing all the rich fossiliferous rocks of Forfarshire, the deep-red beds towards Birnam, Crief, Donne, and Dumblane; and which, in some of the members near Gleneagles and Dalmyatt, contain specimens of Parka decipiens, Pteraspis, and Cephalaspis. The outgoing of the whole, east and west, from the terminating shores of Arbroath and Montrose, being the environs of Lochlomond and Dumbarton.

The relation of every one of the above series of rocks, forming one geological group, may be traced in the vicinity of Dron in juxta position each to each in an easy forenoon walk. The depth of the deposit, as exposed at the mill-dam, varies from twenty to thirty feet. The newly-discovered fossil-bed -so attractive yet to be to science-forms the centre-point which underlies the whole. It stretches along the narrow ravine to the foot of the Ochils, where it becomes enclosed among the trap-porphyries, and where a fine waterfall (the Ramheugh) plunges over its indurated edges. The "cornstone" of the series is not now observable, being covered up by the improvements of modern husbandry; but it has been long known as existing, in situ, in the neighbouring fields. A few hundred yards distant the quarries of Pitkeathly -the Holoptychian red-shows the position of these beds. And, last of all, an insulated section of what I regard as the Dura Den yellow sandstone, and ferruginous marls, crowns all the underlying strata; it is exposed to the depth of thirty to forty feet in the woods of Wester-Dron farm, and the nearest continuation of which is ten miles off, at Glenvale, on the Lomonds. When fossils were not sought after, or formed no attraction to the curious, these upper rocks have been extensively worked, and all their ganoid treasures, if ever exhumed, lost to science.

The organic remains just discovered in the lower grey sandstone of the series consist of shells and microscopic crustacea, and are, so far as I am arrare, the first speeimens of conchifera yet detected in any of our Scottish Devonian
rocks. The discovery is all the more important that so few of the class have beenfound in any of the numerons localities of the Old Red-one or two in Enelund, more abundantly in Russia, and even there of eomparatively rare neeurrence. "One shell, however, the Atryput reticularis," sats the author of Siluria, "ranges cren to the furthest known geographical limits of the Deronian rocks; to Armenia, the Cancasns, and China on the cast, and to the Deronian deposits of America on the west.*"

I forwarded a small shab of the deposit to Mr. Salter, who has returned for answer, as the result of his examimation, "Thongh very obscure, there eamot be much donbt of the bivalve shell being a Modioln or related gemms; but it is so imperfect that I should not like to say whether this wery thin shell is a marine one or not. The same with the Entomostraca. They may he Cypris, but are quite as likely Cythere.... I may further mention that a shell somewhat like is found in the Lower Old Red of shropshire, accompanied by marine genera of Entomostraca. The species is probably new." This iuteresting fossiliferous slab is now placed in Jermyn-street Museum.

There are, in addition to the above, several other forms of mollnsea, one of which resembles the genus Atrypa, mother is like the typieal Spirifer, and some are so thin and broken as searcely to present their true characteristies. They are, however, sufficiently mumerous, and to be easily extracted from their soft marly matrix. Better specimens are therefore to be looked for, and probahly also various new genera in a deposit otherwise so rich in organic forms of marine life. Some of the shelts are smooth, and others deeply und beantifully striated. Some are so extremely filmy as to be almost detached by the breath, or break by a slight impression of the nail.

The Eintomostraca aro excedingly mumerons, some micreseopieally minute, and others large enongh to be examined hy the naked eye. A bed of fully an inch thick is entirely composed of myriads of these organisms, fresh in colour, and perfeet in outline and structure as when they sported in the waters and shathows of the Deronian seas. The mass is extremely friable and britter, as comsisting chiefly of these minnte bodies themselves, and a soft calcarenns or aluminous matrix of a light bluish colour. Organisms of the same family are distributed up and down in the thirty feet of exposed rock, as if fleating everywhere in the turbid water, they had ilropped at random into the muddy silts. The richer portion is towards the base of the cliff, and consists almont exclusively of the creatures bodies themselres, agghtmated by a thin paste of caleareons shate.

I shall now comelnde with a few general remarks, as serving to show the relations and theoretic value of this new fossil beatity, and the bearings more esperially upon our Senttish palaontologer, some recent northern eonehisions of which may be thereby disturbed.

1. Do theare grey dagetones and indurated shates form part of the Deronime syatem, or true frittiah old had sandstome? I have in my own mind not the slighecst doubt ahout the answer that must be given to the question. The other memhers of the series are all in the immediate vieinity ; and from Parkhill to (ileneagles-thirty mites in linear distanes along the slope of the Ochil range-the gerey and blue coloured tilestones ean be distinetly fraced throughout, frathering ont and in atnong the trips and in varions places exhibiting the same texture and marly character as the Jron deposit. At the same time it has to he stated that some regard this as the under Carboniferous series. Mr. Powric, upon a short inspection, all but comeluded that it was; and in corroboration of these views, I have to mention that pits in search of coal have been
successively sunk for upwards of a century, and the belief generally prevails in the district that the combustible substance is there.
2. What, and where, are the correlates of the fossils now detected here for the first time? I have lying on the table while I write a specimen from Linksfield, near Elgin, of the "Cypris globosa bed" of marls, and which, from these and other organisms, are generally regarded as belonging to the Triassic and the Wealden. My eye detects no difference in either the character of the matrix or the forms and contour of the crustacea organisms in the Dron and the Elgin specimens. Both are of the same thickness, the same colour, the same shelly texture, and the Entromostraca are numerically the same in the composition of the respective deposits. Further researches may possibly unfold more resemblances.
3. The student of physical geology will find much to interest him in the district; in the general structure and variety of the trappear formations, the rast accumulations of drift in the strath, the borlder clays along the slopes of the hills and in the lateral valleys, and the various ravines formed by the mountain streams by the incessant and ever-wearing action of ages. But Glenfarg will form one of his chief attractions, from its many natural beauties and exuberant richness in many rare minerals. The entire family of Zeolites are there:-Thomsonite, Stilbite, Datholite, Heulandite, Analcime, Prehnite, and the newly analized Fargite, long described as Galeatite from its extreme whiteness.-Dr. Anderson, Newburgh, Fifeshire.

Fossil Trees at Haughland.-A short time since when Mr. William Young, builder, Bishopmill, was digging a well at Haughland, near Palmercross, a very unexpected discovery was :ade. First, in digging the well, the workmen cut through two feet of good mould, a depth of soil of which many of our farms would be glad. There was then soft sand mixed with some clay for other five feet downwards. This was followed by six inches of moss, then six inches of sand underlying the moss, and these three strata were followed by a bed of strong blue elay eighteen inches or so in thickness. Next came two feet and a-half of black moss at the depth of nearly ten feet from the surface, and here was found a birch tree with its branches, some of them four inches in diameter, embedded in the moss, lying along as they liad been laid when the tree was uprooted. A great part of the tree was in a comparatively good state of preservation, and when pressed the water oozed through it like a sponge. It is hard, black, and of course very heary. We mar remark that this fossiltree grew ten feet beneath what is now the river Lossie, which flows within two hundred yards of the spot where it was found. Geologists are agreed that the great plain extending from Aldronghty to Birnie was once covered by a lake, but the tree found beneath the bed of blue clay shows it was a forest before it was a lake, and the bed of sand both above and beneath the moss in which the tree was found strongly favours the belief that the land in the plain mentioned has been oftener than once submerged by the sea.

The Minerals of the Metallic Veins of Frifberg. (Extract in the Annales des Mines, by M. Delesse, from the article "Die mineralien der Freiberger Erzgange Zusammengestellt, von C. Weiss, mit Bemerkungen von Bernhard Cotta," in the Berg und Hüttenmannische Zeitung, 1860. Translated from the French by H. C. Salmon, F.G.S., F.C.S.)-I have proposed to myself to compare the mineralogieal composition of the metalliferous veins of Freiberg -a task which has been accomplished by the aid of the numerous documents possersed on this subject, and by the assistance of one of my pupils, M. Weiss. It is summed up in the following table, which gives the mineralogical composition of our four systems of metalliferous veins. The minerals most frequently met with are inserted in italics.

				$\begin{aligned} & \text { é } \\ & \text { E } \\ & 0 \\ & \text { 2 } \\ & \text { E } \end{aligned}$			
－аердо уо \＆よかけuñ		$三$		$\stackrel{4}{4}$	12	边	9

If we now search out what are the chemical elements of the four systems of metalliferous reins of Freiberg, we have the table following. In it the elements are nearly arranged according to their frequency. Those which are found at the head of the list are the most abundant, but there is some uncertainty in the classification of those which are in the middle. Although Oxygen, Hydrogen, and Carbon play an important part, they are placed at the cud, as not being characteristic.

By uniting into one single alphabetical series all the êlements of the four systems of veins, we obtain the following table, in regard to which are also shown the clements which are wanting.

Elements.

	Fousd		Not Found.
Aluminium.	Magnesium.	Boron.	Palladium.
Antimony.	Manganese.	ine.	Platinum.
Arsenic.	Nickel.	Cerium.	Potassium.
Barium.	Oxygen.	Chrome.	Ruthenium.
Bismuth.	Phosphorus.	Didymium.	. Rhodium.
Carbon.	Selenium.	Erbium.	Sodium.

Dlemests.

	Fown	Not	Non
Calrium.	Silicinm.	Gincium.	Trutalum.
Caluxim.	Sulphur.	Iridium.	T'chlmimu.
Chlorine.	Strontimn.	Indine.	Terbinu.
Cobalt.	Silver.	1anthanium.	Thorium.
Copper.	Scheclimm.	Lithium.	Yamadium.
Fluorine.	Titanium.	Murcury.	Ytrrium.
(inld.	Tin.	Molybderum.	\%/irconium.
Hydromen.	Uramium.	Nitrogen.	
lron.	Zinc.	Nioliinm.	
Lead.		Osmium.	

This table shows clearly the great differenee which exists between the chemical composition of the Fricherg veins and that of most rocks. Potash and onda is completely wanting, and alumina is only met with in a very small quantity.* Are we not justified in concluding, from this single fact, that their mecter of formation is not the same as that of the cruptive rocks, any more than of the sedimentary or metamorphic rocks?

Singiqar Obegts in sand near Canterbery-Mamadas Remains-
 terday intu a sand-pit at Hackingtom, near this city, and I was struck with the appearanee which it presented. The weather has lately been were hot, but at the time I was there it blew a brisk breeze, which oeceasimed the dre sand to run down from above, as we sonetinases see it rom through mun hour.glass. As it ariekled down, it left stauding ont elear from the face of the eliff numerons smatl eylindrical brodies, varging from hadf an inch to an inelo in diameter, their surface covered with small protuberances or warts, and much resembling some corals, but so fragile as hardly to hear handling. Their position was mostly perpendicular, but some were lving liorizomtally, and they varied in Iength from a few inches to two feet. The workmen said they were necasioned by the wind, as they never observed them but when there was a strong breege blowing against the sand. This latter was of varions colonrs, from a bright red to a yellowish white, mont probahly caused by iron, as there are a great many surall masses of iremstome mixed with the simd. Now I am at a loss to kinow whe her these oljegets owe their furmation to iron in some of its combinations acting upon the sand, or whether they have been combe which were cowered up by the sand when at the hottom of a shallow saa, mend as the carkennte of lime idecomposed, its place was gradually supplied by the surroumding sand. A stratum of brick-esth of about fourieen fret in thichness caps the sand, whinh is worked ont to ahout forty foet down to the water.

A few days simee I walked along the seashere from Whitsable to Ilampton, near Herne Bay. A great many stomes are here collected for the prorpose of making rememt. Theere stomes are fomed in the why, or they fall down as the soif crumbles away from them, and strew the shore, whilst many of them have, very curionsly, the forms of Algat and onlher sat-weeds impressed upen them. The atems of the Algat are well defined, and the smaller weeds ure twisted nbernt in all dirertions upon the surface of the stomes. These latter, whou they are in situ, are surroumided by an emethepe of crystals of tald, very brittle, bint s.arkling in lustre: the covering is about three ghartors of an inch thick. In fach stone there is a nuch us much like a fussil echinus, aromen which the

[^57]silicate of magnesia accumulates. A smart blow shivers the mass, and leares the nucleus bare. Great abundance of tale in rarions forms strews the shore resembling leaves, flat plates, $\& c$.

The tusks and bones of the Elephas primigenius are found liere when the cliff falls down-a circumstance which frequently occurs when the sea undermines it.
Nearly opposite this place, when the spring-tides recede, a number of trunks and branches of large trees are seen at low-water mark, partially buried in the mud, and eridently the denizens of some ancient wood which has been submerged when the sea cncroached on these shores. The wood is black, and when dry as hard as ebony, making good posts for gates, fieldrollers, \&c.

I may also mention that about a mile out at sea, of Hampton, is the Pan sand, where large quantities of Roman pottery have been dredged up. Several fine patere of Samian ware have been found, and lately a morturium in good preservation. This last was sent to the British Museum. It is a little ccrious that within these few weeks some pateræ and other Roman utensils quite similar to those found on the Pan sand have been dug up at St. Sepulchre's, Canterbury. In some instances the same makers' names were stamped upou the articles dug up at Canterbury and upon those found at sea.
I sead you these rough sketches of incidents occurring in my rambles, presuming they may be of some slight interest to your readers.-I am very faithfully yours, John Brent, Barton.
[The marks noticed in the sand are probably the old tubes of Sabelle, if the sand is of marine origin; or worm-tubes if a freshwater deposit. It would be worth while for the observer to compare the tubes formed now by the Sabella common in the sands of the Kentish shore with the objects he describes. I have seen what I believe to be Sabella-tubes in the Lower Greensand in a cutting on the camp-ground at Shorncliffe, near Folkestone; and if the sand at Hackington, near Canterbury, be a Tertiary marine sand, as I suppose it to be, it is probable that Sabella-tubes would occur in it. These tubes being held together only by glutinous matter, would not be very solid, and probably in a fossil state, would exhibit the puzzling conditions referred to by Mr. Brent. The sand in which they would occur would most probably be incoherent, and they are therefore rery like to be exposed by wind action as stated.Ed. Geol.]

The Earthquake at Mexdoza.-Mendoza was a city containing twenty thousand souls, aud presented all the appearance of a flourishing and increasing place. There remains to-day but a small chapel, the only building that withstood (perhaps owing to its foundation not being deep) the fearful earthquake which reduced the city in five minutes to a heap of ruins, under which were buried more than two-thirds of its population. Of those that were able to make their escape, some were seriously hurt, others lost their senses in the terror created by this awful phenomenon.

The earthquake declared itself on the 20th of March last, at half-past eight o'clock at uight ; the shock was so violent, the fall of the houses so rapid, that the inhabitants had not time to effect their escape, and were crushed to death.

The hour of the night in which the catastrophe took place, being a time when the city was in repose (for the inhabitants were an industrions race, of simple habits, and the town devoid of the amusements of large capitals) tended to increase the confusion and the number of victims.

The earth continued to open in several places, eliitting violent streams of water, and then immediately closing up again.

A singular circumstance is related, namely, that this lamentable occurrence
was prediectel a month before by a distinguished French geologist, named Brayard, who, nevertheless, is beliered to have perished in the ruins.
il. Brayard occasionally visited Mendoza, and wrote to a friend residing at Parama, that, having examined the eity in a meteorological and geographical print of siew, he had ascertained that it was situated between two extinet voleanos, and in the centre of a double current of electricity, from which he concluded that probably before ten yeurs Mendoza would disappear.

Many distinguished men perished in this earthquake, among others, Martin Zapata, an oritor of note.

On the Ciftia Leacihi, a tong-tahed decapon of the chalk formatios. By Prof. Revss. From the Transactions of the Imperial Aeadeny, Viemna, vol. vi.-In the ehalk-formation of Bohemia, next to the Callianassa untiqua, of Otto, which is found in quantities in the sandstones of north-eastern Buhemia, belonging to the upper chalk, the above-named species, Clytiue Ifachii, is the most mumerous of the few crustaceans as yet fond therein. This species seems to belong to the chalk beds known by the name of Phiner K:alk, which belong to the middle fauder-marls of Geinitz (Terrain 'Turonien of d'Orligny). At least, as yet, I have never becu able to discover them elsewhere.

Mantell, in his "Fossils of the Sonth Downs," 1822, p. 221-3, pl. xxix., figs. 1-4, pl. xxx, figs. 1 and 2, pl. xxxi., figs. 1-4, flgures and deseribes the carliest known specimens of this sjecies, discorered in the white chalk of Lewes and Houghom in West Sussex, and gives it the name of Aslucus. Ienchii.

Plate xxix, figs. $1-\mathrm{t}$, represent the most distinet specimens, wholly corresponding with the remains discovered in Buhemina: they are elaws. Plate xxix, fig. 4 , shows the claws of a very large specimen. Plate xxx., fig. 2, and Pl. xxxi., fig. f, show the claw of cath side opposite one another. Of the other limbs nothing distinct ean be learm from the drawing.

That fig. 5, of pl. xxix, really belougs to this speceics is improbable, on account of the erorkedness of the claw.
Plate xxxi., figss. 1-4, represent the cephalothorax, which, however, seems to have been very incompletely preserved, and is also very indistinetly drawn, so that one cannot say with certainty whether it really belongs to the Astacus Ifuchii. Pl. xxxi., fige 3 , which shows most distinetly the crossline of the ecphatothorax, most probahly belongs, I fancy, to Astacus Icurhii.

In fig. 2 of pl. xxxi. we have a line rumning lenghthwars, which is mot to be sren in the much better preserved specimen of Bohemia; and it would seem, if the sperimen represented really beleng to the same species, that the line was aceidental, nal eansed by the pressure to whiel it may have been sulyected.

In I'l. 31, fig. 4, is represented one of the ontside" feelers, and a very indistinet elaw of one of the forefect. Nothing decided can be learnt from cilher.
Plate xxx, fig. 1, represents the very incomplete hinder end of the body, in which can be seen the thrce penultumate body-rings very much squeezed, and the imuer tailpins of the right side in pairs. Whether these really are derived from the edsturus Ifuchio, the total insulation of this part and the diseovery of other-Astacides in the same spot do not allow us to say with certainty:
Sone time after fieimitz agnin disenvered this crustacean in the Planer of Strehlen and Wcinhofla, Saxmer, and gave a deseription of a frogment from the former of these places, under the name given it by Mantell, (Characters of the Chalk Rocks of Saxe:-Bohemia, p. 39, pl. ix., fig. 1). This fragment consists of a eephakithorax which has been subjected to much lateral preasure, and is incromplete in the fromt part, and a claw of large dimensions.

Romer in his work on the fossils of the chalk of Northern Germany (y) 105), gives a short diagnosis; but without adding unything new or mentioning any
PLATE XV.

fresh place of discovery. His description of the animals named by him Glypheat Leachii, is confined to the cephatathorax and the chelate limbs. He conjectures, however, that though the second pair of feet may liave been provided with claws, the other three pair rere not so. He morcover renders prominent the relationship between this animal and the Clytia of Meser (New Species of Fossil Crabs, 1810). This relationship was acknowledged by me still more fully in my "Fossils of the Chalk Formation of Bohemia," so that I have found mrself induced to commect this lossil with Mescr's species, under the name Clytia Leachii. I discovered it in the chalk of Kutschlin, near Bilin, and of Mundorf, near Toplitz, and also in the sandstone of Hradek and Tribitz. Those parts drawn and described by me (pl. vi., fig. 1 and pl. xlii., fig. 3), are the breast-shicld (incomplete), feet with the great claws, fragments of walking feet, of masticators and a part of the edge of an outside feelcr, the last three body-rings, and lastly some fragments of the tail.

1 afterwards became acquainted with mumerons fine remains from the White Mountains, near Prague, and the description of then forms the principal notive of this treatise.
Geinitz, in his work on the Quader-formation of Germany (1849, p. 7), names also the rpper Quader-marls of Quedinberg, as the place where the Clytia Leachii was found. As, howerer, I do not recognize by their appearance those remains as coming from the salt mines of that place, I am not convinced that they really belong to the species, and feel the less inclined to do so from the fact of Quenstedt in his Handbook of Paleontology giving a representation of a claw named by him as belonging to the Astacus Leachii, which does not in any way belong to the species, even if it belongs to an Astacide at all. Moreover, through the kindness of Dr. Geinitz I hare received the claw of a real Clytia Leachii, from the Quader-marl, for examination. I learnt nothing more from the fact of its having been discovered, as Geinitz says in his work on the Quader of Germany, near Osterfeld and Dülmen.
Lastly, MeCoy "On the Classification of some British Fossil Crustacea" in the Annals and Magazine of Natural History, 1819, p. 93, elevates the crustacean in question to the rank of an independent genus, distinguished from Meyer's Clytia by the superior size, the long spike of the breast-shield, toothed at the side, and with bunches of spines thereon, and on the claw-feet. From this character of the shell he names it Enoploclytia, and mentions two other kinds belonging to the same species, E. Imagei, McCoy, from the white chalk of Burwell and Maidstone ; and E. brevimani, McCoy, from the lower chalk of Cherry Hinton in Cambridge.

In his short description of the characteristics of the species Enoploclytia he describes all the parts of the animal, with the exception of the claw-feet, feelers, and incomplete walking feet. These last gave rise to an erroncous conjecture on his part that all four pairs of feet end in a single claw.

Of the E. Leachii, however, he seems to know no other parts than those already described by Mantell. At any rate he does not mention any, and the character of the species seems to be only copied (as regards the after-part of the body) from the two other species, as it little accords with our species. But how MeCoy conld regard the Enoploclytia Leachii, cxcept in relationship to the living species, the Galathea, is ineomprehensible. He seems to have been misled in this case by the strong tooth-spike, the small hinder part of the body (which is not correct as regards the E. Leachii,) and the undivided outside lappets of the tail, without dnly taking into consideration the other very different pirts represented. Our species approaelies much nearer to the Stomarus and Nephrops families, without cutirely resembling either of them. I will afterwards more clearly prove this from given descriptions. My description treats
rol. IV.

Fig. 2. - The same seen sidewayn.
 furt ow ; $C, 1$ sialor forkml furrow: fo ahaliow furros jrasing from the liranchinl furrow Lovar lá thin lateml potishmaned (h) if the mulille part of tho ecplinlothorux ; g, ahort furrowa

 thimat: l, If nke 11 it (fomur) of the finger-forit; m. short jnint (thbin) of tho fluger-foxit;

 Lessery fuot; d, first ; L, second; f, third ; y, fourth; I, claw-lake lasi joint of the sume.

of numerous specimens, more or less perfcet, received from three different localities, besides sereral details before unknown.
The most numerous come from the beds of the White Mountains, near Prague, and are now partly in the collection of Herr Yon Sacher; partly in the collection of Herr J. Barrande (figs. 5, 6, 0); partly in the Mineral Cabinet of the Imperial University (fig. 1),) and partly in the Bohemian Museum (figs. 2-10). The speeimens sketched in pl. xxxviii, from the beds of Strehlen in Saxony, were kindly leut me by Dr. Geinitz. The original of fig. 7, from the beds of Hundorf, near Teplitz, belong to the collection of Prince Lobkowitz in Bilin, from which, through the kindness of Herr Rubesch, I have repeatedly had it for examination.
Ox the Occurrexce of Hemax Remains in Strata Contemporaneous mitn Extinct Animals.- When Cuvier, in the year 1824, was asked whether human remains had ever been discovered unquestionably of the same age as extinct animals, the cautious and philosophical character of the inductive mind of the great founder of palæontology was illustrated by his reply. He said "Not yet."
The object of the present communication is simply, by offering a brief sketch of the most remote examples of human remains in geologieal time, to place your general reader in a position to appreciate more correctly the recent generalizations of various naturalists as to the origin and genesis of the human race.

I shall aroid all the instances of the occurrence of the evidences of human art in ancient deposits, as the subject of the "celts" of Abbeville has been already satisfactorily treated by Mr., Mackie in this magazine, and as an able writer in the " Wesiminster Review" for October, 1860 , has summarilized all the evidences of the contemporanity of man with the extinct elks, \&c. I shall eonfine myself to the evidences of human bones in the prehistorical age of the world. I shall, however, treat with the greatest possible brevity those wellknown instanees which have been before the eyes of the public for many years, and lay most stress upon those newly-discovered facts which have recently attracted so much attention, even in general circles.
Many years ago, at Köstritz, in Upper Saxony, human bones were discovered in an undisturbed stratum eight feet below the remains of hyæna and rhinoceros. These specimens have been in the British Museum for many years, and consist of the parietal bone and part of the femur.
In America, Dr. Usher, of Mobile, has pleaded hard for the existence of a Mississippi backwoodsman fifty-seveu thousand six hundred years ago, and we confess we can detect no flaw in his reasoning, however we may distrust his eonclasions.

Dr. Dickeson, of Natchez, produces a haman pelvis from the same geological age ; but Sir Charles Lyell, with characteristic sagacity, doubts its legitimate association with the strata in situ at the foot of the cliffs.
Dr. Schmerling, whose magnificent Ossements Fossiles des Environs de Liege have thrown such light upon extinet carnivora, brings various instances of the occurrence of man's bones with extinct bears and elephauts.
Dr. Lund, whose valuable palcontologieal researches are unfortunatcly inaccessible to many, on account of their being written in the Danish language, discorered human remains coupled with those of forty-four extinct animals at Minas Geraes, Brazil ; and at a cave on the borders of Lake Lagsa Santa, he found bones of thirty different human individuals, together with the large extinct monkey, Callithrix primarus.

I shall pass over, completely, without comment, the Guadaloupe skcleton in the British Musenm, as it certainly is not more than two humdred years old.
The earliest Celtic and Germanic skulls all unite in exhibiting a prominent
supraciliary development, and a thattening of the frontal bones, so as to form a low trpe of cramial conformation, exhibiting somewhat an approximation to the negen races. The antiquity of these skulls is, however, of a far hater date than that of the denosition of the eareed tlints in the valler of the sommer and I howe myself oboered several liriton and carly Saxon skulls fully equal in puint of erade of development to the Greek or Cancasian skulls, idealized by Blumonhach as the smmat of everything which could be predicated of virtue, intolligence, and beanty.

Prof. Owen has well pointed ott the almost impossibility of laying down gencral rules respecting the skulls of the various races of mankind, aud has declared, "I believe it would be rash to pronounce on the negro mature of any simele skull, stave among some of the lowest races of Western Africa." After such an amthoritative decision, 1 hope that those palreontologists or geologists who draw condusions in farour of the "Negro" or "Cancosian" nature of the sknlls which they diseover, will learn the lesson of eantion, and give a more aceurate and intilligible description of any homan skulls which may be hereafter discovered in a stmi-fossilized state.

The most important, because the most recent, and the most efencrally canvassed human relic is that which Dr. Schauthausen, of Bom, has recently publishech, with remarks by Mr. Gcorge Busk, F.R.S., in the " Natural Mistory lieview" for Aprit l4 50 . Aceerding to this statement "in the carly part of 1-.52, a buman skeleton was diseos ered in a limestone cave in the Neamberthal, near Hochatal, between Dtisschdorf and Elherfedr. The opinions of geologists in (rereany seen mited to corroborate Mr. Busk's machasion, that there can be mondoubt of the enormons antiquity of this skeleton (fonnd mader a depmit of four or tive fect of mud on the fltwir of the care), and of the probability of its having betonged to what has been termed the qfaternary period. As, howerer, 1 know of no linglish geologist who has stepped forwatel to erorohorate this theory, I hope that some of the many ant intelligent readers of the " Geologist" may he led to consider the question.

To the pralurontolngist this skull offers a somuce of interest, inasmuch as it exhibits a simgular character, hithertes supposed to have been peenliar to the highost apes. Ill those persons who have seeds the gerilla in the British Museum, or who have read M. du (haillu's descriptions of its habits, mast have heen struck with the large and prominent supraciliary ridere which makes a developnent from the frontal bome, ant which gives to the amimal that pht-honse-tike seowl over its reses, and in which a crest of black prominent hairs is inserted, whish greatly eontributes to enhamee the tertilic apmaranee of the ohd male gorilla. This supraciliary rider is chameteristic of the genns Troglodstes ; and in the champanzer it is aton present, but to a leas extent than in the gerilla. In this latter species a large amennt of this elevation is due to the devel pument of the space called by nutomists fromlet sinns, which is a large cestly, divided into two protions by a perpecmionker asseons partitions, mall lined with a comtimation of the pinitary membane, sececting the hatoricating muets diseharged into the note. This fromel sims, I'rof. Schantlhanseen thimks, is the main canse of the prowluesten of the emormons supraciliary ridge in the Xiand rihal cramim, as it is in the gorilla. Mr. (icorge Busk dasents from tha theory, rust print, out that in many recent crania of savage and harharma nom a cebsilemble fromtal clevation cxists, in which ne extraordinary erpman of the simuser oecur: and Sir William Hamilton (Mrtaphesses, ii. F. 125, saserts, " it is an error of the grossest, that the extent of the sinms it mbented hy a ridee or erest, or blizter in the external hony plate. Such a protulurance hes nu certain, or even probable, relation to the evtent, depth, or even exivenee of ans vacinity beneath." In the l'apuan and Austratati races of men, which afyremeh nearest to the aje in their cranial conforma-

Font K゙ッ

tion no frontal simus whatever exists, whilst a rather considerable frontal eleration is exhibited; whilst in the chimpanzee in which a remarkable supraorbital development exists, no trontal sinuses have been discovered.

Professor Schauffhausen gives the measurement of a humerus, and radius, two femora, in a perfect condition, and of part of ulna, humerus, ilinm, scapula, and ribs ; and it appears from his statements, that they exhibit characters of a human race, far transeending the present as regards power of musele, as indient $2 d$ by the thickness and rugosity of the bones.
the presence and degree of development of the frontal sims in the human and simian forms, are as follows :-

		Supereiliary Arch.	Frontal Sinus.
1	European	Small	Large.
2	Papuan	Pather large	Noue.
3	Neanderthal skull ...	Large	$?$
4	Gorilla	Tery large	Large.
5	Chimpanzee...........	Large	None.

The above shows the difficulty of predicating the amount of the frontal siuns by the development of the supraciliary arch.

The author of the article in the "Westminster Review," which announces Dr. Schautfhaussen's discovery, describes his specimen as "the ruin of a solitary arch in an enormous bridge, whieh time has destroyed, and which may have connected the highest of animals with the lowest of men. But, even though the frontal bone of this remarkable skull constitutes a link intimately uniting the cranial conformation of the ancient human inhabitants of Europe with the simial, there is no evidence that in respect to size, the brain which that skull once contamed approached more nearly to them than do the brains the Alfourian and lowest negro races.

It seems, therefore, that the party who hare affirmed man's deseent from a iransmuted ape affect to find in the recently discovered human bones transitional links jetween the human and simian forms. The more cautious reasoner on the genesis of man, whilst affirming his origin by secoudary law, gives due weight to those remarkable discrepancies between the structure of the lowest man and the structure of the highest ape, which would appear to anger for the human subelass a more exalted origin than the gorilla or Dryopithecus.

We find in the Neanderthal cranium a very fair development of brain, and in the general shape of the skull, (the supraciliary ridge apart), we find nothing which approaches to the gorilla. No interparietal crest, obliterating the sagittal sutnre, extends along the hearl; and although the hinder part of the skull is broken away, we cannot infer anything which approaches to an occipital or lambæoid crest. None of the other characters which so prominently differentiate the human from the simian sub-kingdoms are to he found in this ancient skull. It is not cerebrally inferior to the Papuan or Negro races.

Was this man from the Neanderthal of the same species as that which now dominates over the animal creation? Dr. Latham, in his Ethnological Aphorisms, says, "that all existing varieties of man may be referable to a single
species, but there may be certain species, which have ceased to evist." Should this Xeanderthal man have proved an intermediate speries bet ween the prapuan and the gorilla, a great point of controverg would be gained by the transmutationists: but the fature of the proof whieh Dr. Lohatfhaussen las brought forward, leaves the human species as far from the apes, as it was when the anthor, who founded the genus, placed it apart from the other primates.

It seems, therefore, irrefrably proved the the hmman species existed in Lurnge in the post-pliocene ate, in as well as we can judere from the "eelts" of Abbeville, a state of semibarbarism. However, sparse the population, he still found some ememy to contest with him the products of the forest, and the spoils of the ehase. II is rast solitude, compared with the present activity and teeming millions of modern Enrope, reminds the contemplation observer of the beatutiful exclamation of the patriotic espronerda.
"Cuan solitaria la nacion que un dia Poblara inmensa gente!"
We have thus evidence of the existence of man-man, the highest-brained (archenecphatate, ()wen) indivilual of the highest sub-div ision of known Manmalia, in whose image the most specialized adaptation of structure to lixed purpues is superadded to the orimimal type of created ammal life, which great. Archetype was conecived hy a Divine Mind, millions of pars prior to the adoent of the human race.-I remain, sir, your obedient servant, Cuahlas Cilithr Bline.

Wrturetos of Deer by Conn.-Keysler, in his "Travels in Wurtemburg" (17.56), has this passager :-"At lomen, Paris, and other large cities, the munlere of inhabitants is calenlated by the bill of mortality; in like. manner a conjucture may be formed of the multitudes of deer in this combtry ly emsidering that in one single hard winter abose sewen thousand of them cxpircal." In a note he adde, "The 1 wo winters of 1331 and 1733 carrice alf atove ten thonsand head of deer and hars."

Is it not probable that the eold during the great mammalian age may at
 of life, and that to this cebine may be atributed some of the ereat local acenmulations in drift depesits which serm dillienth to areoum for ?

A Salt mrusg; is a Cond. Ming.- Mr. Charltom, mining engineer and mamager for the coal company, hav commmiouted om momsal oecurrenee that was recontly met with in the Dunkirk ("oad Company' A stley Deep Jit, at
 herizontal line towarels the Commel Nine, a bantiful spring uf calt water or hrine fonded from a fracture in the renk, thengh remetre from the trias and saliferens or salt bearing strata, and at the depth of ille yards in the carbonifermas measures. Mr. ('harlon alas states that in a carcful analysis there were fomed in wery lan grains of the water -

$$
\text { Total } 513 \text { grains. }
$$

(Ir about seren comeas, (nearly half a prom!) of eommon sall per gallon. The

 or mphathalin if rated on the surface, accompanied with a small quantity of carburilled halecgen.

The pht alloded to in sery deep, and the flow of hrine from the spring discoremt mombes to abose 30 gitlons in every $2 t$ hours. 'Ithe Cheshine
deposits of rock-salt occur in the neighbourhood of Northwich, lying in patches along the valley of the River Wearer, in the Triassic formation. There are two beds-the upper one is reached at abont 45 yards, and the lower at 80 yards from the surface. The brinc or salt-springs which often issue from those deposits contain from three and a half to six and a half per cent. of salt, the saline property being undoubtedly derived from the solid masses of salt by subterraneau watcrs.

A question naturally arises as to the origin of the saline spring at Dukinfield. Northwich is at least twenty-five miles distant from it, even as the crow flies. Dukinfield stands upon the Lower New Red Sandstone (Permian), which in that locality appears to be developed in an extraordinary degree as to its depth. At Macclesfield, which is distant about sixtcen miles from Dukinfield, and is located on, or contiguous with the same coal-field-the mineral is reached at sixtr yards below the surface.

Now the nearest point or boundary of the true saliferous strata (Keuper) of this county does not lie less than twenty miles from Dukinfield; and a solution of the problem may probably be found in the following suggestions:-

First, that water containing chloride of sodium in solution might possibly find its way from the above named strata to the newly discorered outlet in the Dukinfield mine, -for it is of sufficient depth to admit that possibility and even to drain the Trias in that part of Cheshire provided there were sufficient capacity or outlet for such drainage.-Again, there may be some adventitious deposits of saliferous shales, marls, or rock-salt, incorporated at a shorter distance than the Northwith rock-salt in the New Red strata, the solution of which by drainage reaches the pit.-Or, there may exist by a fortuitous circumstance or otherwise, deposits of rock-salt saliferous shales or marls in the superincumbent coal-bearing strata of the mine.-This latter, perhaps, is the most reasonable proposition. The question, however, is at present a purely theoretical, altnough a very interesting one. At all events the fact of a "Salt Spring in a Coal Mine" may be considered a geological phenomenon.J. D. Sainter. Macclesfield.

REVIEWS.

Memoir of Edward Forbes, F.R.S., late Regius Professor of Natural History in the University of Edinlurgh. By George Wilson, M.D., F.R.S.E. (late Regius Professor of Technology at Edinburgh), and Archibald Geikie, F.R.S.E., F.G.S. of the Geological Survey. Macmillan and Co., London and Cambridge; Edmonston and Douglas, Edinburgh, 1561.

Painful it is indeed to review the life of one passed away into the regions of Futurity whom we had wished to number long amongst our valued friends. To us the name of Edward Forbes will be ever dear as that of one of our earliest and kindest encouragers in the paths of science, while by the world that name will ever be repeated with respect in memory of the genius and talent he brought to bear on the sciences of geology and natural history. The book before us has more than double interest. Not only is its subject matter of high interest as the personal history of a master mind, and that interest enhanced by the memoir being commenced by another eminent man of science, like Forbes, belored for his amiable qualities and respected for his
tulent, but it has heen eont inned and finished be a young anthor of no slight merit und of rising fame, Mr. Irehibald Geikie. We all know Mr. (acikie’s prefty "Story of a Bomlder:" we know, too, the comel work he has lately been doing with Murchison amonest the Sinttish highlands; aml we know, from other works and other labours, flat Mr. Geikie ran both write well and rew well too. Forbes' Life by Wilson and Geikie must have many readers if the book stood alone on its literary merits; but when it has so wide-spread an interest as is still felt throughont our own land and abroad in the slourt and, so to preak, unfinished life of its amiable and ancomplished subject, it is one that is sure to be genemally read.

Whenever a great man dies, we all want to know something about him. Perhaps it is that we want to know how he lecame so machestemed. Perhaps we silemly, adthough it may be lepelessly, hope to be eminent tou. Is it a lesen how to be so that we ity to learn from the reconds of tate lives of outhers: Geal grant it may, and that the patem in every case may be as worthy as Forbse' of imitation.
"Eiluad Forles was born in 1515, and died in 1601. The sears of his life were thistr-nine: the years of his publie habours ns nearly as may be twenty-five. into that gharter of a century he erowded more work than most men areomplish even when their span of days stretehes beyond the allotted three score vears and tem: and yet his werk was but half tone. He was eut off in the midht of his dits, with his puwers, so far ins others could discern them, hut partially evolved, and his purpeses but half fulfilled."

Ther most beaniful of many whers, "Donglas Bay lies embedded, like a ereseent musen, in the euth-west shore of the INe of Nan. The tip of either horn is a heallame, the sonthern chin erowned by a lighthonse. As it tlits past, the crememt upens, and revenls all the whenects which it alefemts from the upen wa. In the rentere of the bay a peenliarly pirturespue tower of refuge stands on a recef, a beacon and shelfer for the sator. On the sonth-western curne of the eresemt lies the town of Douglas, dear to us as the birthplace of Edward Forbes. Its fonmdations are laid in the delta of a small river, but it bats climbal the leeights encirding the bay, and spread itself gracefulty over the gentle ferraces and broad milulations which orertonk the sea. The more stately eminewecs are uecupied by stately castellated buidings ; and hehind all the lofty domes of suacfoll and the sister hitls stand in array against the horizon. And, besides sand and fern, headland and haven, here and there, as the island passes before him, vallers opening on the sea allow the seretator to gaze far intand. The hrosks that make them green are seen erlittering in the sum, with the flieker of the leares, whene shadows mathle their waters. The white shoke of hidden cothages rises like a veil in frout of the purple hills. The frngerane of wild flowers comes town the breezes, and the tinkling of sherepbedt, and the low murmurs of distant waterfalls. In islamd so varied and so beantiful was the leftetiog liethplaee and eradle of ome destined in future life to prove himoelf alike maturalist, artion, Fhilomopher. White yet a chish, the wild plants of its vallese lemd made him at hotronist, and the sprirs and fossile of its shores had tanght him seme thing of geolegy. Put the smath the chisf chanu for him, and in the hays of lomglas und Ramsay heremght, whilst yet a gouth, the tiest ghmpe of those oeren revelations which have mate lim faimons."
l.dward Forles was the second hat delest survivinge chidd of Edward Jinhbes,
 of William Trare, E:C!, of the Corvalla amd Ballaby, Ballangh, Ine of Man. Ilis ereat grandfather, Dand Forbes, was implieated in the Jacobite tronbles of 1515 .

The immedine paternal nuesestors of Didward Furbes were characterized by
great activity and energy. Fond of travel, of society, and social pleasures, freehanded, and better at spending than at saving money. His grandfather was for some time at sea in command. Oue uncle died at Demerara; another in Surinam; a third travelled into the interior of Africa, and was last heard of some twenty or thirty years ago as king or sultan of some native African tribe. One of his orm brothers perished by drowning in Australia; another was killed in America; a third, who resembles himself in geuins, has seen many adrentures in Norway and in Sonth America. "A love of roaming," says his biographer, "certainly ruas in the blood of the Manx Forbeses, and in none of them was it stronger than in Edward, whose happiest hours were spent in travelling in strange lands and dredging in unfathomed seas." His mother, by the universal testimony of all, was a singularly gentle, amiable, and pious woman, devoted to her children, and beloved by rich and poor. The childhood of Edward Forbes was a lappy one. His father's affairs for a long season were prosperous, and his mother also possessed property in her orn right, which, by Manx law, was under her own control. He remained at his father's house till 1831, when he had reached his sixteenth rear, and it was thought time to select a profession for him. His mother wished him to be a clergyman; his father a physician. His own wish was to be a naturalist, but, with the consent of all parties, a compromise, curiously illustrative of his versatility, was entered into, and he was sent to Londou to become a painter. The compromise failed in its purpose; but he did not again make the Isle of Man his residence, except at vacation intervals.
ln the volume before us we are next passed on through his false start as an artist, his residence in London, his student life in Edinburgh, his abandomment of medicine as a profession, and then we come to the time when he adopted natural history as a permanent rocation. When he returned to the Isle of Man in 1S32, he spent the three autumn months of the rear in diligent work. He had brought back from Elinburgh greatly enlarged views of natural history, and a greatly increased acquaintance with its recorded facts. Furnished by his training at the University with a knowledge of the means by which great naturalists had observed nature, he discovered now riches every day in the territory of Man, and he formed the resolution to write a mork on the entire natural history of the Island, inclnding some reference to its civil history, and a full account of its antiquities. In the end he partially carried out this intention. His "Malacologia Monensis" was published at Edimburgh in 153S. Four years later he contributed to Mr. Cumming's work, "Notes on the Flora of the Isle of Man, and a chapter on its Natural History and Geology." He did not live to achieve a complete account of the Isle of Mau, but the uncompleted investigations which he made in reference to its physical features, and especially his dredgings along its coasts, furnished the starting points for some of the widest generalizations with which he enriched the whole science of natural history. The doctrine of Specific Centres of Distribution of Plants and Animals, if not suggested to him, was at least in his apprehension strikingly illustrated and confirmed by the characters of the Fauna and Flora of his native island as compared with those of Great Britain and France on the one hand and of Irelard on the other. To take an example which has long been of popular and even superstitious interest, the absence of poisonous reptiles from Ireland and the Isle of Man was explicable on the hypothesis that they originated on the continent, and spreading from their centre of birth there, reached England in the course of their western divergence, when Great Britain formed part of the now adjacent mainland. Before, howerer, they had travelled to Ireland, or even to Man, these had become islands, and could no longer be reached. On the other hand, the great Elk (Cervus Megaceros), whose bones are found both in Ireland and Man, may
be assumed to have crossed from Europe to both at a time when the Irish sea and the Britinl Chamel were occupied by land which has since disappared. His doetrine atoo of zones of submarine lific dittering in fharacter accordine to the depth of the sea in whieh they shomed themselses, has been referred to by wriees as tirst adopted by him in the Nediteramean; but it is quite certain that it dawned upon him during these early drederings along has mative shores, and it was reduced to writing years before he visited the Agean.

In Nosember, 1432 , he re-comm:need the st ndy of medieme, which was met finally abandoned mutil In 33 , and after that, his uninterrupted rocation was that of a maturalist. It would have been strame if he had been a zealons medical student, and in later years he deprecated all compliment to himself as a model student. His mote-bouks of that period are full of those grotespue but printed drawines which he was ever so noted for making. "Here and there are eopies of diagrams shown by the leeturer, such as the convulsed boty of a sufterer from lock-jaw, a bandared or ulecrated limb, or the branches of an important artery. Slingled with these, however, and quite overpowering them, atre likenesses of professors, lecturers, and students; Dr. Knox, who appears in mans attitudes, being the favourite subjeet of portraiture; sketehes of shells, tlowers, erystals, imitations of children's drawings, and fantastic tmaginary tigures imnumable. Whimsically various though these drawings are, a certain medical tone prevails amone them. A pedantir doctor flourishes a utethoseope. A grim anatomist 'opens' a body in an muhard-of fashion. A sick man makes wry faces over a physic bottle. Skulls abound. Skulls lamphing, wepping, wearing spectackes, looking wise, looking foolish, displaying crery human passion. Skeletons are not less ahundaut, and in the most lively attitudes; gesticulating, dameing in eouples, foneing, perambulating; more like living men and women who had adopted the Rev. Siduey smith's reeipe against very hot weather, and for contness' sake had mulresed to their bones, thon the grim relies of the dead, at home only in the grave."

In 14.3is, the death of his mother took away one strong motive for taking a medieal degres. He knew that his clevation to the rank and title of physician womble greatly please her, and he loved her too well to arrudge the cffort to give lier that pleasure. For five vears he had nominally been training himself to win an homorary title, and just when it was within his grasp, he flung away his weapon and folled his arms.
"Ton most but himself her semed to have made shipwreek of his genius. He had triod two professions and failed. Art disowned him; medieme disowned him. T'o be a sirtnoso man of the world appeared the geat of his ambition.
"Sus it seemed, hut an it was mot. Mis genius had reached ite nadir, and thomeh none knew it less tham himself, half its courer was spent. It was from this moment daily to mount higher and hiegher above the sisible horizon, till it rearhed, and for too brief a seasom sluone forth from, the zenitls.
" When he parted from l'ine Art, he metered a gond hyee, not a farewell, and in token therenf he took his perneil with him. When he parted from Nedicine, lie neked to retain his scalpel as a memerial of the art of dissection which she low taught him. With these two simple fools alternately in his hateds, and as a cende and interpreter of both, the mierosenpe at his cre, he had such a triad of thinge as pleared his fancy and oceupied all his faculties."

His hographers now give us acounts of the stindent clubs he formed, and of lus racation ramblec, with details of his tirst years as a professed maturalist. Wi. have then his trip, to the Sgean Sea; after which his eomneetion with the Geolntical surser hegan, and eontinued until his election to the chair of Antural Ilisiory at Eilmburgh the city where two and twenty years before he had bewn n stmitent of merle tiae.
" Meanured by whin he actually did in natural history, his name camnot be
placed where some of his warm friends would inscribe it, along with those of Aristotle, Linnæus, Curier, Orren, and Goodsir. But it would be unjust so to estimate him. It must be remembered that he passed away ere reaching his prime, and he must be tried, not merely br what in his short life time he did himself, but by the ideas which, scattered by him broadcast over the world, have sprung up and are bearing fruit in many lands. He did more, perhaps, than any other man of his day to spread abroad a love for natural history; more undoubtedly than anr one of his contemporaries to indicate how natural history and geology must be woren together. The name of Edward Forbes will go down to posterity inseparably linked with the history of palæontologr, as one of the greatest naturalists that ever strove to bring his knowledge of the living world to elucidate the physical and organic changes of the past history of the carth.
"Hc attained this high eminence not as a solitary worker. In nothing was his career more marked than in the power he possessed of interesting others in his field of labour. His broad philosophical spirit enabled him to appreciate the researches of the chemist and the physicist, and in return he drem their sympathy with him into his own domain. In bearing down all jealousy and enry among his fellow naturalists, and enlisting their actire co-operation in the conmon cause, he stood forth conspicuous among the scientific men of his time; and this he accomplished not so much by the weight of his authority as by the influence of his manly, true-hearted nature. On no phase of the life of Edrard Forbes does it seem needful to lay greater stress than on this; for on no other ground can we account for the great influence which lie exercised, not in scientific circles only, but in society at large. It was not his mental powers, great though these were, nor his vast knowledge of those branches of science which he made his especial studr, that gained him the love and respect of all men, but a simple, kindly heart that knew no selfishness, and embraced in its wide and generous sympathr all that was honourable and good."

Handlook for Travellers in North Wales. London: John Murray, 1561.
Of Dr. Beran's Handbook for South Wales we have alreads spoken in terms of praise, and πc are not less disposed to accord to the prescnt work a less mead of just enconium. The Handbook of North Tales contains not only information for the general trareller or excursionist, but also useful matter for the geologist. Within the last two rears the district has been made more accessible to the tourist by the construction of new railways, which, although not so numerous as in the southern portion of Wales, hare already been, and are likely to be still more, instrumental in developing the resources of the country. Dr. Beran arranges his book very much in the same way as his former one, commencing with an introduction, in which he first describes the physical features; then deroting a section to its geology ; after which, commerce and manufactures, antiquities, communications, and a glossarv of Welch words (the last highly necessary for the stranger Englishman). The doctor then devotes another section to "Points of Interest for the Geologist," and one to the "Comparative Heights of Mountains," concluding the introduction with "Chief Places of Interest" and "Skeleton Routes." Then of course follows the main mass of the hand-book, giving the routes and the descriptions of the places which travellers are likely to risit. Evergthing worth seeing or knowing, from the curious Elizabethan pigeon-honse at Llanengrad to the manner of raising the famous Menai Bridge, is most curtly and concisely jotted down by our indefatigable and pleasant author.

The Prast and Present Life of the Colohe, being a Stactch in Outline of the World's Life Systom. liy David Page, F.(i.S. Lomton and Edinburgh: Wim. Blachwood do Sums, Intil.

Thrare is little doubt that the heading of the papers on popular geralogy, which we commenced in this Magazine, have been, at least, suggestive of titles to more than one author; if, inderd they have not been suggestive of the sub. ject matters of some books. We are mot jealous of, nor sorry for this. If we had desired the eredit of doing the work ourselves, we should bave kept our nwn by our own aet ivity. We hase not abandoned that series, although fate has denied is the opportunities of carrying then on rapilly. We hope shortly to be able to go on again with them, and then, from time to time, we shat have the means of giving our own views on matters now under disenssion by Eenologists. Whether Mr. Page has eanghan idea or two from the "Genbogist" is of lititle moment; and if he hass, he is quite welleome to them for the grood use he has turned them to. In the eharming litthe hook before us, he has under the title of "The P'ast and l'resent Lifre of the Cilobe," disenssed in wery moderate terms the great puestion of the day intertuced by Darwin's wery memorable book-the uniform development of creation. He has not professedly done this, but in reality, this is what he has done; and the book is well worthy of the student's attention. 'The introductory elapter ecmumenes with a peroration on the interest ataching to the study of the Past in matural as in luman history: fussiln ur petrified remains of plants and animats are, of course, regarded as the apphabet detters of the great hook of ereation, by whirh its interesting chapters are to be read. Then Mr. J'age brings his readers to the Present. Ile deseribes hreatly the great gromps and elaracteristie features of its fanna and Ilora and their co-ndaptations. He thiuk - properly that before we can right compare the Past Life, of which hese (fossil) relies give cridence, with that whieh now perplese the efluber, we must glanee at the is mbitions muder which plants and :mamals at present exist, and know something of their mature and the functions they have in perform. "We eau onty rea,on," he says, "resperting the l'ast from our knowledge of the I'resent; oul the more intimate our acepaintane with the various phates of existing mature, the somuler our dectuctions relating to these whieh hate fongs sineer pased away. Wer say the rarious phases of erisiming nature for the plants and amimals that perple the surface of ans given latitude may differ in rharacter from thoue cutembed in the strata beeneath, and the arganisims in the several formations below may mow find their nearcot aunlugies ins the thera and fanua hy distant and diffirent regions. If we are familiar, howerer. with the gencral eonditions under which plants and :mimals now live and flomish, and if we ean cstablith a rela tionship between thote caisting and those long sime extinet, then we enn readl the conditions under which the later grew and thourished, and mape eat the gengraply and elimate of the prime val world, as the geograther now mep" out the arras of sea and land, and depicts the varions rases of life, the heles of sterilty and exuberames, and the ereative centres from which perenliar families have emanated to perform their functions in the kreat eentrimy of nuture." And so, of theme prineiples Mr. Page takes us through the tlora and fomma of the present age, ,he gimuing with plants and the conditimas under wheh they exist, their typiral forms nut characters, their primal plan and patterns, the syan matic arrangernent of their forins, and the persisteney of plan in tome past dmmen life is mow taken np, and its typieal forms and their functions, its primal phan sul pattorns, the systemmatic arrangement of its forrics, ated the identity of plan in thace past are comsidered, and then we are led in the en-adapationo of plaitu ant atuinals in one great life-selieme:

everyone is not yet cmbued with Darwinian doctrines; and indeed of those that are there are many not honest enough, or too timid to confess their faith. No doubt it is safer and more prudent to go in the highway of the world, and to follow the ordinary traffic, even in science.

For our part, we are rather erratic, and being good pedestrians, we jump orer a feuce, step over a style, take footpaths in preferenee to turnpikes, and have more than once lost ourselves in a wood. It is true by so doing we have suffered some inconreniences, we could not always find an anberge when we wauted refreshment, we have more than once becn attacked by thieves, been beuighted, and have met with other mishaps; but then we have often been rewarded with such glorious views from the hill top, such picturesque scenes in dell and ralley, that the adrautages of freshness, truth and beautr, have far outbalanced all evils, and we are as ready as ever to take the chance of a deriation, as if we knew not of attendant inconrenieuces.

Mr. Page takes the more legitimate roads, and will consequently aroid many of the scrapes into which we might hare got, had we attempted what he has done.
"In at tempting this (botanical) arrangement, numerous varied and complex as vegetable life may at first sight appear, the botanist has happily a few great fixed principles in uature to guide him; type and order run unswervingly throughout the whole: and though the Creator might easily have constructed each species after its own type, and rendered plants as raried in their individual forms, as they are numerically abundant, yet He has thought fit to restrict himself, as it were, to a few types, and humanly speaking, like a skilful insentor to produce an almost endless variety from the co-adaption of a few simple elements and complexity of design by the elimination of a few primal patterns. As innumerable hues can be produced from a few primitive colours, as endless strains of music flow from the touches of a fer simple words, or as the ideas of all times and nations can be expressed by the combinations of some tweuty or thirty letter-souuds; so in the structure of animals and plants every variety of form, every conceivable adaptation of structure, proceeds from the modification of a few elementary forms and types in nature. Without this uniformity of plan and design. the study of nature by man's limited faculties would have been impossible. In summing up the co-adaptations of the flora and fauna, these are the views which the author takes: "Perfect as the existiing flora and fauna may appear each in its own proper line, they are only constituent portions of a greater life-system bound together by numerons coadaptations and adjustments. As each is adapted to, as well as dependent on, external conditions, so both are dependent on one another, and as at present constituted, neither could possibly enjoy a separate existence."

Haring laid before his readers a sketch of the Present Life of the Globe, its plants and animals; the causes which effect their growth; the conditions which govern their geographical distribution; their ordinal characters; and the functions ther are destined to perform in the economy of creation, our author turns to the extinct-the geological record. The chronology or the arrangement of the world's Past into rock-formations, and life-periods is the first subject ; the continuity of natural law, the second; and these are followed by a disquisition on palæontology, the problems it has to resolve, its progress and prospects. The more detailed considerations of the geological subject are divided into the Far Past, the Middle Past, the Recent; the last includes the Terteary period, the age of great mammals, existing forms and distribution of life, gencral and local extinctions, Max-prehistoric and historic, and the mutations of the human race.

Mr. Page then lays down "The Law;" and this, of course, must be regarded as the principle chapter of the book; and some of the subjects treatcd are amongst the grandest that can occupy the mind of man.

The grand law of nalure, Mr. Page sets forth as nrmer. So it is. In tracing this order, the first subjeet would naturally be the dawn of life. While ablatimg that, as we teseend into the roeky erist of our planet, we reach a stage in the sub-Silnrian metamorphic rocks, where life does not seem to have existed, Mr. Page whll not argue for the restriction of life to the Cambrian feriod: but he ronsiders we must have something more eettain than fanciful amalogies to carry our convietions any distanee beyond these strata. He thinks ton, that the evidence of fossil life is greatly in farone of the belief that in this stare " we have reached, or all lut reached, the dawn of organized existence." All but reached! Sometimes in our erratic way, we are tempted to ask, Yes! bit What is under the granite? And some day this will not seem so mad a question as it does now. It would be slow work to hont awe the old Gueiss, an the luming is mot done. Someday, some painstaking local geolngist will do it, and then perhaps life-forms will be found down there.

However, we now let Mr. Page speak for himself.
"As we ascend in the geologieal scale, we find life increasing and spreading stage by stage into newer and higher forms; and as we deseend, we tind it decreasing and barrowing to simpler and lowlier aspects; and surely we are justitied in the inference, that in the few seatered organisme of Canbria we have all but attained the ultmate limits of vitality. Were matter and life codependent, we might reasonahls argue for their co-existence; but as mether (enn exist whhont the manifestation of vitality, and as life appears only in subordination to the material forees, so the one may have pasted for ages without necessarily implying the presence of the other. Aud further, if motud epochs have been spent in the erolution of life from its carliest to its present asperets, it is equally eonceivable that evele after cyele may have rolled by in the rlimination of the purely material strueture of the work before it seemed to the Divime Mind a titting habitat for the plants amd amimals with which He had devtined to adorn its surfuce." * * * "Starting from this point, we may fairly inguire, how, and by what means this earth heeame the "procreant eradle" of organized existenees? * * * seience camot erem indicate the line of ingniry ; our highest philosophy is the humble recognition of the fact ; the chemist and the physiologist may resolve the stal organisminto cedls and gramules, and mulei, hat here their ciforts stop: they cambet mow these eells and grems with life. * * "This present ignorance, however, ean form no plea for the absenee of future eflort ; creryhing unk monn is not to be luede as a miracle."

The neat subjeet is the miformity of type and pattorn in past and present time: "the plamts and amimals of the anevent world, themgh dethering widely in genera and speries were meither 'ahmomal' nor 'momatrons: ' but beth in proint of size and form and structural adaptations were wery moch alike to those of the prearet day. So much as indeed, that formble we reall them to mingle in the buy seenes of life aromel as, they wonh meither startle us by Wheir appearanere, nor alams us by their habits, oue whit more tham the existing toran and famm of diatant and diflerent regions. The geat typers remain the same throughout all time amd space; and thengh the modiferations lave been innumerable: thece monlifentions, exth in their agreement, have never amomed (t) an whiteratom of any important primal distinction. Acrogenobis, endegemons, and exogenoms, radiate, artimbate, mollusean, vertebrate rames side by side as distinetly now, cach within its own typical idea, as when they first clathed the lanil, and ferphed the waters." * * * "As in function: "arth and water cier arem to have hath their varied temmery. * * In the mental depentencies of exiatemee, demand has ever pressed in smply, deay trodden chasely in the wake of rejroduction, and suffering been commensurate with enjoginent An ideal Cosmes of pambess beatitude is a dream and a delusion,"

* * * "With regard to distribution * * * from the begiming different regions have been peopled, partly by identical, and partly by representative species."

Admitting that external conditions have nerei heen uniform, Mr. Page goes on to the introluction of nero life-forms. Here the question naturally arises, as each geological epoch is charasterized by its own peculiar plants and animals, "Whether there are independant creations, or whether there is in nature some law of development by which, during the lapse of ages, and under the clange of physical conditions, the lower may not be developed into the higher species, the simpler into the more complex ?" Mr. Page thinks "geology is not in a position to solve the problem of vital gradation and progress." We think differently from that gentleman, at least to this extent, that geology has already collected considerable materials indicating the reply which, to our minds, undoubtedly it ultimately will give. Of course it is a delicate point to deal with, and the lighway here is a far easier road than the faintly-tracked path we might be inclined to pursue. We do not hint even that Mr. Page is not sincere in what he writes, but his logic is not quite as grood on this topic as it might be. Why we do not pretend to say, but certain it is that modern geologists do not always-cannot, or will not, perhaps-write logically. Perhaps they think one way and write the other in deference to popular opinion; if so, we are not surprised at their logic being bad; but whatever the cause, as a rule they are eminently not good logicians. We do not understand how Mr. Page can logically insist on "new creations" of organized forms on one page, and on the opposite repudiate the terms "extinction" and "creation" as applied to the races of organic beings of geological periods. "We must not," he tclls us, "fail into the common but mistaken notion that the flora and fanna of one period were utterly extinguished before the commencement of the next. There are no such extinctions and re-creations in nature."

These reflections lead our author to the "Development Hypothesis," which in this present review is a subject that we will leave alone. As we will also the "acceptance of vital hypothesis." The pages, however, which we skip may be read with profit and interest. We pass over also the "Adrent of Man," as the details of flint-implements and other items of this topic have been, and are being, fully dealt with in the pages of this magazine. Neither will we go into other questions which Mr. Page eloquently discusses -"Time Geological," "Course of Creation,"" Creation still in Progress," "Duration of Species," "Term of the Human Race," "Influence of Man on the Future," "Progression or Succession," although we give their titles to show what interesting subjects he has selected, but we pass at once to the last of his work before he writes its conclusion-" (nnward and Upward," and in the sentiment of which we fully concur.
"Ignorant of the teachings of geology and the great progression it unfolds, mankind hare hitherto regarded the scheme of life as culminating and terminating with their own race. All or nearly all the hopes that give colouring to their thoughts and direction to their actions proceed from this belief, thongh in strictest science the belief itself rests on no logical foundation. It is true, one of our highest biological authorities (Professor Agassiz) 'thinks it can be shown by anatomical evidence, that man is not only the last and highest among the living beings of the present period, but that he is the last term of a series, beyond which there is no material progress possible in accordance with the plan upon which the whole animal kingdom is constructed; and that the only improrement we can look for upon earth for the future, mast consist in the derelopment of man's intellectual and moral faculties.' This, however, is a mere plausible assertion; the 'anatomical evidence' is not produced; and every one cognisant of the history of man knows that intellectnal and moral deve-
lopment has ever been restricted to the newer and advancing varieties of our race. It is true that man at preant stands the crowning form of vital exist-
 remain the erowning furm in future epochs. From its dawn until now the great evolution of life has been ever upward, geologioally spaking (and be it borne in mind we are treating the question solely from a geological stamdpoint), shall it nut eontime to be upwart still:" We see no symptom of decay rither in the physieal or vital forees of mature; and so long as these forees comtinuc to nperate, mutation ard progress must inevitahly follow. Man's own history, physical and moral, las becn one of ineessant change and progress. The features of different races, their mental qualitics, eivil systems, and religions beliefs, have all less or more partaken of this mutation; and the differener that now subsists between the most iutellectual, city-dwelling, machinemathing Anglo-Saxoms and the men of the old thint-implements and bone-caves maty be infinitesimally small, when compared with that which may exist betwern the moblest living uations and races ret to be evoked. Unless science has altogether misinterpreted the past, and the course of Creation as unfolded by geology be mo better than a delusion, the future must transeend the present, as the present tramseculs that which has gone before it. Man present camot. pensibly be mau future. Noble as lie may appear in his highest aspeets, it were ti) limit creative power and arrest its progress to ayer that man may not be superaded by auother form still nobler and more divinc. Phesiologically, we cmant suppose that the homologies of the vertebrate skeleton hate been cstansted in the structural adaptations of man: psechologically, we dare not presume againat the correlation of a moble intelleet with a higher organisation. On the contrary, in these ascending forms the divine idea of moral perfection, thongh meomecivahly unattumable by erented existenees, may be nearly and more uearly approached, and stage by stage the loftiest and holiest aspirations of the present may hecome the realisations of the future. Tos speculations such as these, though lying fairly in the way of geological inquiry, science can do hate more that merely indieate the line of reasoning ; and if thery shatl be thonght to involve anre question as to man's religions beliefs and lís hopes of a future life, on this point alon science is mute, and defers with humility to the twachinge of a higher philosonlly."

Leng it this review may appert, there is much more we shonld have liket to have extracted, much more wh should have liked to have said. Exeellent and much appreciated as Mr. Page's other clementary books are, this is the chantont, the mont jopular, and the best of mothing he has yet produced for the student of onr alorious acience:

THE GEOLOGIST.

OCTOBER, 1861.

WHAT HAS BECOME OF THE LUNAR SEAS?

Was there a deluge? It is not to advocate any new reconciliation theory we ask this question; it is not to urge afresh some supposed contact with a comet (if we have just passed through the tail of one, at most the harm we got was a few heavy showers); nor is it to show that periodical inundations or oceanic overwhelmings of each hemi-sphere-north and south-alternately take place every few thousand years. Probably they do. But neither fifty deluges, nor ten thousand, nor a hundred thousand, would make one deluge-a deluge. Our purpose then is, to inquire whether there might not have been, once upon a time, a physical natural cause for a deluge. As the crime of the sinner is often the cause of the amendment of the law, so the bold speculator, breaking out from the trammels of established dicta and the fashionable propriety of a safe reserve, may, as Macdongal Stuart in his daring ride across Australia opened out a luxuriant country where geographers predicted a sandly desert, likewise break in upon glorious fields before unknown. We have so many safe respectabilities in geology that an erratic notion now and then caunot do much harm, if it do no good. When we look up to the moon, what do we see? Great ocean cavities and no water in them. It is of no use to say it is all gathered up on the other side. We cannot believe that. The moon always presents one side to our earth, and, therefore, vol. iv.
$2 \times$
her ocean waters ought to be drawn up on this, and not the other sille. We do not mean to say there is no water there, because all the water and nearly all the air which is left on the moon, some

astronomers tell us, is there, kept back by the mountains. Thus -the jeatures of our moon being very highly exaggerated, of course, that is to say, the water (shaded in the diagram) on the invisible face of the monn, and the atmosphere (dotted) above, do not exceed in height the level of the lowest valley in the mometain-ridges which keep them back. There may be a little water remaining in the oceancavities on the side we see (a little air also), retained by the angular position of other ridges, which keep them back (as at ab,c cd). Such are the views some take, while all map out great spaces and call then seas,-Mare N'ubium, Mare Humorum, Mare Tranquillitatis, Mare Serenetatis, Mare Imbrium, and Occunus I'rocellarum. But they do not tell us what has become of the weter that once was in them. "Gone to the other side." Gone against attraction ? -No. Will Professor Phillips, who is doing Lanar Geology as well as Terrestrial, tell us? Will any Oxford scholar tell us-divine or scientific?

When Mr. Airy lectured at the great Manchester Hall, a fow weeks since, he said-

[^58]

three of these rays occurred on the left; and when the moon was leaving the sun's disc, rays were seen on the right. This seemed to show that the appearance was produced by a cloud or cloudy atmosphere between us and the moon. In our atmosphere there were sixty or eighty miles of darkness all round, and these appearances could not be formed by refraction there. Is there, then, an atmosphere all the way to the moon? There is nothing else to explain them, as far as I know, and I think this does. Polarization supports it also. When light is not reflected, it is vulgar white light; but when reflected from the surface of a transparent medium, it puts on that modification known as polarization. When, therefore, we see it polarized, we have strong reason to think that the light has been reflected, and hence, by something like an atmosphere between the earth and the moon."*

A little chink will let in much light. Is this a chink to let some in? It is the only support for a long-retained, and perhaps it may be visionary, idea. When some one praised the Astronomer Royal, in the sectiou of the British Association meeting over which he presided, for the boldness of his views on terrestrial magnetism, he justly said, "When he believed he was right, he could boldly state his views; but he could be bolder still, he could retract them when he found them wrong." We do not like to risk our reputation, but we can be bold enough to speculate if we think there be but a grain of truth in our day-dreams. Beyond doubt, modern geologists do not countenance the idea of a single or particular deluge, much less an universal one, mountainhigh, all over the globe. Even divines have souglit to limit and restrict the Noachian deluge to certain geographical areas, and otherwise to modify or do away with the universality spoken of in the Holy Writ. Unlike the genesis of man, it is a subject we can discuss without offence to any religious prejudices. It is a question purely of tra-dition-not of inspiration at all-and we may discuss it as an historical fact, or as a physical fact, with the utmost freedom and licence.

Take it first, then, as a tradition. The flood of Noah, the flood of Deucalion-every nation has its tradition of a flood. There are few traditions, surely, without some foundation in truth ; and while it would be impracticable to reconcile a universal deluge overwhelning the peaks even of the mountains some few thousand years ago, with the present physical aspect of our globe, and the geographical distribution of animal life, or to find any geological phenomena that would give countenance to it at all, the antiquity which the discovery of flint-implements, and other relics, and even bones, in Pleistocene strata, and in turbaries, have given to man, entitle us to extend

[^59]greatly backward in time the epochs of remarkable events, of which the traditions have reached us from a very remote antiguity indeed. It, is even possible that such traditions may extend back to the Pliocene period, in which scemingly, if not before, the age of man began. But we leave this suljeet alone, and return to the question-What has become of the waters of the moon? The ocean-cavities, if they were once filled, must have been emptied. What emptied them? We know that year by year the moon gets nearer to us ; it may be only balf an inch, and astronomers even dispute whether it is more than a quarter ; but nearer, we believe, it does come. We know also that such changes are said to correct themselves, but we cannot say there is not a residual balance in favour of approach. There is good reason to consider that nothing in the whole universe is stable, although the changes are so slowly grand that centuries of observation are insufficient to prove their rate. Still we may believe the moon has come nearer the earth. If it comes nearer, it has once been farther off; no doubt it has-very much farther off; and then it was it had its atmosphere and its occans. Then the great Oceamus Procellerum was a rolling sea, and the Mure Serenitutis lay glittering under the golden streaks of our earth's bright beams, and clouds floated in, and storms disturbed the encireling atmosphere. But when the moon, grallually diminishing ber distance, came sufficiently within the influence of the earth's attraction, did its superior gravitation draw off her moist atmosphere towards its own, and make a roadway of thin air, along which clouds of the most highly rarified watery vapours might travel earthwards? With the diminished pressure, consequent on the partial loss of atmosphere, the water on the moon's proximate surfaco would more and more quickly evaporate ; for just as water boils on one of our mountain peaks with less heat, as the pressure of our air diminishes, or as warm water boils in a vachum, so would the reduction of atmosplierie pressure by the earth's attraction of her atmosphere, and the continued loss of vapour cause a most rapiel evaporation of her seas, and elouds of highly raryified water would roll along the aerial way, and mingle with those in our skies. The waters of the moon might thus be transported to our globe, and carried by strong and swefping eurrents all mround, while the lumar vapours, in condensing, would fall in torrentinl rains over the whole
face of the earth. Whether the transference would be in "forty days and forty nights," or not, we do not pretend to say. Sudden and rapid might be that of the last remaining portions of the moon's oceans, when the atmospheric pressure was reduced to its minimum, and torrential rains might be thus produced on our earth-not a total submergence of the land beneath one uniform sea of waters, but such a condition of inundations and torreuts as might well be regarded as a universal flood.

Mr. Downes has shown, with good reason, that comets may be frozen-up worlds of water-ice and solidified air, the effect of the intense cold of the vastly distant space to which in their excentric courses they reach out, and where the sun can seem no bigger than a point or a tiny twinkling star. Comets, therefore, might bring watery vapour and air to our atmosphere ; but comets are not one, but many. Every year or every century might, if comets were the cause, witness a deluge. What might have happened once could happen twice or fifty times, and comets hence can be no more regarded as the cause of AN universal deluge than the regular cyclical oscillations of the earth's poles in 20,000 years. The transference of the moon's water to the earth could happen but once. The torrential nature of the final rains of such an occurrence might well produce on the terror-stricken minds of men, or the imaginative mind of the historian, the idea of the "windows of heaven being opened, and the fountains of the deep broken up." If Mr. Airy be right, that an atmosphere extends now to the moon, we can scarcely consider that our own atmosphere extends as a regular enveloping sphere up to the moon's surface, because if it did so, one would think the moon would wrap herself up in a mantle of it; but rather should we not presume that the moon raises by her attraction up to herself the apex of a vast atmospheric tide? and if so, the roadway of the lunar rains is still extant.

Nor do we wish to assign any particular period to the supposed transference of the moon's waters to the earth. It might as well have happened in the carboniferous age as in the tertiary or recent. It might have occupied millions of years, and have influenced for ages the meteorological conditions of our atmosphere. But if geology points specially to any particular time we think it does so to the Loëss and loam-period, when the deposits seem to give evidence
of a very long-continued rain-fall. If this be so, and it were due to the conse that we have been considering, it would bring the period within the era of man, and the tradition of a flood may have a deepseated origin of truth in remotest antiquity. Hence the only reason why we have connected the subject of the Deluge with the almost purely hypothetieal speculation we have been guilty of. In the later tertiary deposits there seems almost everywhere evidenee of the torrential action of water, and apparently tumultuous accumulation. The rain-fall of lunar vapours might have produced such numerous simultaneous local floods and inundations as to give comparatively an appearance of universality to the phenomena, and the final rains might have been rapil and cataclysmal.

Knowing as we do how readily men seoff at "far-fetched notions," it has required some amount of courage to put even the simple ques-tion-What has become of the water of the moon? Doubtless tho moon had once ocean and air ; if so, What has become of them? is a question not to be aroided by the geologist in the consileration of the past, because if those waters have not been amalgamated with the earthy aud metallic substances of the moon, nor driven off into space, nor attracted to the sun, which are not likely, their transference must have taken place under the natural laws of gravitation to the earth. When this was, mathematicians or astronomers may work out; anl geologists may confirm their results from the recording pages of the earth's crust.

We leg, however, theso remarks may be viewed as they aro in-tended-as a speculation. We do not nttempt to prove that the attraction of the earth would have been sufficient to draw away the water of the moon in the form of highly rarified vapour. The idea is not propounded as a theory. We know if not all, at least far too many, of the diffieulties to be opposed to even a general torrential main, to see our way clearly to surmount some of them. One thing, however, is cortain, there are waterless ocean-cavities on the monn, and the question is well worth asking, or considering, Where have their waters gone to?

CORRESPONDENCE.

To the Editor of the Geologist.

Sir, - When a subject of so much importance as the antiquity of the human race is being discussed, there is a liability to the production of fallacious facts, as well as the possibility of "true facts" being pressed beyond their legitimate value.

A correspondent bas furnished you with some particulars concerning the discovery of a human skull in the valley of the Trent, near Newark-a very different locality from the vale of Belvoir.

I am of npinion that some caution is necessary before this discovery can be taken in evidence upon the subject in support of which it is brought forward. There are facts associated with the locality which, I conceive, do not support the apparent testimony-that the skull in question belonged to an individual who lived in the age of animals now extinct. The position in which it was discovered-so near to the river Trent-would give a degree of suspicion to its being a genuine witness ; besides, its being so near to a bend in the river would make its value additionally questionable. The horns of deer, and bones of extinct animals, with which it was found, do not supply a sufficient reason in this particular instance for its being produced in evidence of a high antiquity.

Any one who is familiar with the geological phenomena of the Trent Valle would regard with considerable doubt the claims which this skull should bave in bearing testimony upon so important a question, because an apparently undisturbed condition of the drift could not be relied upon as a safe criterion by which to judge of the antiquity of its animal remains, in localities near to the present channel of the river. The Trent, in various parts of the valley, is ever changing its course, especially at the curves. In the course of a few centuries, therefore, it is possible the stream might deviate considerably from its original channel. This fact has been observed in several instances. In one example, a few miles from the place at which the remains alluded to were discovered, the gradual erosion of the land from one side at a bend in the river, and an equivalent deposition on the opposite margin, has continued until several acres have been transferred from one side of the river to the other, within the memory of living individuals. The river, moreover, does not continue at the same depth at any particular place; places which were once fordable are now too deep to pass over, and vice versat.

If human remains were discovered at a depth of twenty-five feet in these drift gravels, over which it was known the river liad passed in recent times, it is certain they could not supply any satisfactory evidence of a high antiquity.

The diagram at p. 351 represents the locality of the discovery. The sharpness of the curve in the river would undoubtedly in a few centuries cause the strean at this place to deviate more or less from its original course. This skull may, therefore, have been in the first instance at the botton of the river with the bones of animals and horns of deer washed out from the drift gravels, and as the stream graduaily removed from the channel in which it then flowed, they would be covered by its deposits. In course of time the river would have removed to a distance from its former bed in which the remains were found.

The assoeiation of pottery with the other relics in so limited a space as fifteen feet rould seem to indicate a depression in the bed of the river, into which they would be collected by the current.

The river's deposition of sand and silt would also assume that natural form which would have the appearance of an undisturbed stratification, because it had been formed by natural causes.

If those who have inspected the locality have fully estimated these facts, it may be the discovery is as valuable as your correspondent appears to consider it.

I am, dear Sir, yours respectfully,

THE CRADLEY PTE(AASPIDEN.

Jear Sir, - In answer to your correspondent of last month, who signs himself " Wallatuc," I merely state agais that when I visited the quarry at Cralley, in June last, there wats a large heap of stone in hlocks of about a foot to a font and a half square, which had heen worked out of the quarry, and that most of these Whocks when carefully examined, contained three or four good specimens (some more) of l^{\prime}. rostra'us. I had in any possession one picce of sandstone from Cradley lialf a fint square, in which were imbelded five Pteraspides and one Cepmataspis. Part of this specimen is now in the British Museum. I should not have called my specimens l '. rostratus unless I hal had good authority for so doing. As your correspoment inquires as to what or whose it is, I beg to fuform the "poor ignoramus," ns he styles himself, that I have shown nll my sperimens of Pteraspis to Professor Hoxley; who has had others from the same locality umber examination, and it was upou hisauthority that 1 called them P. rostrutus and wot Lercisii or Llaydii. In conclusion, I would say with your correspondent, " Do not, young geolngist, turn aside from Cradley, but repar thither," \&e., and mind to provide thyself with the luryest bag thou canst lay thine hands on.

I remain, dear Sir, yours truly,

\&, Surile-row.

E. R. Lankester.

THE DARWINIAN THEORS.

Sir, - In rejlying to Lieut. Hutton's article on the Development Theory of Mr. Darwin, I undentuol him to alrocate the Development Theory as usually propoundeal. I find, however, from his explanation in your number for July, that such is unt the case ; that he claims for his theory what the theory claims for the various forms of life, namely, the ahility in the "btruggle for life"-and a harid struggle this "theory" has hat for its life!-to modify atself according to circumstances. Amb hence arises the faet that what seemed "shalows "to him possensed all the characteristics of reality to me. The "Development Theory," as I knew it before lieut. Hutton published his views concerning it, is thus epitomized by Professor Oken ("Elements of Physiu-Ihilosophy"-qunted by Hugh Miller in "Fontprints of the Creator"):-"No organisin has been created of larger size than an infusorial point. No organism is, nor ever has been, created which is not microsenpic. Whatever is larger has nut been created hut developed. Nan has not been created hut developed." Do theso sentences contain licut. Hutton's idea of the Development Theory?

As thus laid duwn the Develnpment Thenry says, "Man was not createl hut develuperl." The Bihle says, "Goul creuted man in his orm imuge." Again, the now "variatim" of the theory, as "developed" by Lient. Hutton, sats, "Han" was develuped from the lirute until "the time was come that he was fitteal in receive his montal and moral pusers "- when ran a brute be "fited" to receive a rexpmand goul?-and that then "they were given bum by a sprecial intorponitum of the mane fower that cruated (developed') all thingn." "That is to say, tone night the "man" Sdam lay down on sleep a brute, with the irmanal mind, brutinh propentus, and i-respuntille nature of a lirute, and awoke tho next morning a iman, with the God like intellect and untainted beliness of unfallen hmanmy! The in "derctopment" with a vengeance; and the faith that can awall wit is cauch of tranmutation newd never strain at the grat of creation. To me it mosma very hittle diffirmt Irum what the acivestes of creation by direct act claim, at leatt mo far na mon is conernerl, for we can nether say that Adam the man wasthe same indivilual with Adain the lirute, mor yet that the one was a levelopment of the other. Therefore it in evident, from Licut. Huten's own admis. ninn, that the "Theory of D. relopment" fails, in the cave of man, to account for the various fortion of organic life.

Hut iet un pursue this adminsion to another of its resulta. While it is undeniable that the nugutine momat powerm of man pre-eminently distinguiah him alove every - ther creatore, it is equally undeniable that most, if not all, of the other firma of life prisens thair varicus digreas of mintal pmeer, and that they are not more distirguished by this pecularities of form and structure than by their varied
degrees of intelligence and sagacity. Now, either the higher natures are developments of the lower, or they are not. If they are mere developments, why may we not regard the nature of man as a development too? What special reasons are there for supposing the nature of man to be a creation, while we regard the varied and distinctive natures of the other ammals as mere developments? We perceive in the old proverb, "Necessity is the mother of invention," the popular recognition of the fact that circumstances have a certain modifying effect upon the intellect of man, and that, too, in cases where, in all probability, they would fail to exercise any modifying effect whatever upon the mental powers of the brute. If, therefore, the developing power of circumstances acts in certain cases with even greater effect upon the man than upon the brute, why may we not suppose that these modifying causes might act during an almost infinite succession of ages and through an almost endless chain of being, and the accumulated result be the mind of man as twe now find it?

Further, if mind of any degree can be deveioped, I certainly see no greater difficulty in supposing that an animal, under the pressure of circumstances, might modify its mental powers (as in fact is done daily in education, both in man and many of the lower animals), than in supposing that it might acquire a new member or a new faculty. If, for example, the mussel can develope into the fish, as Oken says it can, why may not the nature of the mussel develope into the nature of the fish? Or, if the fish can develope into the land animal, why may not the nature of the fish develope into the nature of the land animal ? Or, finally, if the brute can develope into the man, why may not the nature of the brute develope into the nature of the man? From a careful perusal of Lieutenant Hutton's article and explanation, it appears to me that he supposes the various natures of the inferior animals to be mere developments, the higher of the lower ; but how he can at the same time coasistently maintain that the uature of man was "given him by special" act of creational power, I confess I cannot make out. Perhaps he found himself in one of the "dilemmas" he speaks of, and wished to harmonize his theory with the facts before him. If, however, I misapprehend his "Theory," and if, in reality, he means to assert that mind cannot in any case be developed, then in effect the "Theory of development" becomes the "Theory of creation," for a continuous series of "special interpositions" is assumed, and the idea of development becomes a new and very comprehensive idea indeed.

But to return for a moment to the theological aspect of this theory, Lieutenant Hutton says, that "man" was developed from some inferior animal (he does not know which), but that his "mental and moral powers," that is, his soul, were bestowed upon him at the proper time by a "special" act of creation. The Bible says (Gen. i. 26, 27 ; ii. 7, \&c.) that God created man both body and soul. I am aware of the use which Lieutenant Hutton makes of the word "created," but I reject that use of it in this place as evidently inappropriate. I have not as yet seen the pamphlet by Dr. Asa Gray, but I have read my Bible, and whether I interpret it aright or Lieutenant Huitton, I leave your readers to decide. For a further discnssion of the theological bearings of the Development Theory, I must refer your readers to Hugh Miller's "Foutprints of the Creator," a work containing some rery good arguments on the subject.

I have already occupied more of your space than I originally intended, and consequently feel loath to trespass further; still I cannot close my letter without a remark or two on the actual position of geology with reference to this theory. I will endeavour, however, to be very brief; and if in conseqnence of this enforced brevity, my arguments or illustrations should seem to any incomplete or inconclusive, I trust they will ascribe such defects to their true cause, and not to any uncertainty in the teachings of geology, which, to me at least, are plain and unmistakeable.

In my former letter, inserted in your number for June, I quoted from Darwin the statement that, if his theory were true, then before the deposition of the lowest Silurian strata there elapsed periods of time " probably longer than the whole interval from the Silurian age to the preseut day," during which "the world swarmed with living creatures ;" and I put to Lieutenant Hutton the question which had already been put to Mr. Darwin - "What has become of the records of these vast primordial periods?" In reply, Lieutenant Hutton simply refers me to his very elaborate
pieture of the manifold shorteonings of greology-shortermings which, if they roally exist to the extent he wishes to make ont, must go a great way towards insalidath g wearly the whole of the facts uf labenntelugy. For example, what relionee can be phacel "pon the teathings of a science any one of whose known facts may be successtully denied by a relerence to sume uther of its supposed and unknown facts, und of wheh it is a sertial, by even ita uwn cultivaturs, that we ean at the best anly hope to obtain a few fraginents of its latter hall? We shall return again to the subject of these alleged defects in the genbgieal records; meantimu bo it remembered that these "primordial perions" are altonethor hypothetical-that they are assumed in direct opposition to the opinion of the most emincht geologists -that they are almitted by lharwin himsell to be "quite unknown," and that they are assumed hy the adrocates of the Development 'Theory suldy because the existence of their theory rupares it. The dictum ul' Juhnsm strikes me as peculiarly applicable to sueh ingenious speculaturs. "Hle wlan will petermine ngainst that which he knows, becanse there mity be something which he knows not-he who will set hypothetical possibility againsi acknowledged ecrtanty, is nut to be abmitled :tmong reasonable beings."

Again, to test tho "thenry" still lurther. "What," asks Murh Miller, "in order to establish its truth, or even to rember it some degree probable, onght th lie the geological evilence remarding it? The reply seems obvious. In the first place, the earlier fossils ought to be rery smull in size; in the second, rery lum in organizution" (" Fonotprints of the Creator," 1. 21). Every student of genlogy kuows how completely the fucts of geolugy contradict the " theory" on these prints. "The catrlier fussils" of erry formation, from the lowest to the higheat, are, ats is well known, neither "very small in size," nor "very low in nrganization." Tho lowest foun I fussils of each furm of life are nut foutat or imperfect; when they make their firnt ippearance they are always found fully formed, athl| erfect in theirurganaation. Sisy more, su far from the fossils of the dillerent formations appering imperfect in fortu or organization on their first apmeasance, and then cahihiting at graduallyircers asing perfecton of form and organization an we aseent from the lower to the higher beta (as they onfhet to do aceonding the the "thory"), we fime that in many re prets the contrary is actually the "ase that "the wagnates uf eath mace watk firmt," aul that if ge nlogy furmshes un "reasems for disbelieving the thenry" of developnent, it furnishes nitany umdoubtal foets in for wr of an eppinsite theory of
 prints of the Creater," an excellent work, mul to which 1 ingain refer the reader. I leave to Lientenant Jutton the La k of hammonzing the megative eridenere wheh he consilers geolngy to furnish in suppurt of his Theory of Development with the po. atire evid nee adduced by Wurh Niller in suppret of his theory of derandation.

I am aware that in opmeition to these statements licut. Iluton will reforme to that prart of his article in which be describes the imperfection of the grenlegieal reeoril, amb assumey that we have not yit reached, abll that we ought mot toexpect evir to reach, the leorizon of :ny form of life. Lint to this I reply first, by asking
 I reir lim to my quitatit is from Juh a m. Iint I ryply still further, that this

 with tho dhwn of that pur ioular remaim, atill it it is an admstted fact that that

 certuly of wery hutio value "ather for or agnibst tho develpment ar athy other thery.

Eilit th in Ieala ne to remak, that 1 have ran of believe that the geole ical

 to makn it rymar,

The readers of Owen will no doubt remember the paragraphs on the distribution of the Mammalia in his "Palæontology," in which he asserts the value of even the negative portions of geological evidence. Objecting to the " conjecture that the mammalian class may have been as richly represeuted in primary and more ancient secondary as in tertiary times, could we but get remains of the terrestrial fauna of the continents," he insists that the negative evidence furnished by the total alsence of mamnalian remains from the primary, and "the scanty and dubions" traces of them in the secondary beds, is sufficient to carry convietion to the uubiassed mind that this class did not exist at all during primary times, and only began to exist in secondary times, and says that, "to the mind that will not accept such eonelusion, the stratified oolitic rocks must cease to be trustworthy records of the condition of life on the earth at this period." The applicability of this to the case in hand is obvious.

Again, as we descend into the crust of the earth, the animal kingdom gradually loses its present high and diversified character-first, one great class and then another disappears from the stage of existence, until as we approach the lowest of the fossiliferous beds, the evidences of furmer life become not only confined to the lowest forms, but gradually more and more rare, and finally they cease altogether. This is the lowest zone of aucient life, and below it no trace of organic life is found. And this too, be it remembered, in situations not at all ill-caleulated to preserve any forms of life which might have been committed to their charge, many of these rocks being in fact much less metamorphosed than many others higher up in the geolojical series, which actually do retain impressions of the organisms originally buried in them. From these facts the conclusion naturally follows, that if we have not in these lowest fossiliferous strata actually reached the dawn of life on the earth, we have approached sufficiently near to warrant our forming an opinion respecting it, and to make the expectation of further discoveries in this direction all but hopeless.

Here again we find additional proof of the trustworthiness of the geological records. In them we find an almost complete history of the progress of life on the earth from its dawn millions of ages ago down to the present day. In them we find breaks certainly-breaks sufficient to show us that our history of life on the earth, full as it undoubtedly is, is not perfect ; and to stimulate the diligent inquirer with the hope of occasionally adding a new link to the chain-hut as certainly we find nothing in them to warrant the idea of such breaks as the Development Theory demands-breaks of thousands of centuries, at least as often as the commencement of each geoloyical formation, and probably of much more frequent oecurrence.

On these aud many other grounds, therefore, I arrive at the conclusion that the facts of geology do not support the Theory of Development, and in conelading this communication, I would urge upon your readers the duty of a thorough and impartial examination of the bearings of geolugy upon this "theory" before its claims are admitted or evon temporized with. It is evidently, as Professor Owen expresses it, a "chance aim of human fancy, uncheckerl and unguided by observed facts;" and further he says respecting it, that "observation of the effects of any of the hypothetical transmuting influeuces in changing any known species into another has not yet been recorded."

The "iveorsistencies and absurdities" Lieut. Hutton speaks of are merely imaginary. For example, I believed, and still believe, that if I could show one of the links of the supposed chain of development to be defective, the whole theory would fail as a theory attempting to account for the conditions of life on the earth, because insufficient to account for the phenomena of life. Well, did I not show the defectiveness of the supposed link between man and the brute? And did not Lieut. Hutton acknowledge this defect by attempting to patch it up with an act of "special interposition?" Did he not, therefore, by this act acknowledge that his theory was, by itself, insufficient to explain the conditions of life? Then let Lieut. Hutton show wheie the "inconsistency" or "absurdity" of my assertion lies, and having done that, let him next explain his own inconsistency in introducing creatioual acts into a "Theory of Development."

His other objections are about equally well founded, and as my communication is already far too lengthy, I therefore pass them over in silence.

I am, \&c.,
Gilussop, July $26 t \mathrm{k}$.
T. Grindley.

FOREIGN CORRESPONDENCE.

General Cunsilerations on Meteorites. By Dinfector W. Mardingra. (Viemna Imperial Academy of Sciences, March 14, 1861.)

Tue specimen of the meteorite which fell May 19, 1858, at Kakowa (Banat), and which Count Coronini, then governor of the province, transmittel to the Imperial Geological Institute at Vienna, and which afterwards was transferred to the Imperial Mnseum, gave the first impulsion to a renewed study of these highly interesting substances, and to the completion of the collection of meteorites in the Imperial Museum, by exchange and otherwise. By this way specimens were obtained from Europe (Tula, St. Denis-W'estran, Trenzano), from India (Allahabad, Assam, Pegu, Segowlee, Shalka), and from North America (Nebraska), together with valuable information concerning these phenomena, while MM. Haidinger and Reichenbach mado them a subject of theoretical investigation, the results of which were pulbished in the "Proceedings of the Vienna Acatemy," and in several German periodicals. Numerous and partly accurate as the statements on this matter are, the establishment of a complete theory of encteorites, and of the phenomena attending them, would still be premature.

Several of Director Haidinger's thenctical views have heen lately stated independently hy Professor Lawrence Smith, of Louisville, Kentucky ; others have met with more or less jositive contradiction.

T'wo ohjects offer themselves for scientific consideration. 1. The phenomena connected with the appearance of meteorites within the boundaries of our ghobe. 2. The ensequences to be dednced from the sturly of the metallic aud stony meteorites in themselves, especially as to their more or less crystalline structure.

The meteor observed by Dr. Schettezyk on November 28, 1859, at Strakonity. (Bohemia), uppeared at first in the form of a star, and gradually increased to the size of a fiery hall, which ut last exploded without (at least so far as hitherto knewn) leeing followed hy the fall of any solid sulntuce. At New Concord, Ohio, on May 1, 1860, a similar ! henomeron was very accurately observed ; but no mention is made of its first aprearaner in the shape of a star. The resistance opposed to the igneons globus ly the atmospheric air, compressed during the whole course of their rapisl passuge, is particularly worth consideration. A twisting hurricane moves at the rate of 92 Enclish miles per homr (131.72 fiet, Virmanamen in one second) ; a point of our globe's surface under the equator, under perfect calm and horizontal atmospheric pressure of alowe 1801 Viema pomels per square-foot (while the same pressure in the abowe mentioned hurricane dues not exceed 32.81 pounds), accomplivies its matatory movement at the rate of 1464.7 feet por secoud ; while in the sance time, the meteors pass gencrally through
a space between \pm and 23 and more miles; the pressure, at an average velocity of seveu miles per second, being 22 atmospheres per squarefoot. Benzenberg has already pointed out the analogy of this process with the apparatus for lighting matches by sudden and violent compression of air; and indeed the passage of a boly through air at such a rate cannot be conceived without an enormous compression, and consequent development of heat and light. The air is forced on every side out of the meteor's orbit, in directions perpendicular to it, and must round itself in a spherical or ovoid manner from belind the rapidly progressing meteor. As Professor Smith supposes, the sound is not a consequence of explosion, but the clash produced by the air suddenly filling up the vacuum left by the meteor behind it, and renewed every moment as it continues its career. Dr. Haidinger and Professor Smith, with many other naturalists, agree in the supposition that meteorites are fragments of larger solids pre-existing in the cosmic spaces; the hypothesis of their existing originally in a state of igneous fusion being in open contradiction to the generally accepted hypothesis of an extremely low temperature $\left(100^{\circ} \mathrm{C}\right.$.) of these spaces. The tufaceous aspect of meteorites seems rather to indicate an origiwally pulverulent state, in which crystallogenetic forces were called into activity, and modified or counterbalanced by external circumstances, in a mode analogous to the formation of the sphærosideritic septaria occurring in argillaceous strata. The first effect of pressure from without must have been the formation of a solid, superficial crust, during whose complete solidification lateral pressure, and thedescending movement of heavier particles, would call into action thermal, electrical, and chemical influences. A similar process going. on within the external crust may possibly occasion real explosions. The chapter on meteorites has been most ably and profoundly treated by M. E. E. Schmidt ("Lehrbuch der Meteorologie"), G. Karsten ("Algemeine Encyclopædie der Physik," Leipzig, 1860), and F. C. Naumann (" Lehrbuch der Geognosie.")

DEEP SINKING FOR COAL IN THE WYRE FOREST COAL-FIELD.

By George E. Roberts.

Mention is made by Mr. Hull, F.G.S., in the second edition of his useful work on the coal-fields of England, of a deep sinking for coal on the estate of the Arley Pottery and Fire brick Company, situated at Shatterford, five miles north of Bewdley. This work, though unfortunately ending in failure, and leading to the abandonment of the enterprise, deserves a prominent position in the annals of coalmining, chiefly because the section obtained may be regarded as an index to nearly the whole of the coal measures of the forest of Wyre. Through the courtesy of Mrr. John MI. Fellows, manager of works to the late company, I am enabled to place on record the particulars of
the Shaft-sinking. 'T'o illustrate it, I have sketched the geologieal cemstretion of the district for three miles in a line north-west to som hectast, adding a section due north and south of the near-lying anticline of Trimpley, where the upper tilestones erop out. While the work of sinking was in progress, I obtainet daily intelligence either through visits or by communications from Mr. Fellows, to whose obliging condnct in giving me every facility for scientific investigation 1 am greatly indebted.

The specimens ubtained from each bed were particularly examined by me, and the tire-clays, which, from their number formed an important part of the series, were of a highly interesting character. The fossils oltained do not reyuire special notice, no new fern being met with, and the Sigillarik, se., heing few in number and badly presorved. These in every ease lay prostrated in the strata, and appeared to have been drifted.

PARTICULARS OF SHAFT-SINKINGS AT ARLEY WORKS, NEAR BEWDIEK, STAFFORDSIIIRE, OCTOBER 30, $15 \dot{U}^{\circ} 0$.

The above sinkings were made about the year 1850 .

The following were continued from the above coal in the year 1859, and finished in 1860 :-

Fire clay		1	2	- 178	1
Mottled ground, with ironstone pins		3		181	1
Strong grey rock		4	-	185	1
Hard conglomerate rock		2		187	1
Mottled ground		2	2	6190	
Strong grey		2		192	
Red, blue, and green grounds (mottled)		2	-	19	-
Strong bluish rock (gritty) ...		2	2	196	2
Rock binds				$6{ }_{6}^{6} 197$	
Mottled ground			,	197	2
Grey rock		3	2	- 201	1
Strong mottled ground		2	2	- 204	
Mild blaish rock			-	$6 \quad 204$	2
Blue and red binds					
Jild blue rock			2	6	
Strong mottled ground				07	
Blue and red rock		1		208	
Red marl				$6{ }^{6} 208$	1
ue rock b				- 208	2
Red binds		1	2	210	1
Blue rock				11	
Red and bluc binds				11	2
Red and green marl			1	12	
Strong light blue limestone-		1		213	
Red and blue binds			2	4.213	2
Red and green parting				8.214	
Light mottled ground and strong b				216	
Red and green rock...		1		217	2
Blue and grey rock				- 218	1
Red and blue binds ...			1.	6.219	
Ditto					

Strong red mad the grombd

Light-culonred shate
licel, blue, and strong whito mottled ground Strong grey rock
Red and blae and hrown and blue mottled ground Light-celoneed marl
lied and blne rock
Bhe and red marl (rocky)
Red rock
Blue rock
Girey, red, and blue strong rocky ground
Bluc rock (mingled with red at top) ...
Blue binds
Coarse conglomerate rock.
Green and brown rock
Blue and red ground
Bastard firc-clay
Red and hilne rock
Strong blne rock
hed and blue rock
Blue and red rock binds
Grey conglomerato rock
Black und pink ground
Coarse fire-clay
Red and blue rocky grounds
Blar and red dito
Cuarse dire-clay
Blue and red and dark shaly ground ...
Blue ruck
Rod and pink rock

Dark dittn
Strong common fire-clny
Wark rock
('onrsm rock [stone mud lita of coal Dark grey and blue rock, mingled with pian of ironConglomerate rock
Rack mingled with hlack shalo
light-colunred lire-clay rock
Brawn nad red conrse roek
Real null line grownd
Bhne rew k
Black lat
Fire-elny, mingled witls pins of ironstone
Haril mattlel row
Dark yillos marl
Wark and imel unt
Firr-clay (stokl)
Dark tire-clay rork

1

				$\left\lvert\, \frac{x}{5}\right.$	守	$\left\lvert\, \begin{aligned} & \mathbb{D} \\ & \stackrel{y}{\Xi} \\ & \vdots \end{aligned}\right.$	\sum_{y}^{∞}	-	哭
144	Black bat	.		-	2	3	. 107	1	
145	Coal (good)			-	1	1	107	2	5
146	Strong fire-clay rock			-	-	6	407	2	11
147	Hard gritty rock (like limestone grit)		...	-	$\stackrel{2}{2}$	6	408	2	5
148	Dark gritty rock		-	1	2	409		
119	Blue binds	3			412		7
150	Blue and red ground	\ldots		-	1		412	1	17
151	Dark fire-clay clod		...	1	-	7	413	\because	2
152	Hard light blue and grey rock	\ldots		1	\because	δ	415	1	110
153	Black bat, dark clod, and rock bind			1	1	6	417		
151	Bat 4 iuches, coal 4, bat 4	\ldots		-	1		117		
155	Fire-clay ...			1		3	118		17
156	Blue and green rock			1			419		17
157	Red and mottled ground ...			-1		-	419	2	27

(End of Sinking.)

BORINGS.

1	Grey rock	...			
2	Dark blue rock bind...		...		\ldots
3	Dark fire-clay rock	...		\ldots	
4	Girey rock		...		\ldots
5	Dark firc-clay...	...		\ldots	
6	Dark grey rock
7	Blue rock binds				
8	Dark fire-clay rock (a li	le ba	at		..
9	Red and blue ground	
10	Dark binds (hatty) ...		\ldots		\ldots
11	Bluish grey rock	\ldots		..	
12	Dark binds		\ldots		..
13	Dark grey rock	\ldots		..	
1.4	Basalt or trap-rock		

Total depth !roved

เขчวบ!	-
- ว่าง	\square
${ }^{\text {spuve }}$ (${ }^{\text {a }}$	$\underline{5}$
sapua $^{\text {sin }} 0=1\|0=1\| 1 \mid 0=1$	

BRITISH ASSOCIATION MEETING.

The British Association Meeting was held this year at Manchester, and was marked by au unusually large attendance of members and associates.

The President's Address.

The President, Mr. Fairbairn, in his opening address, dwelt but slightly on the progress of Geology-the chief portion of his speech being devoted, as was to be expected, to manufactures and applied mechauics. We give that part of his speech which relates to our science.
"It is little more than half a century since Geology assumed the distinctive character of a science. Taking into consideration the aspects of nature in different epochs of the history of the earth, it has been found that the study of the changes at present going on iu the world around us enable us to understand the past revolutions of the globe, and the conditions and circumstances under which strata have been formed and organic remains embedded and preserved. The geologist has increasiugly tended to believe that the changes which have taken place on the face of the globe, from the earliest times to the present, are the result of agencies still at work. But whilst it is his high office to record the distribution of life in past ages and the evidence of physical changes in the arrangement of land and water, his results hitherto have indicated no traces of its beginning, nor have they afforded evidence of the time of its future duration. Geology has been indebted for this progress very largely to the investigations of Sedgwick and the writings of Sir Charles Lyell.
"As an example of the application of Geology to the practical uses of life, I may cite the discovery of the gold fields of Australia, which miglit long have remaincd hidden, but for the researches of Sir Roderick Murchison in the Ural Mountains on the geological position of the strata from which the Russian gold is obtained. From this investigation he was led by inductive reasoning to believe that gold would be found in similar rocks, specinens of which had been sent him from Australia. The last years of the active life of this distinguished geologist have been devoted to the re-examination of the rocks of his uative Highlands of Scotland. Applying to them those principles of classification which he long since established, he has demonstrated that the crystalline limestones and quartz-rocks which are associated with mica-schists, \&c., belong by their embedded organic remains to the Lower Silurian Rocks. Descending from this well-marked horizon, he shows the existence beneath all such fossiliferous strata of vast masses of sandstone and conglomerate of Cambrian age; and, lastly, he has proved the existence of a fundamental Gneiss, on which all the other rocks repose, and which, occupying the NorthWestern Hebrides and the west coasts of Sutherland and Ross, is the oldest rock-formation in the British Isles, it being unknown in England, Wales, or Ireland.
"It is well known that the temperature increases, as we descend through the earth's crust, from a certain point near the surface, at which the temperature is constant. In various mines, borings, and Artesian wells, the temperature has been found to increase about 1° Fahrenheit for every sixty or sixty-five feet of descent. In some carefully conducted experiments during the sinking of the Dukinfield Deep Mine, -one of the deepest pits in.this counitry, -it was found that a mean inicrease of about 1° in seventy-one feet occurred. If we take the ratio thus indicated, and assume it to extend to much greater depths, we should reach at two and a half miles from the surface strata at the temperature of boiling water; and at depths of about fifty or sixty wiles the temperature
would he sufficient to melt, under the ordinary pressure of the atmosphere, the hardest rocks. Reasoning from these facts, it would appear that the mass of the globe, at no great depth, must be in a fluid state. But this deduction requires to be modified by other considerations, namely, the influence of pressure on the fusing point, and the relative conductivity of the rocks which form the carth's crust. 'To solve these questions a series of important experiments were instituted by Mr. Hopkins, in the prosecution of which Dr. Joule aud myself took part; and after a long and laborious investigation, it was found that the temperature of fluidity increased about 1° Fahrenheit for every 500 lbs . pressure, in the casc of spernaceti, bees' wax, and other similar substauces. Howerer, on extending these experiments to less compressible substaners, such as tin and barytes, a similar increase was not observed. But this series of experiments has been unavoidably interrupted; nor is the series on the conductivity of roeks entirely finished. Until they have been completed be Mr. Hopkins, we can only make a partial use of them in forming an opinion of the thickness of the earth's solid crust. Judging, however, alone from the greater conduetivity of the igncous rocks, we may calenlate that the thickness cannot possibly be less than nearly three times as great as that calculated in the usual suppositions of the conductive power of the terrestrial mass at enormous depths being no greater than that of the superfieial sedimentary beds. Other modes of investigation which Mr. Hopkins has brought to hear on this question appear to lead to the conclusion that the thickness of the earth's crust is much greater even than that above stated. This would require us to assume that a part of the heat in the crust is due to superfieial and external, rather than central causes. This does not bear directly against the doctrine of central heat, but shows that only a part of the inerease of temperature observed in mines and deep wells is due to the outward flow of that heat."

ADDRESS TO THE GEOLOGICAL, SECTION.

By Sir R. I. Murciuson, D.C.L, I.L.D., F.R.S.

Although I have had the honour of presiding over the geologists of the British Association at several previous ineetings sinee our first gathering at York, now thirty years ago, I have never heen called upon to open the business of this section with an address; this enstom having heen introluced since 1 last necupied the geological chair at Glasgow, in 1855.

The addresses of my immediate predecessors, and the last amiversary discourse of the President of the Cieological Suecety of Loudon, have embraced so nuch of the recent progress of our science in many branches, that it would be supcrfluous on my part to go again over many topies which have been already well trented.

Thus, it is needless that I should necupy your time by alluding to the engrossimg subjeet of the most recent natural operations with which the geologist has in deal, and which connect his labours with those of the ellunfogist. On this heal I will only say, that having carcfully examined the detrital accumulations forming the ancient banks of the river Somme in France, I nin as complete a believer in the commixture in that ancient alluvium of the works of man with the reliquite of extinct animals as their meritorions discoverer, M. Boucher de l'erthes, or as their expounders, Prestwieh, leyell, and others. I may, howerer, expresa ms gratification in learning that our own country is now affording proofs of smilar intermixture both in Bedfordshire, Lincolushire, and
other counties; and possibly at this meeting we may have to record additional evidences on this bighly interesting topic.

But I pass at ouce from any consideration of these recent accumulations, and, indeed, of all tertiary rocks; and as a brief space of time only is at my disposal, I will now only lay before jou a concise retrospect of the progress which has latterly been made in the development of one great branch of our scieuce. I confine myself, then, to the consideration of those primeral rocks with which my own researches have for many years been most connected, with a few allusious only to metamorphism, and certain metalliferous productions, \&c.

There is, indeed, a peculiar fitness in now dwelling more especially on the ancient rocks, inasmuch as Manchester is surrounded by some of them, whilst, with the exception of certain groups of erratic blocks and drifts, no deposits occur within the reach of short excursions from hence, which are either of secondary or tertiary age.

Let us, then, take a retrospective view of the progress which has been made in the classification and delineation of the older rocks since the Association first assembled at York, in 1831. At that time, as every old geologist knows, no attenipt had been made to unravel the order or characters of the formations which rise from beneath the Old Red Sandstone. In that year Sedgwick was only beginning to make his first inroads into those mountains of North Walcs, the intricacies of which he finally so well elaborated, whilst I only brought to that, our earliest assembly, the first fruits of observations in Herefordshire, Brecon, Radnor, and Shropshire, which led me to work out an order which has since been generally adopted.

At that time the terms of Cambrian, Silurian, Devonian, and Permian were not dreamt of, but acting on the true Baconian principle, their founders and their coadjutors have, after years of toil and comparison, set up such plain landmarks on geological horizons that they have been recognised over many a distant land. Compare the best map of Euglaud of the year 1831, or that of Greenough which had advanced somewhat upon the admirable original classification of our father, William Smith, and see the striking difference between the then existing knowledge and our present acquirements. It is not too much to say that when the British Association first met, all the region on both sides of the Welsh border, and extending to the Irish Channel on the west, was in a state of dire confusion; whilst in Devoushire and Cornwall many of these rocks which from their crystalline nature were classed and mapped as among the most ancient in the kingdon, have since been shown to be of no higher antiquity than the Old Red sandstone of Herefordshire.

As to Scotland where the ancient rocks abound, though their mineral structure, particularly in those of igneous origin, had necessarily been much developed in the country of Hutton, Playfair, Hall, Jamesou, and McCulloch, yet the true age of most of its sedimentary rocks and their relatious was unknown. Still less had Irelaud, another region mainly palæozoic, received any striking portion of that illustration which has since appeared in the excelleut general map of Griffith, and which is now being carried to perfection through the labours of the Geological Surrey under my colleague Jukes. If such was our benighted state as regarded the order and characters of the older formations at our first meeting, great was the advance we had made, when at our twelfth meeting we first assembled at Manchester in 1842. Presiding then as I do now orer the geological section, I showed in an evening lecture how the palæozoic rocks of Silurian, Devonian, and Carboniferous age, as well as those rocks to which I had assigned the name of Permiau, were spread over the vast region of Russia in Europe aud the Ural Mountains. What, then, are some of the main additions which have been made to our acquaintance with the older rocks in the British Isles since we last visited Manchester?

Commeneing with the oldest strata, I may now assumic, from the examination of several associates on whose powers of observation as well as my own I rely, that what 1 asserted at the Aberdecn meeting, in 1559, as the result of siveral surveys, and what 1 first put forth at the Cilasgow meeting of 1555 , is substantially truc. 'The stratilied gneiss of the north-west coast of the Highlands, and of the large island of Lewis and the outer Hebrides, is the fundamental rock of the British Isles, and the precise equivalent of the Laurentian system of Camala, as deseribed by Sie II. Logan. The establishment of this inder, which is so clearly exhibited in great natural seetions on the west const of Sunderland and Ross, is of great importance in giving to the scicnee we cultivate a lower datum-line than we previously possessed, as first propounded by myself before the British Association in 1555.*

For hitherto the order of the geological suceession, even as seen in the Geological Map of England and Wales or Ireland, as approved by Sir Itenry de la Buele aud his able coarljutors, Mhillips, Ramsay, Jukes, and others, admits mo older sedment than the Cambrian of North Wales, whether in its slaty condition in Merioneth and Caernarvon, or in its more altered condition in Linglesca.

The researelies in the Highlands have, however, shown that in our own islands, the ollder palkezoic rocks, properly so called, or those in which the first traces of life have been diseovered, do repose, as in the hroad regions of the Laurentian Momntains of Camada, upon a grand stratified erystalline foundation, in which both limestones and iron ores occur subordinate to guciss. In Sentland, therefore, thene carliest gncissie aceumblations are now to be marked ou cur maps by the Greek letter alpha, as preceding the Roman a, which had been previously applied to the lowest known deposits of Engrand, Wales, and Ireland. Though we must not dogmatise and atlirm that these fundanental deposits were in their pristine state absolutely unfurnished with any living thungs (for L,ogan and sterry Hmm, in Canala, have suggested that there they imbleate traces of the former life'), we may conelude, that in the highly metainverphosed condition in which they are now presented to us in North-Liestern Britain, and associated as they are with much granitic and hornblendie matter, they are for all purposes of the practieal geologist "azoie roeks." The Cambrain rocks, of seerond stage in the assending order as seen repnsing on the fundamental gnciss of the North-Wirst of scotland, are purple and red sandstumes anl conglomerates forming loity mombtains. These resemble to a great extent portions of the rocks of the same age which nee so well known in the Longmynd range of Shropshire, and at Harlech in North Wales, and Bray Ilend in Irelime.
It Bray Head they have afforited the Cldthanita, possibly an Alga, whilst at the Lenginy yel, in shirphuire, they have ywhed to the researches of Mr. Salter some worm trachs and the trace of an obsemere ernstacean.

The Highland rocks of thes age, as well as their equivalents, the Huronian

[^60]rocks of North America, have as yet afforded no trace whatever of former life. And yet, such Cambrian rocks are in parts of the Longmynd, and specially in the lofty mountaius of the North Western Highlands, much less metanorphosed than many of the crystalline rocks which lie upon them. Rising in the scale of successive deposits, we find a corresponding rise in the signs of former life on reaching that stage in the earlier slaty and schistose rocks in which animal remains begin clearly to show thenselres. Thus, the Primordial Zone of M. Barrande is, according to that eminent man, the oldest fauma of his Silarian Basin in Bohemia.*
In the classification adopted by Sir Henry De la Beche and his associates, the Lingula Flags (the equivalent of the Zone Primordiale of Barrande) are similarly placed at the base of the Silurian System. This Primordial Zoue is also classed as the Lorest Silurian by De Vernenil, in Spain; by James Hall, Dale Owen and others, in the United States; and by Sir W. Logan, Sterry Hunt, and Billings, in Canada. \dagger
In the last year, M. Barrande has most ably compared the North American Taconic group of Emmons \ddagger with his own primordial Silurian fauna of Bohemia, and other parts of Europe ; and although that sound palæontologist, Mr. James Hall, has not hitherto quite coincided with M. Barrande in some details, § it is evident that the primordial fauna occurs in many parts of North America. And as the true order of succession has been ascertained, we now know that the Taconic group is of the same age as the lower Wisconsin beds described by Dale Owen, with their Paradoxides, Dikelocephalus, \&c., as well as of the lower portion of the Quebec rocks, with their Conocephalus, Axionellus, \&c.., described by Logan and Billings. Of the crystalline schists of Massachusetts, containing the noble specimen of Paradoxides described by W. Rogers, and of the Vermont beds, with their Oleni, it follorrs that the Primordial Silurian Zone of Barrande (the lower Lingula-flags of Britain) is largely represented in North America, however it may occupy an inverted position in some cases, and in others be altered into crystalline rocks.

In determining this question due regard has been had to the great convulsions, inversions, and breaks, to which these ancient rocks of North America have been suljected, as described by Professors Henry and W. Rogers.

* I learn, however, that in Bohemia, Dr. Fritsch has recently discovered strata lying beneath the mass of the Primordial Zone of Barrande, and in rocks hitherto considered azoic the burrows of annelide animals similar to those of our own Longmynd.
+ In completing at his own cost a geological survey of Spain, in which he has been occupied for several years, and in the carrying out of which he has determined the width of the sedimentary rocks of the Peninsula (including the Primordial Silurian Zone, discovered by that zealous explorer, M. Casiano de Prado), M. de Verneuil has in the last few months chiefly examined the eastern part of the kingdom where few of the older palæozoic rocks exist. I am, however, informed by him, that Upper Silurian rocks with Cardiola interrupta, identical with those of France and Bohemia, occur along the southern flanks of the Pyrenees, and also re-occur in the Sierra Morena, in strata that over-lie the great mass of Lower Silurian rocks as formerly described by M. Casiano de Prado and himself. The southern face of the Fyrenees, he further informs me, is specially marked by the display of mural masses of Carboniferous strata, which, succeeding the Devonian rocks, are not arranged in basin shape, but stand out in vertical or highly inclined positions, and are followed by extensive conglomerates and marls of Triassic age, and these by deposits charged with fossils of the Lias.
\ddagger The Silurian classification was proposed by me in 1835, and in the following jear, 1836, Dr. Emmons suggested that his black shale rocks, which he called Taconic, were older than any I described.
§ Nor are the writings of the Professors W. B. and H. D. Rogers in unison with the opinions of the authors here cited.

In an able review of this subject, Mr. Sterry Hunt thus expresses himself: " We regard the whole Quebee group, with its underlying primordial shales, as the greatly developed represcntatives of the Potsdam and Calciferous gromps (iinto part of that of Clazy), and the true base of the Silurian system." "The Quebee group, with its underlying shales," this nuthor adds (and he expresses the opimion of Sir W. Logan1), "is no other than the Taconic system of Eimmons;" which is thus, hy these authors, as well as Mr. James hall, shown to be the natural base of the Silurian roeks in America, as Barrande and De Verneuil have proved it to be on the continent of Europe.
In our own country a valuable culargement of our acquaintance with the relations of the primordial zone to the overlying members of the Silurian rocks, has been made through the personal examination of Mr. Salter, aided by the independent discoveries of organic remains by MM. Momfray and Ashe, of Tremadoc.

It has thus been aseertained, that the lower member only of the deposit, which has been bitherto merged under the name of Lingula-liags, can be considered the equivalent of the primordial zone of Bohemia. In North Wales that zone has hitherto been mainly characterized by Lingula and the crnstaceans Olenus and Paradoxides. Certain additions having been made to these fossils, Mr. Salter finds that of the whole there are five genera peculiar to the lower zone, and seven which pass upwards from it into the next overlying band or the 'Trenadue slate. But the overlying Tremadoc slate, hithesto also grouped with the Lingula-flags, is, through its numerous fossils (many of them of reeent diseovery), demonstrated to constitute a true lower member of the Llandeilo formation. For, anong the trilobites, the well-known Llandeilo forms of Asaphus and Ogygia ranre upwards from the very lase of these slates. Again, seven or cight other genera of trilobites, which appea: here for the first time, are associated with genera of mollusks, and enerimeses, which have lived through the whole Silurian series. Such, for example, are the genera Calvmene, llawnus, among crustaceans; the Lingula, Ortlis, Bellerophon, and Conularia, among mollusks, together with enerinites, corals, and that telling Silurian z.omplyte, the Graptolite. By this proof of the commanity of fossil types, as well as by a clear lithological passage of the heds, these Premadoc slates are thus shown to be indissolubly conneeted with the Llandeilo and other Silurian formations alove then!; whilst, although ther also pass down conformably into the zone primordiale, the latter is elaraeterized by the linguloid sheels (Lingulella, Salter) and ly the genera Olenus, Paradoxides, and Dikelocephalus, which most characterize it in Britain as in other regions.*
1 take this opportunity, however, of reiterating the opinion I have expressed in my work, "siluria," that to whatever extent the primordial zone of Barrande. be distinguished by peculiar fossils in any given tract from the prevalent Lower Silurian types, there exists no valid gromd for differing from Barrande, de V'erneuil, Jogan, James Hall, and others, hy separating this rudimentary fanna frons that of ilhe great silurian series of life of which stratigraphically it constitutes the conformable hase. And if in Europe but few genera be yet fonnd wheh are common to this lower zone and the I/andeilo formation (though the Agnostus and Orthis are common to it and all the Silurian strata), we may not unreasonahly attribute the circumstance to the fact, that the primordial zone of no one enumry contains more than a very limited number of distinet forms. May we not, therefore, infer that in the sequel other fossil links, sinilar to those which are now known to comect the Lower and Upper Silurian serirswhich I myself at noe time supposed to be slarply separated by their organie remains-will be brought to light, and will then zoologically connect the prim-

[^61]ordial zone with the overlying strata into which it graduates? Let us recollect, that a few years ouly have elapsed since M. de Verneuil was criticised for inserting, in his table of the Palæozoic Fauna of North America, a number of species as being common to the Lower and Upper Silurian. But now the view of the eminent French Academician has been completely sustained by the discovery in the strata of Anticosti, as worked out by Mr. Billings under the direction of Sir W. Logan, of a group of fossils intermediate in character between those of the Hudson River and Clinton formations; or, in other words, between Lower and Upper Silurian rocks. In like manner, a similar interlacing seems already to have been found, in North America, between the Quebce group, with its prinordial fossils, and the Trenton deposits, which are, as is well known, of the Llandeilo age.

I have thus spoken out upon the fitness of adhering to the classifications decided upon by Sir Henry de la Beche and his associates long before I had any relation to the Geological Survey, and which places the whole of the Lingula flags of Wales as the natural base of the Silurian rocks. For English geologists sloould remember that this arrangement is not merely the issue of the view I have long maintained, but is also the matured opinion of those geologists in foreign countries and in our colonies, who have not only zealously claborated the necessary details, but who have also had the opportunities of making the widest comparisons.

On the continent of Europe, an interesting addition has been made to our acquaintance with the fauna of one of the older beds of the Lower Silurian rocks or the Obolus green sand of St. Petersburg,* by our eminent associate, Ehrenberg. He has described and figured \dagger four genera and ten species of microscopic Pteropods, one of which he names Panderella Silurica; the gencric name being in honour of the distinguished Russian palæontologist, Pander, who collected them. It is well to remark, that as the very grains of this Lower Silurian green-sand seem to be iu great part made up of these minute organisms, so we recognise, in one of the oldest strata in which animal life las been detected, organisms of the same nature, and not less abundant, than those which constitute the deep sea bottoms of the existing Mediterranean and other seas.

Before I quit the consideration of the older palæozoic rocks, I must remind rou that it is through the discovery, by Mr. C. Peach, of certain fossils of Lower Silurian age in the limestones of Sutherland, combined with the order of the strata, obserred in the year 1827 by Professor Sedgwick and myself, that the true age of the largest and overlying masses of the crystalline rocks of the Highlands has been fixed. The fossils of the Sutherland limestone are not, indeed, strictly those of the Lower Silurian of England and Wales, but are analogous to those of the calciferous sand-rock of North America. The Maclurea is indeed known in the Silurian limestone of the south of Scotland; but the Ophileta and other forms are not found until we reach the horizon of North America. Now, these fossils refer the zone of the Highland limestone and associated quartz-rocks to that portion of the Lower Silurian which forms the natural base of the Trenton series of North America, or the lower part of the Llandeilo formation of Britain. The intermediate formatiou-the Lingula "flags" or "zone primordiale" of Bohemia-having no representatire in the North-Western Highlands, there is necessarily a complete unconformity between the fossil-bearing crystalliue limestones and quartz-rocks with the Maclurea, Murchisonia, Ophiléta, Orthis, Orthoceratites, \&c., and those Cambrian rocks on which they rest.

A great revolution in the ideas of many an old geologist, including myself,

* See Russia and the Ural Mountains.

+ Monats-Bericht d. König. Akad. der Wiss. Berlin, 18 April, 1861. YOL. IV.
has thus been effected. Strengthened and confirmed as my view has been by the coneordant festimony of Ramsay, harkness, Geikic, lames, and others, I have had no lessitation in eonsidering a very large portion of the erystaltine strata of the Highlands to be of the same age as some of the older fossiliferous Silurian rocks, whether in the furm of slates in Winles, of grevwacke-schist in the southern counties of Scotland, or in the conditions of mud and sand nt St. Petershurg. The conclusions as respects the correlation of all the older rocks of Scotland have now indeed been summed up by Mr. Geikic and mrself in the Geological Sketeh-Map of Scothand which we have just published, and a copy of which is now exhibited.* Not the least interesting part of that production is that which explains the age of all the igneous or trappean rocks of the south of Scotland, as well as all the divisions of the Carboniferous formation, and is exclusively the work of my able colleagne.

But if, through the labours of hard-working geologists, we have arrived at a clear jdea of the first recognisable traces of life and their sequences, we are yet far from having satislied our minds as to the modus operandi by which whole regions of such deposits have, as in the Ilighlands, been transmuted into a erystalline slate. Let us therefore lone that, ere this meetiner closes, we may receive instructions from some one of the band of foreign or British genlogists who have be their experimental researeles been endeavouring to explain the processes by which such wonderful changes in the former condition of sedimentary deposits have been brought to light, such as that by which strata once resembling the ineoherent Silurian clay which we see in Russia, has been hardened into such rocks as the slat! grauwache of other regions, and how hard sehists of the south of Scotland hare been metamorphosed into the erystalline rocks of the Highlands. But why are liritish geologints to see any diflionliy in admitting what 1 have proposed, that vast breadths of these erystalline stratilied rocks of the Ilighlauds are of Lower Silorian age? Many years ago 1 sugegested, after examimion, that some of the erystalline rocks near Christiana in Norway were but altered extensions of the silurian deposits of that region; and, since then, Mr. Wavid Forbes and MI. Kjerulf have demonstrated the truth of the suggestion. Again, and on a vastly larger seake, we know that in North America all the noted gerologists, however they may difler on certain detaile, agree in recognising that the vast rastern seaboard range of gneissic and micaceous schists is made up of metamerphosed strata, superior cien to the lowest of the Silurian rocks. Logan, Rogers, Hall, and Sterry Hunt are decidedly of this opinion; and the point has been most ably mul clearly set befure the pmblie hy the last-mentioned of these geolorists, t whe, heine hime self an acemplished chemist, has giren ms some good illustrations of the probable morlue operandi in the loringing alont of thear changes.

The importanee of the inguiries to be made be chemient gentugists into this branch of our secenee was mot lost unsen the carlier members of the British Association. Jisen in the rear 1433 , at committer was appointed to endeavour to illustrate the phenomena of the metamorphism of rochs lye experiments earried on in iron-furnaces. Alter a series of frals on varions mineral subuances, the Kev. IV. Vernon IIareourt, to whom we owed so much at our fommation, has, as the reporter of that commituer, been emabled to present to the Association that lued refort on the actual, fieet of long-enomened heat which is pulsFished in our lant volome: In mefritug sun to that document, I must, in an old practioal fielid-gentogist, express the gratification I feel in secing that my eminent fricnl has, in the sperit of trace inductive philosophy, arrived, after much experiment and thousht, at the same ronclusion at which, in commen, wath Sedgwek, Buckland, De la Beche, Phillips, and others in my own comntry,

[^62]and with L. Von Buch, Elie de Beaumont, and a host of geologists abroad, I had long ago arrived in the field. I, therefore, re-echo their voices in repeating the words of MIr. W. Harcourt, "that we are not entitled to presume that the forces which have operated on the earth's crust have always been the same." Looking to the only rational theory which has ever been propounded to account for the great changes in the crust which have taken place in former periodsthe existence of an intense contral heat which has been secularly more and more repressed by the accumulation of sediment until the surface of the planet was brought intoits present comparatively quiescent condition-our first General Secretary has indicated the train of causes, chemical and physical, which resolve some of the difficulties of the problem. He has brought before us, in a compendious digest, the history of the progress which has been made in this branch of our science, by the writings of La Place, Fourier, Von Buch, Fournet, and others; as well as by the experimental researches of Mitscherlich, Berthier, Senarmont, Daubree, Deville, Delesse, and Durocher. Illustrating his vicws by reference to chemical changes in the rocks and minerals of our own country, and fortifying his induction by an appeal to his experiments, he arrives at the conclusion, that there existed in former periods a much greater intensity of causation than that which now prevails. His theory is, that whereas now, in the formation of beds, the aqueous action predominates, and the igneous is only represented by a few solfataras, in the most ancient times the action was much more igneons, and that in the intermediate times fire and water divided the empire between them. In a word, he concludes with the expression of the opiuion, which my long-continned observation of facts had led me to adopt, "that the nature, forces, and progress of the past condition of the earth cannot be measured by its existing condition."

In addition to these observations on metamorphism, let me remind you that, on the recommendation of the British Association, other important researches have been carried on by Mr. William Hopkins, our new General Secretary, and in the furnaces of our President, Mr. Fairbairn, on the conductive powers for heat in various mincral substances. Although these experiments have been retarded by a serious accident which befel Mr. Hopkins, they are still in progress, and I learn from him that, without entering into any general discussion as to the probable thickness of the crust of our planet, we may even now affirm, on experimental evidence, that, assuming the observed terrestrial temperature to be due to central heat, the thickuess of this crust must be two or three times as great as that which has been usually considered to be indicated by the observed increase of temperature at accessible depths beneath the earth's surface.

Of the Devonian rocks or Old Red Sandstone, much might be said if I were to advert to the details which have been recently worked out in Scotland, by Page, Anderson, Mitchell, Powrie, and others; and in England, by the rescarches of the Rev. W. Symonds, and other members of the Woolhope and Malvern Clubs. But confining myself to general observations, it may be stated, that a triple sub-division of that group, which I have shown to hold good over the Continent of Europe as in our own country, seems now to be generally admitted, whilst the history of its southern fauna in Devonshire has recently been graphically and ably elaborated by Mr. Pengelly, in a paper printed in our last volume.

In Herefordshire and Shropshire the passage of the upper members of the Silurian rocks into the inferior strata of the Old Red group, has been well shown by Mr. Lightbody, and the fossils of its lower member have been vigorously collected. Whilst in Scotland Mr. Geikie and others have shown the uprrard passage of its superior strata into the base of the Carboniferous rocks; and Dr. Anderson announces the finding of shells with crustacea in the lower or grey beds, south of the Tay. I may here note, that the point which I have
heen for some years endeavouring to establish as to the true position of the Coithmes flags with their mumerons ielntholites seems to be admitted by my contemporuries. The lamented Hugh Niller considered these ichhyolites as belonging to the lower member of the group, and had good grounds for his views, since at his mative place, Cromarty, these fish-beds appear very near the base. But, by following them into Cnithess and the Orkneys, I have slown that they ocenpy a middle position, whilst the true base of the group is the equiralent of the zone with Cephalaspis, J'teraspis, and P'erygotus.
And here it is right to state, that the Upper Silurian rocks which are elearly represented in Edinburghshire, and whieh in Lanarkshire stem to graduate upwards into the Lower Old Red or Cephalaspis sandstone, ure wanting in the Ilighlands; thus accounting for the great break which there oceurs between the crystallized rocks of Lower Silurian age and the botton beds of the Old Red Sandstone.
Of the Old Red Sandstone of Scotland and Hereforlshlire I may be permitted further to observe, that its downward passage into the mppermost Silurian rock, and the upward passage of its ligherer strata into the Carhoniferous strata, has been well developed, the one near landow, chiefly through the labomers of Mr. Lightbody; the other in Sentland, through the researehes of the Government Genlogists, Howell and Geikie, as well as by those of Mr. D. Page, and other ulservers. On this head I mar, however, note, what my contemporaries scem now to admit, that the removal of the Caithess llags and their mumerous included ichthyolites from the bottom of this gromp, and their translation to the central part of the system, as first proposed by myself, is correct. In truth, the lower member of this system is now mequivically proveal to be the band with Cephalaspis, Pteraspis, dee, as seen in Scotland, England, and Russia. The great break which has heen traeed in the south of Fisol land hy Mr. (ieikic between the lower and upper Old Red, is thus in perfeet harmony with the zoolngieal faet that the central or Caithess fauma is entirely wanting in that region, as in England-as it is indeed in Ireland, where a similar break occurs.
It gratifees me to adde that many new forms of those fossil fishes which so peetliarly characterize the Old Red Sandstone, have been admirably deseribed by Sir Philip de Grey Efrerton in the " Memoirs of the Geologieal Survey," ind 1 must remark that it is most. fortmate that the eminemt Agassiz is here so well represented by my distinguished friend, who stauds unguestionably at the head of the fossil ichthyologists of our comutry.

Very considerable advances have been made in the development of our acquantanee with that system - the Carloniferons - which in the North of Eingland -Yorkshiru-has been so well deseribed by l'rofessor Pluillips, and with which all practical genlugits in and around Aanchicster are necessarily most int crested. The cluse reacarches of Mr. Biminey, who has, from time to time, lhrown new lights on the origin und relations of eonl, and the component parts of its matrix, cotablished proofs an loug agoo as 1840, that great part of our coul-fields was aceumulated muder marine fonditions; the fosssls associated with the coal-beds heing, hot as had hecu too ecenerally supposed, of thuviatile or lacustrine character, but the spoils of marine life. Prufessur Henry Rogers came to the same ermelusion with regard to the Appalaehian conal-fichds in America, in 1542. Mr. Bumey helieses that the plant Sigillaria grew in salt water, and it is to be remarkel that "wen in the so-eralled "fresh-water limestones" of Ardwiek and le Botwond, the Spirorbis med other marine shells are frequent, whilst many of the shells termed Crpris may prove to be species of Cythere. Again, in the illuatrations of the frossils which oecur in the bands of iron ore in the Sonth Welat enalfietd, Mr Salter, entering particularly inte this question, has shown that in the so-cilled "1"nio heds" there constanily oceurs a slell related to the Mya of our coasta, which he terms Autliraconya; whilst, as he has stated in
the "Memoirs of the Geological Surves," just issued, the very Unios of these beds hare a peculiar aspect, differing much from that of true fresh-water forms. They have, he says, a strongly wrinkled epidermis, which is a mark of the Mradxe, or such burrowing bivalve shells, and not of true Unionidæ; they also differ in the interior, as shown by Profcssor W. King. Seeing that in these cases quietly deposited limestones with marine shells (some of them indeed of estuary character) rest upon beds of coal, and that in many other cases purely mariue limestones alternate frequently with layers of regetable matter aud coal, may we not he led to modify the theory, founded on the sound observation of Sir W. Logan, by which the formation of coal has been rather too exclusirely referred to terrestrial and freshwater conditions? May we not rather revert to that more expansive doctrine, which I have long supported, that different operations of nature hare brought about the consolidation and alteration of vegetable matter into coal. In other words, that in one tract the coal has been formed by the subsidence in situ of vast breadths of former jungles and forests; in another, by the trausport of vegetable materials into marine estuaries; in a third case, as in Russia and Scotland (where purcly marine limestones alternate with coal), by a succession of oscillations between jungles and the sea; and, lastly, by the extensive growth of large plants in shallow seas.
The geological map of Edinburghshire, prepared by MM. Howell and Geikie, and recently published, with its lucid explanations, affords indeed the clearest proofs of the frequent alternations of beds of purely marine limestone charged with Producti and bands of coal, and is in direct analogy with the coal-fields of the Donetz, in Southern Russia.**
In sinking through the extensive coal-tracts around Mauchester (at Dukinfield), where one of the shafts already exceeds in depth the deepest of the Durlam mines, rigorous attention will, I hope, be paid to the discovery of the fossils which characterize each bed passed through, not merely to bring about a correctly matured riew of the whole history of these interesting accumulations, formed when the surface of our planet was first furnished with abundant vegetation, but also for the practical advantage of the proprietor and miner, who, in certain limited areas, may thus learn where iron-ores and beds of coal are most likely to be persistent. In carrying out his survey-work through the north-western coal-tracts of Lancashire, to which the large, or six-inch, Ord-nance-map has been applied, one of the Seeretaries of this Section, Mr. Hull, has done good service in accurately defining the tracts wherein the elevated coal deposits are covered by drift only, in contradistinction to those which are still surmounted by red rocks of Permian and Triassic age. In seeing that these are eagerly bought by the public, and in recognising the great use which the six-inch survey has proved in the hands of the geological surveyors in Scotland, our friends in and around Manehester may be led to insist on lhaving that large scale of survey extended to their own important district. By referring to the detailed delineations of the outcrops of all the Carboniferous strata in the cities of Edinburgh, Haddington, Fife, and Linlithgow, as noted by Professor Ramsay and MM. Howell and Geikie, the coal-proprietors of England will doubtless recognise the great value of such determinations.
Concerning the Permian Rocks, which were formed towards the close of the long palæozoic era, and constitute a natural sequel to the old Carboniferous deposits, it is to be hoped that we shall here receive apposite illnstrations from some of our associates.

When Professor Sedgwick, thirty-four years ago, gave to geologists his excellent Memoir on the Magnesian Limestone of our country, as it ranges from Durham, through Yorkshire, into Nottinghamshire, he not only described the numerous varieties of mineral structure which that rock exhibits, noting at

[^63]the same tione its characteristic fossils, but he also correlated it, and its maderlving beds, with the Ziehstein, Kupherschiefer, mad Rothe-todte-diegende, of Ciemans. But whilat this is the true order in both countries, there is this considerable difference in Singland, that atong the zone where the Magnesian Limentone exists as a mass, and where Fedgwick deseribed it, the inferior menber of the group is a thin band of sundstone, usially of a yellow colour (the Pontefract rock of William Smith), which in its somihern extremity, near Notlingham, is almost evanescent. In many parts of Germany, on thic contrarr, and notably in 'Thuringia and Silesia, the same lower hand, with a few juterealated eourses of limestone, swells out into enormons thicknesses and even constitutes lofiy riders.

In Russia the scries of this age puts on rery different mineral arrangement. There the caleareous hands, containing the very same species of shells an the magnesian limestone of Germany and Britain, are intercalated with pebble-beds, sandstones, mats, and copper-ores, so that, athongh the same lithologicalorder does not prevail as in the saxon or tspical Permian country of the elder German geologists, the gromp is, through its fossil types, unducstionably the same. It was from the observation of this fact, and from secing that these deposits, so mixed up, vet so clearly correlated by their amimad aud veretable relies, and all superposed to the Carhoniferone sysiem, ocenpied a region twice as large as the British Isles, in which the varieties of structure are best seen in the government of Perm, that I proposed in 1511, that the ehole group should have the name of "Permian."

Of late rears varions British authors, inchoting King, 11 owse, and others, have ably deseribed the fussil shells of this depesit as it exials on the eastern side of the Jeniue chain; and reerntly Mr. Kirkhy has produced a carefully writen and well-ensidered memoir, showing the relations of the whole gromp, by enmparing its structure and palanntological contents in Durham with those in Sonts lorkshire. Whilst, in addition, my assoriates of the Grologieal Surver, particularly Mr. Aveline, have heen carefnlly delineating the area of these beds in their iorthern range from Nottingham through lorkshire, much yet remains to be done in porrelating the P'ermian rocks lying to the west of the l'enine ridge, or where we are now assembled, with their eastern equivalents.

Already, however, great strides have been made towards this decirable end. Thus, Mr. Bimery has indieated the sueression in the neighborhond of Manchester, and has shown us that there some of the eharacteristie fossils of the eastern macnesian limestone exist in red marl and limestones subordinate therein, and that these are clearly maderlaid by other red sandstones, shales, and limestones, which lie terms hower Permi:m. Hi has further fellowed theo o Lower l'ermian beds to the west and north-went, and finds them expaudurg into considerable thicknessey at Atley, Searishriek, and other places where they orerlie the enal-meamese, and he lias also tracedihem into Wist moreland, Comberland, and Dumfries-shire. In the last ease he went far tos prove that which I suggested many sears ago, that the red sandstomes of Dumfries shire contaming the large footprints of chelonians, as described by Sir W. Jardine, are of Lower Permian age.

This view of the relations of the Permian rocks of the north-west has been also taken by l'rufesenr Harkness, and this summer he has suecessfully worked it ont, and has definitely appled the l'ermian classifieation to large Iracts in Cumberlomd, as explained in a letter to meself. He finds that the hereceias and sundatones of Kirbe-Stephem and Apploby, which at the latter place have a theheress of three thomand feet, extemed northward on the weat side of the Eilen (the breceia being replaced by falur-bedded sandatoneg with fuotprinta), and athain mear Carlisle the emormons thickness of about five thousant feel. These beds be classes unliesitatingly as Lower I'ermian, becanse he fiuds them
to be orerlaid (near Ormsby) by a group of clays, sandstones, and magnesian limestones, containing peculiar plant remains and shells of the genus Schizodus, representing in his opinion the marl-slate and magnesian limestone of Durham. These again support beds equivalent to the Zechstein, and the last are covered by the 'ITriassic sandstone of the Solway.
A rery striking fact, noticed by Professor Harkness, and corroborative of earlier researches made by Mr. Binney, is the existence of foot-prints, in the Lower Permian of Cumberland, similar to those of Corncockle Moor, in Dum-fries-shire, where, from my own observations, including those of last year, these Lower Permian sandstones have, I am conviuced, a greater thickuess even than that which is assigned to them in Cumberland.
Notwithstanding these discoveries, we have still to show the continuous existence of the Lower Red Sandstone of Shropshire, Worcestershire, and Staffordshire, which I have classed as the lorrer member of the Permian rocks, and to decide whether it be really such lower member only, or is to be regarded as the equivalent of the whole Permian group, under differing mineral couditions. With the extension of the Geological Survey this point will, doubtless, be satisfactorily adjusted, and we shall then know to what part of the series we are to attach the plant-bearing red beds of Coventry and Warwick, described as Permian by Ramsay and his associates. We have also to show that, in its northern course, the lower red sandstone of the central counties, with its ealcareous conglomerates, graduates into the successiou exhibited at Manchester, thence expanding northwards. Already, however, we have learned that in our own little England, which contains excellent normal as well as variable types of all the palæozoic deposits, there exists proofs that the Permian rocks, according to the original definition of the same, present to the observer who examines them to the west as well as to the east of the Penine chaiu, nearly as great diversities of lithologieal structure, in this short distance, as those which distinguish the strata of the same age in Eastern Russia in Europe from the origiual types of the group in Saxony and other parts of Germany.

Geological Survey and Government School of Mines, Mineral Statistics, and Colonial Surveys.-As I preside for the first time over this Section since I was placed at the head of the Geological Survey of Britain, I may be excused for making an allusion to that national establishment, by stating that the public now take a lively interest in it, as proved by a largely inereased demand for our maps and their illustrations-a demand which will, I doubt not, be much augmented by the translation at an early day of many of our field-surveyors from the south-eastern and central parts of England, where they are now chiefly employed, to those northern districts where they will be instrumental in developing the superior mineral wealth of the region.

The Gorernment School of Mines, an offishoot of the Geological Survey, is primarily intended to furnish miners, metallurgists, and geological survesors with the seientific training necessary for the successful pursuit and progressive advancement of the calling which they respectively pursue; but at the same time, the lectures and the laboratories are open to all those who seek instruetion in plissical science for its own sake, or by reason of its important arplication to manufactures and the arts. The experience of ten years has led the professors to introduce various modifications into their original programme-with the vierr of adapting the school as clearly as possible to the wants of those two classes of students; and at present, while a definite currieulum, with special rewards for excellence is provided for those who desire to beeome mining, metallurgical, and geological associates of the sehool; every student who attends a single course of lectures may by the new rules compete, in the final examination, for the prizes which attach to it only.
Throughout the whole period of the existence of the school, the professors have given annual courses of evening lectures to working men, which are
zherays fully altended, as a part of their regular duty; and during the past year, several of them have delivered voluntarily courses of evening leetures, at a fee so small as to put them within the reach of working men, pupil-teachers, and schoolwasters of primary schools. The professors thins hope to support to the utmost the great impulse towards the diflusion of a knowledge of physical science through all classes of the community, which has been given through the Department of Science and Art by the Minete of the Committee of Privy Council of the 2ud June, 1959.

A hody like the british Assucintion for the Adraneenemt of Scence should, I conceive, not be umaware of a step of such vast importance, and teuding so entirely towards the same gonl as that to wheh its own eflorts have been and still are constanly directed.

Now, insamuch as I can trace no recorl of the teaclings of the Government School of Nines in the volumes of the British Association, and as 1 am conwinced that the estiblishment only requires to be more widely known, in order to extend sound physieal knowledge not merely to miners and geologists, but aloo to chemists, metallurgists, and maturalists, I have only to remind my audience that this School of Mines which, owing its origin to Sir Henry De: La Beche, has furnished our colonics with some of the most accomplished geological and mining surverors, and many a mamfacturer at home with good chemists and metallurgists, has now for its leeturers men of such eminenee that the names of Hoffiman, P'crey, Warington Smyth, Willis, Ramsay, Huxley, and Tyudall are alone an carnest of our fuure suceess.
In ierminating these few allusions to the Geological Surver, and its applieations, I ghally scize the opportunity of recording, that in the llays of our fomuder, our Ilenry De la Beelwe, nur institution was greatly bencfited in pos. sessinge for sour yrars, as one of its leading surveyors, such an accomplished maturalist and skifful geologist, as the belored Assistant General Secretary of the British Association, Protissor Phillips, who by his lahours threw much new light on the palaontology of Devonshire, who, in the Memnirs of the Survey, has conuributed an admirathle menograph on the Silurian and other rocks aromind the Malvern hills, and who, by his lectures and writings, is now constantly aidvaneing scimer in the oldest of our British universities.
There is yet one suljeet comected with the Geologieal Surver to which I nust also call your attention, viz., the Mineral Statisties of the Uninted King. dom, as compiled with great care and ability by Mr. Robert Ilunt, the keeper of the Mining Records, and published amnatily in the memoirs of our estab, lishment.
These returns made a derp impression on the statists of forcign commtries who were assembled last year in Loudon at the Iuternational Congress. The Government and members of the Legislatner are now regularly furnished with relable information us to our mineral ore produce, which, until very recently, whe mot ohtainable. By the latemrs of Mr. Koblert Hunt, in sedulously collecting data from all quarters, we new beemene aware of the fact that we are consuming and exporting ahout cighty millions of tons of conls annually (a prodifions recent wereare, and daily angmenting). Of iron ore we raise and smelt upwards of right millions of tons, producing 3,526,060 tons of pig iron. Of copper ore wr raise from onr own mine 2336 , $6: 961$ Inns, which yichd 15,968 tons of metallic copper; nud from our native metallic minerals we oltain of tin 60,6i5 tons; of leal, 63,525 tons; and of zine, 4,357 tons. Ther total anmal value of (our minerals fund coals is estimated at $26,993,5731$., and that of the metals (the produce of the above minerals) and coals at $37,121,3181$.!

When we turn frum the congideration of the home surves to that of the geological survers in the mumerous colonies of Great Britain, I may well reflect with pieasire on the fact that nearly all the leaders of the latter have
been connceted with, or have goue out from, our home Geological Survey and the Government School of Mines.

Such were the relations to us of Sir William Logan in Canada, of Professor Oldham in India, with several of his assistants; of Selwyn in Victoria, of ny young fricud Gould in Tasmania, as well as of Wall in Trimidad; whilst Barrett, in Jamaica, is a worthy pupil of Professor Sedgwick. Passing over the many interesting results which have arisen out of the examination of these distant lands, we cannct but be struck with the fact, fhat whilst Hindostan (with the exception of the higher Himalayan mountains) differs so materially in its structure and fossil contents from Europe, Australia, and particularly Tictoria, presents, in its palæozoic rocks at least, a close analogy to Britain. Thanks to the ability and zeal of Mr. Selwyn, a large portion of this great auriferous colony has been already surveyed and mapped out in the clearest manner. In doing this he has demoustrated that the productive quartzose veinstones, which are the chief matrix of gold, are merely subordinate to the Lower Silurian slaty rocks, charged with Trilobites and Graptolites, and penetratcd by granite, syenite, and volcanic rocks, occupying vast regions. Mr. Selvyn, aided in the palæontology of his large subject by Professor M'Coy, has also shown how these original auriferous rocks have been worn down at successive periods, one of which abrasions is of pliocene age, another of post-pliocene, and a third the result of existing causes. All these distinctions, as well as the demarcation of the carboniferous, oolitic, and other rocks, are clearly set forth. Looking with admiratiou at the execution of these geological maps, it was with exceeding pain I learnt that some members of the Legislature of Tictoria had threatened to curtail their cost, if not to stop their production. As such ill-timed economy would occasion serious regret among all men of science, and would, I know, be also deeply lamented by the enlightened governor, Sir Henry Barkley, it would at the same time be of lasting disservice to the material advancement of knowledge among the mining classes of the State; lei us earnestly hope that this young House of Parliament at Melbourne may not be led to enact such a measure.

Whilst upon the great subject of Australian geology, I cannot avoid touching on a questio vexata which has arisen in respect to the age of the coal-fields of that vast mass of land. Judging by the fossil plants from some of the carboniferous deposits of Victoria, Professor M'Coy has considered these coaly deposits to be of the oolitic or jurassic age, whilst the experienced geologist of New South Wales, the Rev. W. B. Clarke, seeing that where he has examiued these deposits, some of their plants are like those of the old coal, and that the beds repose conformably upon and pass down into strata with true Mountainlimestone fossils, holds the opinion that the coal is of palæozoic age. As Mr. Clarke, after cition a case where the coal-seams and plants were reached below Mountain-limestone fossils, expresses a hope that Mr. Gould may detect in Tasmania some data to aid in determining this question, I take this opportunity of stating that I will lay before this meeting a communication I have just received from Mr. Gould, in which he says that in the coal-field of the rivers Mersey and Don, one of the very few which is worked in Tasmania, he has convinced himself that the coal underlies beds containing specimens of true old carboniferous fossils. Remarking that these relations are so far unlike those which he observed on the eastern coast of the island where the coal overlies, yet is conformable to, the carboniferous limestone, he adds that in Tasmania, at least, the coal most worked is unquestionably of palæozoic age.

Now, as Australia is so vast a region, may not much of the coal within it be of the age assigned to it by Mr. Clarke: and yet may not Professor M'Coy be also right in assigning some of the mineral coal to the same oolitic age as the coal of Brora and the eastern moorlands of Yorkshire? In his survey of

Tasmania, Mr. Gould has also male the important discovery of a resinons shale, termed Dysodile, and which, like the Torbane mineral of Scotland, promises to be turned to great account in the production of paratline.

There are, iuleed, other grounds for beliering that coal, both of the inesozoic as well of the old carbeniferous are, may exist in Australia. 'Thus putting aside the fossil evidences collected in Victoria by A'Coy and Solwyn, we learn from the researches of Mr. Framk Gregory in Western Australia, that mesozoic fossils (probably erctaceons and oolitic) occur in that region; whilst the Rev. W. B. Clarke informs me in a letter just receiven, that hic is in possession of a group of fossils transmitted from Qucensland, 700 or 500 miles north of Syduey, which he is disposed to refer to the age of the Chalk; there being among the fossils Beclemuites, Pentacrinites, P'ectens, Mytili, Modiola, \&e. Again, the same persevering geologist has procured from New Zealand the remains of a fossil Saurian, which, lie thiuks, is allied to the Plesiosaurus.*

It would therefore appear that in the southern hemisphere there is not merely a elose analogy between the rocks of palenzoic age and our own, but further, that, as far as the Mesozoic formations have been developed, they ulso seem to be the equivalents of our typical secondary deposits.

This existence of grouns of animals during the Silurian, Devonian, Carboniferous, and even in Mesozoic periods in Australia and New Zealamd, siailar to those which characterize these formations in Europe, is strongly in contrast with the state of nature which began to prevail there in the younger Tertinry period. We know from the writings of Owen that at that time the great continent at our Antipodes was already characterized by the presence of those marsupial forms which still distinguish its fame from that of any other part of the world.

In relation to our Australian colonies, 1 must also ammonnce that I have reeenty been gratified in receiving from Messrs. Chambers und Finke, of Adelaide, a collcetion of the specimens collected hy MeDonall Stuart, in his celcbrated traverse (the first one ever made) from South Australin to the watershed of North Anstralia. Having had oceasion to address the Royal Grograplical Society on this point, and to award its gold medal to that most adventurous and sueeessful explorer, with observations on the main geographical results of his labours, ineluding the discovery of trees and plants unknown in other parts of that continent, I may here say, in addressing myself to genlogists, that a collection of rocks has bien subinitted to me which may teud to illustrate the structure of the interior of that great eontinent.

These specinens are soft white chalky rocks, with flints, agates, saline, and ferruginous incrustations, tufas, breccias, and white quartz rocks, and a few specimens of quasi-volcanic rock, but with scarce a fragment that can be referred to the older stages of Lower Silurian age like those of Vietoria. \dagger Again, the onls fossil shells collected lyy Mr. Stuart (though the precise latitude and longitude is unknown to me), are Mytiloid and Mya-like forms, seemingly indicating a Tertiary age, and thus we mas be disposed provisionally to inter that large tracts of the low interior bet ween East and West Australin have in very recent geologienal periods leen oecupied by the sea.

Conclusion.-In enncluding this addreress, I may assure the section that, as one of the original members of the Association, it gives me infinite satisfaction to return to my old friends in this great and thrising centre of our national industry. In enmmon with many of my associates who rome from a distance, well do I remember how cordially we were received here in the year 1542;

[^64]and never can I forget how admirably we were presided over by a nobleman* as distinguished by his ability and learning as he was beloved for his philanthropy and public spirit, and who had upon his right hand the illustrious Dalton. Looking to the character and influence of that philosopher, I may truly say that, as he was one of our founders when we first met together at York, we owe through him a deep debt of gratitude to Manchester; for Dalton was one of the few eminent men who at our birth stood sponsor for our future carecr, and who supported us at many a subsequent meeting.

In our present visit we are most happy to see placed at our head one of the scientific men of Manchester, who exlibits in his own person the cheering example of the great success which can be attained by the steady and judicious application of science to the improvement of our manufactures. And if England is to hold her own lofty position in great measure through the superior strength of the metal derived from inexhaustible masses of iron-ore which occur in many of her geological formations, we cannot but regard William Fairbairn as the individual who, united at first with the late Eaton Hodgkinson, through a long series of ingenious experiments, as detailed in the rolumes of this Association, not only laid the basis for the erection of the Menai Bridge, and such tubular constructions, but who is now directing the manufacture of those iron plates which may best resist the most powerful artillery, whether in casing our ships, or in strengthening our fortresses.

I need not re-affirm that all the men of science who have flocked hither from distant places rejoice with his townsmen in serving under such a man.

Lastly, let me say that we of the Geological Section, who are gathered together from remote parts, have solid grounds for satisfaction in being greeted here by so many good and active brother workmen of the Geological Society of Manchester, who have done such honour to their town, not only by the establishment of a rich and instructive Museum, in which many of the subjects we are met to discuss are thoroughly illustrated, but who have also, by their publications, contributed much to adrance our science.

GEOLOGY OF THE NEIGHBOURHOOD OF MANCHESTER.

Mr. E. W. Binney, F.R.S., F.G.S., described the sereral beds of gravel, sand, and till, forming the superficial covering of the district:-lst. The valley gravel, with its successive terraces; 2nd. The widely-distributed upper sand and gravel ; 3rd. The great deposit of boulder-clay or till, which is at some places ninety feet thick; 4th. A lower bed of gravel. The underlying rocks known chiefly by boring operations, were-lst. The trias, or upper red series, about five hundred feet thick; 2nd. The lower new red or Permian series, six hundred feet. These orerlie the coal measures, and have been pierced in search for coal at Medlock Vale and elsewhere to the lower Permian beds of Yorkshire. The lower bed of conglomerate is found to thicken out northward in Cumberland and Scotland to some thousand feet in thickuess. 3rd. The coal measures of the Mauchester coal field, as proved by borings, and by the few local exposures at Ardrick and elsewhere. All of these are exceedingly dislocated, one fault having certainly a down-throw of one thousand and fifty sards.

[^65]
ON THE REMAINS OF A PLESTOSAURIAN RETTILE (PLESTOSAURU'S AUSTRALIS) FROM THE OOLITIC FORMATION IN TH\& MIDDLE ISLAND OF NEW ZEALAND.

By Professor Owen, F.f.S., sic.

The author, premising a quotation from his "Palsontology", that "the further we penctrate into time for the recovery of extinct anmals, the further we must go into space to tind their existing analognes;" and that "in passing from the more recent to the older strata, we soon obtain indieations of extensive changes in the relative position of land aul sea;" cited some striking examples in proof of these propositions from the reptilian class. The Mosasaurus of the cretaconus scries occurs in that series in Enghand, Germany, and the C'nited States. The Polyptrchodon oceurs in the same series at Maidstone and at Moscow. Tonthless Lacertian reptiles have left their remains in triassie deposits at Elgin, in Shropshire, and at the Cape of Gond IIope. Dieynodont reptiles ofcur in the same formation at the Cane and in Benga!. The Mesiosaurns, with a more extensive geological range through the jurassic or oolitie series, has left representatives of its genus in those mesozoie strata in bingland, and at lereantipodes. Exidence of this extreme of geographical range had been submitted to Professor Owen hy Mr. J. 11 . Ihod, of Sydncy, New South IVales, obtained by him from the Niddle Island of New 'raland. This evidence consisted of two vertebral bodies, or ceatrums, ribs, and portions of the two coraenids of the same individual, all in the usual petrified condition of nolitic fossils. Their matrix was a bluish grey clay-stone, effervescine with acid; the largest mass contanined impressions of parts of the arch and of the transverse processes of nine dorsal vertebre, and of ten ribs of the right side. D'ortions of five of the right diapophyses and of six of the ribs remained in this matrix. The bones had a ferrugimous tint, contrastine with the matrix, as is commonly the casc with specimens embedded in the ()xfordian or the liassic clars. The impression of the first diapophesis and of its ribshow the later to have been articulated by a simple head to its extremity, as in the Plesiosanrus: but the succecding rib had been pushed a little behind the end of its diapoplysis, and the same kind of dislocation had placed the five following ribs with their articular ends opposite the interspaces of their diapophyses. The minth rih had nearly resumed its proper position opposite the cud of the diapophysis, but at some distanee from it; the impression ot the tenth ribshows the normal relative position of the pheuro and diapophyses. The ribs are solid, of compart texture, eylimdrieal, slightly enred; the fragments lonking more like eoprolites than boure; they are about an inch in diameter, with but small intervals of (say) one-third of an ineh, slighty erpandint as they recede from the transerise process, and slighty contracting to the lower end. The first terminating in an obtuse end, of half an inch diameter, is serin inehes loner, the seenond is cight inehes long; the third is cight inches and a half; the fourth rib in nine inches long. The extremities of the othery are breken off with the matrix. The separated focsils sent from Ňew 'avaland includey the mesial eo-adjusted ends of a pair of long aud broad hemes, thickest where they were united, and beroming thimer as they extemided nutwards, and also towards the fore and hind parts of the bone, both of wheh ende were hroken away. On one side, the surface of the boue is conter lenghtisise, and slightly coneave transversily. On the opposite side, the contonr undulates lengthwise, the surface being eoncate, then risine to a eonvesity, where a promberance has been formed be part of the coadjusted inestal minerins of the bone ; transwersely, this surface is slightly entheave. A simblar, but tres developed, median prominence is seen at the middte of the medally umted margins of the coracoids in the Plesiosaurus Hawkinsii, and L
regard the above described parts of the New Zealand fossils as being homologous bones. But a more decided cridence of the plesiosaurian uature of this antipodeal fossil is afforded by the rertebral centrums. They have flat articular ends, with two large and two small renous foranina beneath. The neurapophysial surfaces, showing the persistent independence of the neural arch, are separated from the costal surfaces by about half the diameter of the latter. These are of a full oval figure, one inch three lines in vertical, and one inch in fore aud aft diameter. On one side of one of the centrums the rib has coalesced with the costal surface. The following, are dimensious of this centrum:Length, one inch nine lines; depth, two inches two lines; breadth of articular end, three inches six lines. The nou-articular part of the centrum offers a fine silky character. The shape and mode of articulation of the cervical and dorsal ribs, the shape and proportions of the coracoids, concur with the more decisive evidcuce of the vertebre in attesting the plesiosauroid character of these New Zealand fossils, and, pending the discovery of the teeth, the author provisionally referred them to a species for which he proposed the name of Plesiosaurus Anstralis. The specimens lad been prcsented by Mr. Hood to the British Museum.

ON THE GEOLOGY OF KNOCKSHIGOWNA OR FAIRY HILL, CO. TIPPERARY, IRELAND.

By A. B. Winne, F.G.S.

In this paper the author described Knockshigowna as a conspicuous hill, risiug to a height of 701 feet above the level of the sea, and 400 above the arerage level of the surrounding limestone plain, and being situated at a disstance of six miles S.S.W. of Parsonstown, which is well known on account of

Knockshigowna Hill-from the West.
being the place where Lord Rosse las erected his great telescopes. The hill is a narrow ridge ahout three miles long, in a S.S.W. direction; its base increasing in width towards the S., at which end its most elevated point occurs.

The eastern and southern slopes of the hill are gentle, but its more abrupt north-western face forms a bold feature in the landscapc.
The rocks of which the core of the hill and this steep slope are formed belong to the Silurian series, and consist of grey and bhish hard grits and sandsones, interstratified with coarse conglomerates and fine llaggy and slaty shales.
The eastern and southern slopes of the hill are formed of the Old Red Sandstone, which is represented here by whitish couglomeratic beds, dipping at low nugles from the higher Silurian gronud towards and underneath the overlying limestones of the surrounding plain. One of the most interesting points in the strueture of the hill was stated to be the disappearance of the Old Red Sandstone along its W. or steep 部筑, in consequence of the ocenrrence of a fault ruming along the base of the ligh gromad at that side, nearly parallel to the direction of its erest. Br this fault a displacement of the rocks was cansed, amounting to more than 500 feet. This fracture does not seem to have been the cause of the occurrence of a hill here, for as the Old Real Sandstone shows a tendeney to curve round the N . cnd of the hitl, and actually does so at the S., it secms likely that the hill was originally formed by an anticlinal, the axis of which was arched at this place, and alterwards very obliquely crossed by the fracture, along which the beds to the W. received an opposite or downward curvature. Along the W . side of this fracture the limestone is let down so as to come into juxtaposition with the Silurian rocks, and here, as is frequcutly

Diagrammatic Cross-section of the Hill of Knockshigowna.
A, Fiault ; b, Silurian ; c, Oll red sandatone ; D, Carhoniferous limestone.
the case along lines of fracture in limestone beds, the rock is courerted in places into a (yellowish) erystalline dolomite. In other plaees where the sequence is undisturbed, the lowest beds of the limestone series immediately overlying the Old Red Sandstone are found to consist of the nsmal dark eariliv fimestoncs, and cleaved, olive, ealeareous shales, both being highly fossiliferons.

A peculiar group of red caleareons beds oecurs in the Silurian rocks, close to the uneonformable bommary of the Old Red, and they may be traced along their strike passine gralually from the ordinary huish grey into a deep red colour just before they disappear heneath the Old Red sanistone ; a cireumstanee which is in other plaees sery common along the unconformable boundary between this Old Red Sandstone and the adjacent Silurian, partienlarly when the latter is composed of shaly heds.

Fossurs. - These calcarcous red rocks do not appear to contain fossils, but in the vieinity of a renarkalle band of conglomerales in the Silurian, near Eairy-mount-gate-lodge, and also in the congloincrate itself, and in the neighthouring slanly flaza, fossila were stated to have been fommel hy the anthor and if. Hi. Baily, Esq., F.G.S., by the latter of whom the following list was prepared:-

Zoophita.

Petraia elongata.
Stenopora fibrosa.

Echinoderyata.

Criuoid stems and joints.

Crustacea.

Calymene Blumenbachii. Phacops caudatus.
Encrinurus punctatus.
Proetus latifrons.
TIrinucleus concentricus.

Mollusca.

Graptolites priodon.
Nilsoni.
Ptilodictya lanceolata.

Brachiopoda.

Orthis elegantula.
, testudiuaria.
„ calligramma.
Leptæna sericea.

Strophomena depressa alternata.
Spirifer trapezoidalis.
Atrypa crassa.
Discina (?).

Conchifera.

Ctemodonta obliqua.
Pterinea tenuistriata.
Ambonychia Triton.
Modiolopsis modiolaris.
, \quad Nerei.
" expausa.
Orthonota nasuta.

> Gasteropoda.

Cyclomena. Sp.
Holopella. Sp.
Trochonema. Sp.
Bellerophon bilobatus. Ecculiomphalus (?).

Cephalopoda.

Orthoceras filosum.
" angulatum.

The discorery of these fossils is interesting, on account of the scarcity of organic remains in the Silurian rocks of this part of Ireland, and their palæontological evidence fixes the age of the beds in which they were found as belonging to the Lower Llandovery period.

Although the rocks containing these fossils are obviously of Silurian age, the author felt called upon to mention incidentally, upon the authority of the discoverer, J. Darby, Esq., that an old Cambrian fossil, Oldhamia radiata, had been found upon the hill, and the specimen itself was laid before the section. A strong probability certaiuly exists that it might have been found in situ here, but unfortunately, as its locality could not now be pointed out, the fact remained to be decided by future discovery.

RECENT ENCROACHMENTS OF THE SEA ON THE SHORES OF TORBAY.

By W. Pengelly, F.G.S.

If, as some masters of our science tell us, and as I venture to believe, the geological changes which have passed over our world during the unmeasured ages of the past, were due to the direct and indirect operation of existing causes, acting, perlaps, with intensities not greatly dissimilar to those they now display, it can scarcely be out of order to call attention, from time to time, to changes taking place under our immediate observation, even though they may be slight in themselves, and, regarded as isolated facts, of little worth or importance.

Requesting the Section to keep this apologetic preface before them, I will now proceed to narrate a few facts respecting the recent encroachments of the sea on the shores of Torbay.

The rock cemposing the horns of the bay, from Ilope's Nose to 'Tor Abbey Fands on the north, and from Berry Ilead to Goodringen Sands on the sonth, are shates and limestones. The former differ much in colour, texture, and lineness of material, and ferequently pass into shate. As a whole the limestones overlie the slates; they itre sometimes sehistose, and are not minfequently coarse and impure. Both the rocks are smbjeet to divisional planes of rarious kinds, not fewer than three distinet and definite systems of joints are recogmizahle, whilst fine nod varied exmmples of eleavage are numerous.

In many eases the limestone strata are strangely contorted, being bent, in more than a few instances, intofolds tou sharp for the ridge-tiles of the roof of a bouse, and plumging from top to bottom of clifls a humdred and tiftr feet in height. Though these eontortions manifest a certain, pertaps a considerable, degree of plasticite: yet the numerous fractures wheh a careful serutiny detects, especially where the folds are sharpest, are so many proofs that the rock was not incapable of breaking at the time of the contortion. Both the slates and limestomes are fossiliferons, and belong to the Devonian system.

The central shores of the bia, from Tor Abbey to Goodrington sands inelnsive, are made up of red sandstone and conglomerates of prohably lower Triassic age. The red roeks do not appear to have suffered so much from mechanical violence as the slates and lmestones; nevertheless, joints are by no means rare in them, nor are they exempt from fanlts. False or dianonal stratifieation oecurs in some of the beds, being chicfly seen in the sandstones, but sometimes met with in the finer comglomerates also.

As might have been expected, the samdstones and eonglomerates have yiekted more than the other roeks to the destructive ageney of the sea; inderd, they have so rapidly retreated before it as considerably 10 change the nutline of the const, and deprive the proprietors of the suil of much valuable land within the memory of many persoms still living. Nem who hase scarecty completed half a century, speak of having ridden, when far advanced in their teens, from Torquay to Paignton, by a road that has been totally impassable for many rears, and of whieh the merest fragments, "few and far between," at present exist; useful only as proufs of the rapid inroads of the sea. One of these remmants crosses the low leadland know in as the Carbons, wheh separates Tor Abbey Sands and Livemend sands; it is two hmulred and eighty feet in length, and at its lowest or northern end, iwelve feet above the present strand. The constline has retreated in about a houdred and fifty fect within it, or landward; not, however, of find a resting-plaee there, exeept through the shitful and laborions services of the engineers of the Torbay nud Dartmonth turnpike and railroad.

Fin. 1.-Map of Coast of Torbay.

Fig l is a rude map of the coast, on the scale of one inch to one hundred feet, extending from a little north, or the Torquay side, of the Carbons (f) to Livermead Head (g) ; the small interjacent bay (p) is known as Livermead Sands; $a b$ and $c d$ are the Torbay and Dartmouth turnpike and railroad respectively; e is the fragment of the old road I have mentioned. Fig. 2 is a rertical section of the north end cliff $(a f)$ of the Carbons, on the scale of one inch to ten feet, where, as in Fig. l, e shows the situation of the old road, and a the Torbay and Dartmouth turnpike-road.

Another fragment extends from the southern end of Livermead Sands to Preston Sands, where it terminates at what is locally known as "Broken Cliff," a philological testimony to the fact that the inhabitants of the district have long recognised the retreat of their coast before the waves. The situation of the Livermead portion of this remnant is shown by the dotted line $c b$ in Fig. 1 , but the other extremity is not shown in the figure.

Not many jears since a breach was made by the sea through the Carbons, and its north-eastern portion thereby converted into a tidal island ($v u$, Fig. 2);

v u
Fig. 2.
prior to this, a fine natural arch existed in a now perished north-easterly prolongation of this detached mass, a drawing of it was made by a daughter of the late Mrs. Griffiths, the eminent algologist, who kindly allowrd me to copy it for a diagram (Fig. 3) ; its situation is indicated by the dotted line i, Fig. 2.

Fig. 3.
I am informed by Lord Churston that the Rev. Mr. Edwards, for fifty years vicar of Berry Pomeroy, but who has long been deceased, told him that he remembered two distinct roads, successively made and abandoned, outside, that is, farther seaward than, the road I have just spoken of as existing now in fragments only.

The Torquay and Dartmouth turnpike-road (a b, Fig. 1), about twenty-four feet wide, rums in front of Livermead House (0), which undoubtedly owes its continued existence to this fact. A sea-wall bounds this road on the outer
side all the way from 'Torquay to the sonthern extremity of livermend Sands, exeepting only the samall portion of it below the Carbons. Not twenty years ngn there stond a eomfortable coltage in front of Livermead House (1, Fig. 1), outside this wall, with an extensive garden still further seaward; outside this again was the old road I have mentioned, and still heyond this a broad margin of elifl, where 1 have frecquently seen chiddren, immates of the cottage, at play. Cliff, road, garden, and cottage are grone, the seat has swallowed the whole, and well-rounded pebbles now cover a tidal strand, above which they once stood. Naty, more, Neptune too suceessfully assats the seti-wall every winter; more than onee has lie been known to have entire pessession of the turnpike-road at this point, and to lay claim, with no empty, mameaning threat, to liverncad Honse itself; and thongh, hitherte, the enginer hats suceceded in expelling him, it has always been at a eonsiderable expense of skill, labour, and monev, aud, after all, by what may be termed a sort of compromise. So contimally is the wall undergoing reparation, and so great the quantity of limestone quarried somewhere in the interior for this purpose, that I liare frequently thought the contending parties must have eome to an arrangement somew hat of this nature: "Neptume agress not to waste the coast on comelition that the engineer shall waste the interior to an almost equal amomit, and, further, that if the latter allow the smallest erevice to oceur in the sea-wall, the former will feel himself at liberty to take opportunity thereof to re-open lis claimo on the coast."

At the southern extremity of Livermead Sands stands a large honse (r, Fig. 1), known as livermead Cottage; it is outside hoth the furmpike-ruad and the when road an freguently mentioned; it heetles over the low red diff faed be: sea-wall, on which it stands in jeopardy every hour. The seat has several times made abortive attempes to insulate it, but it is in all probability a question of time only.

I terrace, or phat form, of denudation (r re, Fig. 2) extends two hundred and sixty feet from the insular extremity of the Carbons to low-water-mark, the ordinary level of which is indieated by the detted line or y, as is the leved of ordinary spring-tide high-water be the line $r d$. This terrace may be taken as a rough minimum measure of the amount of the retrocession of the eoast here since the sea and land stood at their present relative level; a uinimum certainly, as in this part of the bay the water is very shallow, and a continnation of the platform, constantly covered by the sea, yet within the grinding action of the waves, probahly extends at least fully five hundred feret further.

The following seem to be the suceessive stages throngh which the work of erosion eommonly passes in Torbay. The sea forms a series of small holes at some little distanee from one another mear the base of the ceisting cliff; most of these, as might be expected, oreur where joints or other tissures afford facilities for the uperation; nevertheless, such holes, and not a few, are met with where no points or lines of weakness of this kind exist : some ot her pectiliarty in the reck, for exanple, the disterlgement of a latge petble from the eonglomerate, or some pecuhar expmate to the action of the waves, may have determined the situation. When large enough in attract attention, an observer guily of very absurel comparisons might call them ill-formed, gigantic, unsorial pigem-holes. A few years at most oularges them in every dircetion, and converts them into "osens," which, in proerns of time, are in like manner cenverted into chambers and galleries; the latter eapecially, where preexisting divisional plance influence the direction of the work of excavation. Lateral enlargement takes plaee necessarily at the expense of the partitions betwom the chambers, until as breach is effected and rapidly enlarged in them, and the whole cliff is found io be honeyembed into a latyrinth of halls and galleries, the roof being supported by masesise and fantastie pillars. In this state many of them reecive the name of "thunder-holes," from the bellowing noise of the
waves rushing into them during storms. More or less rapidly the pillars waste; at length, during a heary gale, one or more of them snaps across, the superincumbent fabric, if such it naay be called, trembles, totters, falls; a new clift is revealed, protected awhile from the fate of its predecessor by the natural breakwater which the fallen mass forms. This, however, is merely a question of time; the materials are needed where constructive agencies are forming new strata, every tide carries off a portion of the debris, the whole is at length remored, an attack is made on the new and unprotected cliff, and the entire process is repeated with but little variation.
In some cases, however, the mode of attack differs from the above; the waves first proceed to detach a large mass of rock by eroding the cliff at two somerrhat distant points, and in no long time convert the interjacent portion into a sort of peninsula; by continually wasting the isthmus is gradually uarrowed, until at last the devoted mass is completely insulated, after which its destruction is more rapid. It is astonishirg, however, to observe how yery long many extremely thin fragments of such islets eudure as relics of an aucient coast-line. Those who hare risited South Derou will probably call to mind many such fragment betreen Dawlish and Teignmouth, where this mode of encroachment is more common than in Torbay.
Though, as has been already stated, the other rocks of the district are not wasted so rapidly as those we have just mentioned, nevertheless the destruction of the slates is by no means inconsiderable; their comparatively soft material, and their fissile and jointed character, render them incapable of a very protracted resistance; and when carefully noted, even the hard limestone itself is found to perish more rapidly than might have been expected. The geologist who systematically, and in something like orderly succession, risits and revisits the various parts of the coast, will rarely fail to detect changes in the features of eren his limestone haunts; a fresh scar will probably be found graven on the face of the cliff since last he saw it.
Several circumstances concur to bring about this result. Beds composed of small fragments or scales of argillaceons matter, interstratified with the limestone, especially in the Hope's Nose district, waste under the ordinary action of the sea much more rapidly than the calcareous strata, and thus leare considerable vacuities or interstices among the latter. During tempests the sea rushes into these recesses or excavations, and being forced by the enormous pressure of the wares which tower above into the numerous crevices formed by the joints, clearage, and fissures of other kiuds, which, as has been already stated, abound here, rips the rock to an extent scarcely to be credited by those who have nerer examined such cliffs after a violent storm. Again, between Meadfoot beach and Torquay harbour, the limestone beds are in some places vertical, and reach a considerable height ; here, too, similar interspaces are found, cansed, however, in this instance by the destruction of the ordinary coarse calcareous shale of the district, which is so frequently found lying between the limestone beds. The sea, driven like a wedge into these openings by the resistless waves which heavy south-easterly gales produce occasionally on this coast, tears off masses of linestone many feet in length and breadth, and of considerable thickness. This was remarkably seen during the violent and too fatal storm of October 26th, 1859, when the limestone cliffs suffered in this way to a very great amount.
The storm I have just mentioned was unusually destructive on the coast of South Devon. The day from its commencement was raw and gusty, the clouds, threatening and ominous, hurried bastily along; a sea, heavier far than the existing force of the wind would account for, fell on the shore, and was explained by seafaring men as the result of "a heary gale in the offing, which would come home by and by." They prepared accordingly, and "made all snug." The moorings of the shipping in Torquay barbour were carefully
eramined and rendered sceure, and the boats were hanled up high and dry on the quay. As the day adsanced so did the torm ; early in the afternom it was blowing a lieary gale from the south; about four o'clock it vecred ronad to the southerast-almest the cmly wind that can do the bay much mischiefand blew a hurricane for about firo hones at the eritical juncture of an meusually high spring-tide high-water. The wases were awful; crerything secmed to be helplessly abandoned to their fury, and satarely they used ther opport unity.

The turnpike-road between 'Torquay and the railway station was not only impassable during the tempest, but all but totally destroyed. As an early intimation that an uusual attack on the road was in prospeet, the waves leaped aeross it, tore up a somewhat temporary wooden tollhouse, rushed with it over a wall, across a ficld, and finally lodged it near the barn at 'Tor-Abbey. In some places a breach was tirst made in the sea-wall, and huge masses of limestone thus dislodged were used with terrible efleet as missiles to aid in the work of demolition, and were ntimately thrown, in wild confusion, on sueh parts of the road as remained otherwise mimjured. In others portions of every wave rushed through erevices between uneemented eyelopean hlocks of limestone forming parts of the masonry, and spouted in fearful jets up through the road where a noment before it seemed firm, compact, unimpaired, ant unyielding, whilst in other parts, where there were no such indications of subterranean mischief, a heavier wave than usual would spring over the parapet, violently erush what may be called the tloor of the road, and reveal huge cavities beurath; the road having been undermined and literally sucked through interstices in the wall huilt for its protection. In one place a portion of the parapet wine feet long by three in breudth and depth, and, therefore, eontaining eighty-ne cubie feet, was removed en masse twent y-dive feet horizontally, landward, across the road, where it was fomml, after the stom in an inversed position, the eement still firmly hulding the parts together. By carcful experiment I foumd that a portion of this miss, weiming nimet r-nine and a half ounces avoirdupois, displaced seventy-one eubic inches of water, consequently the entire block of masonry thus iransported must have weighed about tive and π-half tons Before its dislodgement, the hase of this mass was six feet above the level of hish-water equinoctial spring-tides.

At Livermead the greater part of the wall and road were completely swept away, and a shingle-beach put in jossession of the site.

The whole of the damage ahove described is mow nearly repaired, that is to say, the labonr of two years at a cost of five or six thonsand pounds is reguired in represent the inischief effected by the sea in two hours.

The sea-wall has been rehuilt very much on the same plan as before. In reply to a suggestion that it should be comstructed on smuder primeiples, so as to provide against a recurrence of so much damage and ineonvenience, it was stated that the coat would at leant be double, and that, judging from the past, it may he hoped that the wall put up will last twe nty yenrs, whilst at five per cent. compoud interest mones donbles itself in fourtern years.

The same storm so eompletely destroyed a sma-wall and road ertending nearly the whole lemeth of Meanferot beach, oin the cast of 'Torruasy, eomatructed at a great eoat, about acien yeare before, that mo attempt has bern mate to restore it, but a road in lien therenf opened in a leas expered situation.

At the northern corner of forodrington Sands there is a cottage standing in a quadrangenlar gurden, the enstern or semward wall of thich is twenty-fire free from the house, three feet high on the inside and seven feet on the ontside, so that the terrace on which the enttage and garden are is about four feet above the ligheat level of the beach. In still wenther there is ample room between this wall and the margin of spring-tide high-water to allow carts io pass. baring the storm, lowever, the waves bownded ower the wall, ran across the garden, suashed the drawing-room window, completely re-arranged the furni-
ture in the room, transported a rery heary piano from one side of it to the other, and then departed, taking with them most of the articles of furniture of a light character.
Facts of this kind forcibly show how great the encroachments of the sea must have been within a comparatively short time. Men do not usually build houses in situations thus exposed; the encroachment of the sea has rendered their sites perilons. And though it is happily true that such storms are not of very frequent occurrence, nevertheless many of us can remember so many of them that we canuot but look for them in the future ; that is to say, we recognise them as part of the system of nature, not necessarily destructive on every coast, but by no means of very limited range, and certainly an important part of the machinery now modifying the crust of the earth.

ON THE EXCESS OF WATER IN THE REGION OF THE EARTH ABOUT NEW ZEALAND ; ITS CAUSES AND ITS EFFECTS.

By Jayes Yates, M.A., F.R.S. and G.S. (Member of the Geological Society of Manchester.)

The anthor, adopting from Professor Guyot ("Earth and Man," translated by Mr. Clarke, of Battersea) the terms "land-hemisphere" and "water-hemisphere" to distinguish the portion of the earth which includes "the four quarters of the globe" from that portion which consists mainly of water, observed that iustead of the old distinction between the northern and southern hemispheres, the cultivators of physical geography have now made a much more accurate statement of the facts by assuming a point in the South Pacific Ocean, not far from New Zealand, as a centre, around which the entire waters of the globe appear to be collected. He referred to the Pliysical Atlas of Berghaus, published in Berlin, as containing the most accurate representation of this view of the subject, and thought that this has the highest authority, because, in constructing it Berghaus was assisted and directed by two of the most eminent of his fellow-citizens in this department of science, Alexander von Humboldt and Professor Karl Ritter. The author mentioned that English geographers have prepared maps which give the same general riew, but take London and the antipodes of London as the two centres, in order to accommodate English conceptions. He exhibited the beautiful Training-school Atlas, just published by the Messrs. Philip, of London and Liverpool, as containing the largest and best examples of representation. It appeared necessary, however, instead of regarding the waters as ramified in every possible way by their distribution into oceans, seas, bars, and straits, to collect them in imagination into one; hence, preserving Berghaus' centre, which is situated in the meridian of a hundred and seventy degrees east longitude from Paris, and in about four hundred and thirty south latitude, the author presented on a diagram " an Ideal Section of the Earth in the Meridian of New Zealand." Two points in the circumference of this section, named A and B, represented the division between the collected land and the collected water, and the author produced statements from Professor Rigaud of Oxford, Professor Link of Berlin, Alexander von Humboldt, and Sir John Herschell, all tending to show that the entire amount of land on the surface of the globe being taken as a hundred, the entire amount of water will be two hundred and eighty-nine, or nearly so. He took the exact number, two hundred and eighty-nine, because it is the square of seventeen, one hundred being the square of ten. He thought that by the adoption of these numbers, the points A, B in the diagram might be exactly fixed, and that the chord joining them would divide the land (in the section) from the water
with a grat approach to accuracy, and, moreover, that this ehord might be eacily drawn on his diagram, because twenty-seven, i.e., ten and seventeen, boine alse equal to three thmes nine; it is extremely easy to divide the ciscle in the maner reguired by using its radins in the ordinary way. A diameter bisecting this chord at right angles, and drawn to the supposed centre of the water-hemisphere, forty-threc degrees south latitude, necessarily passes both through the geometrical centre of the carth, and through its eentre of gravity. As the hosis of this construction of the diagram, it was assumed that the two constituent areas of the curth's surface, consisting of land and water, are as the squares of the ares by whieh they are bounded.

Tle author brietly controverted the statements of Peterman and Sir Johu Herschell, who ascribe the appearance in question to "tumefaction," or the "superior intensity of the eanses of elecation iu northern latitudes, and in former geological epochs," observing that if earthepuakes and voleanos are cevidences of such superior intensity, the clevated land onght to be on the ppposite side of the globe, sinec the volemos are three times more ummeroms in the water than in the land-hemispheres. He wished to gromed his speenlations on existing facts, and regarded them as proofs that as one hatf of the moon is probably heavier than the other half, so the earth is heavier on the water- than on the land-side. He supposed the greater weight on the water-side to be produced partly be an excess of mineral veius, beds of iromstones, and basaltic rocks, with others of high specifie gravity on that side, and partly by an exeres of hollows mad cavities filled with water on the other side. Hinee would result the ennclusion, admitted by Sir J. Herschedl, that the eath's eentre of gravity is different from its centre of form, or geometrieal centre. The anther was prosecding to show how the amome of this cecentricity might be computed with some approaeh to accuracy, but the President expressed the opinion, in wheh the author cheerfully concurred, that a snibject, the trentment of which required so mueh of mathematical demonstration, was better adapted to be pursued in another scetion.

Besides the diagram already referted to, the author showed another containinfe a list of ten of the highes mountains dispersed through the land-hemispliere, and of ten dispersed in like manner through the water-hemisphere, for the purpose of illistrating the faet that the monntains of the land-hemisphere are miturmly of a much greater elesution above the seatevel than thase of the water-hemisphere. The heights of all these monntainy were given in metres.

The sums of the heights of the one group, and of the other, by striking off a cepher at the end of cach, gave the average beights of the mountains in cand group. Regarding them as ganges for meaturing the depth of the oevan, and presuming that the momatains, which rise above submerged eontiments in the water-hemiophere, and present their summits in the form of immmerable ishands, are, gemerally speaking, and relatively to the solied sphere of the earth, equal in revation to the mounains of the land-hemisphere, the anthor drew the cenclusion that the geberal dphti of the necan (its central pertion) may be taken as approshing to two kilometres, and that the depthis much exceeding this tu ust be attributed to loond disturbanee.

QN ISOMETRIC LINES, ANH THJ, BELATIVE DISTEIBUTION OF THF (CALCAREOU゚S AND AEDMMENTARN STRATA OF THE CARRONFEEDUS ROCKS UF BRITAIN.

By Einwall Hutu.

As it is intended that this paper slall be laid before the Gcological Society of Loude n, ouly a short abstract can be presented here.
The anthor endeasoured to show that during the Carboniferous period a barrier
of land stretched across central England from Wales to the German Ocean. To the north of this barrier, or isthmus, the coal-fields of Salop, Staffordshire, Warwickshire, and Leicestershire, and all the Carboniferous strata of the north of England were accumulated; while on the south of the isthonus were found the coal-fields of South Wales, Forest of Dcan, Somerset, and possibly of the Thames Valley.

It was then argued that a broad distinction is to be drawn between limestones and all sedimentary strata, the former having been the production of living animals, which generally required clear water for their proper development, the latter being due to deposition from more or less muddy or sandy seas. The agencies in each case have been in some degree antagonistic ; and where the ocean has been, or is at present, highly charged with sediment, limestones camnot be found to any great extent. This view-which is exemplified by many of our seas-is borue out by the relative distribution of the calcareous and non-calcareous members of the Carboniferous group. The sedimentary strata (sandstones, shales, and clays) were shown to attain their greatest vertical development in Scotland, the Borders, and Lancashire, and from thence to thin away towards the south, till they finally terminate against the barrier. On the other hand, it was shown that the Carboniferous limestone reached its highest development in Derbyshire, and from thence thins a way west ward and northward into Scotland, where it is almost entirely replaced by sedimentary strata. Thus where the one group of beds is most fully developed, there the other is least. These phenomena had long since been pointed out by Professor Phillips in Yorkshire, but are applicable to the whole of Britain north of the barrier. On the south, it was shoirn that the sedimentary strata are in greatest force towards the W.S.W.-thinning away northwards and eastwards-while the limestones become most fully developed towards the east.

Reverting to America, the author reminded the Section how similar phenomena had been shown by Professor Rogers, Sir C. Lyell, and others, to hold good in that country, but under somewhat different circumstances. They all, however, indicated the existence of land in the North Atlantic during the Carboniferous period. The thickening of the sedimentary strata in Britaiu towards the north-west, Mr. Hull attributed to the prevalence of a great current (an old Gulf-stream), carrying the sediment from the shores of this North Atlantic continent, and spreading it over subinerged Britain. The sea thus became purer as the distance from the source of the sediment increased-that is, towards central England-and here, on the other hand, the crinoids and corals were most active in forming limestones.

The variations in the thicknesses of the two kinds of strata were represented by curved lines drawn on maps (termed isometric lines), each of which marked a given thickness from 1000 to 10,000 feet. One set of lines showed the development of the sedimentary beds, the other of the calcareous. There were thus two systems of concentric lines intersecting each other from opposite directions, and gradually dying out like waves emanating from a focus of disturbance.

The author had previously shown that the sedimentary strata of the Lower Mesozoic series reach their greatest development towards the north-west of England, and thin away in the direction of the estuary of the Thames, where they are altogether absent, as proved by the Harwich boring. All this showed that the sediment had been drifted from the north-west-the waste of probably the same continent which had furnished the materials for the Carboniferous Rocks. Here, then, we have evidence of a great North Atlantic continent existing throughout the Upper Palæozoic and Lower Mesozoic periods, whose shores were swept by an oceanic current, which carried off the sand and mud of its shores and rivers to form the materials of future geological formations.

ON A SECOND NEW BONE CAVERN RECENTLY DISCOVERED AT BRIXHAM, DEVONSHIRE.

By Wr. Pengelly, F.G.S.

About the cad of last March (1861) information was brought me of the discovery, at Brixham, of a second new eavern, rich in fossil bones. I lost no time in visiting it, and, at this and several subsequent risits, made myself aequainted with the facts which form the suhject of this paper, and which, though they may add but little, probably nothing, to onr knowledge, it is hoped may not prove uninteresting to the section, more especially as the district has become famous in its comexion with "Bone Caverns."

The greater part of the fishing-town of Lower Brixham, or Brixham Quay, as it is commonly called in the neighhourhood, but which I shall call Brixham, without any qualification, oceupies a valley, rumning nearly east and west, which is separated from Torbay on the north by a limestone hill, reaching the height of 150 fect above the sea, and known as Furzcham Common. The southern boundary of the ralley consists of four hills, forming a chain paraltel to Furzcham, but extending fully a mile further eastward, where it terminates in the promontory of Berry Head, the sonthern hom of Torbay. The first, that is, the most westerly of these hills is known as l'arkham Common, the seend is Windmill Hill-in the north-western angle of which the now eelebrated cavern was discovered in 1555 ; the third is Heath Hill, or Common, which contains, near its north-castern corner, the well-known "Ash-Hole," partially explored, many years ago, by the Rev. Mr. MeEnery and the Rev. Mr. lyte; the fourth, that is, the most easterly hill of the chain, is that of whech Berry Head is the almost precipitous ternimation.

Considerable limestone quarries have been worked in the Torbay slope of Furzeham 1hill; one of these, kunwn as Bench, but a short distanee from Brixham harbour-indeed, it is within what is legally considered to be the limits of the harbour-had been all but abandoned for upwards of twenty years; recently, however, quarrying operations, on a limited scale, were resumed, and led to the discovery just named.

Fig. 1.
Though the axis of the hill has an almost east and west direction, its coastline at Bench runs nearly west and south, and the quarry has been worked at right angles to this. Fig. 1 represents a vertical cast and west section of the
hill, on the scale of $\frac{1}{10}$ of an inch to the foot, drawn from careful measurements.* The bottom of the figure is supposed to be the level of low water springtides. The dotted line, a, m, o, e, g, indicates the original profile of the coast on the assumption that at this place it resembles the general contour where it still remains untouched by the hand of man. The outline, a, b, c, d, e, g, of the coloured portion of the figure shows the artificial cliff produced by the quarrying operations; consequently the space between this and the dotted line shows the amount of rock which has been removed.
An attempt is made in Fig. 2 to show, at one view, a portion of the back and left-hand, that is the west and south, walls of the quarry, on the scale of $\frac{1}{4}$ of an inch to the foot. Near the top of the west or back wall, and almost

Fig. 2.
at the angle formed by the intersection of the south wall with it, is a dike $(a, b$, in Fig. 2) of breccia made up of bones, reddish clayey earth, and angular pieces of limestone ; the last evidently derived from the immediately adjacent rock, and varring in size from the merest fragments to slabs fully a foot square and six inches thick. The earth is in all respects similar to that in which the bones are imbedded in the caverns of the Torbay district generally. The dike is vertical, has a north and south direction, is 27 feet high, 12 feet long, and 2 feet thick at its southern end; it thins out at its northern extremity, so that it is wedge-shaped; its base is about 96 feet above the level of lowwater spring-tides, so that its summit, which reaches the unquarried surface of the cliff, is about 123 feet above the same level. It may be stated here that the base of this mass of breccia is on the same level as the "bone bed" in the famous Windmill Hill Cavern already alluded to. The situation of the dike is seen at a, b, in Fig. 1, which shows a rertical section at right angles to its length so as to show its thickness, i.e., $\frac{1}{240}$ its real thickness.

There can be no doubt that this mass of bone-breccia filled a north and south fissure, or, possibly, a portion of such fissure; whether it formerly extended further northwards cannot now be determined, the limestone having been too far removed there to leave any means for forming an opinion on this point.

[^66]Originally, then, the dike must have been situated somewhat as is shown at a b, in Fig. 3, which is drawn on the scale of half an inch to the foot. The limestone in front, that is on the left in the figure, is supposed to be restored.

Fig. 3.
It happens that a considerable part of the onter, that is the eastern, or shall I call it seaward, wall of the lissure was remowid, in the ordinary course of quarrying, upwards of twenty-two years ayro, so that the northern end of the face of the dike, or more correctly, every part of it, exeepting about three feet in width, of its sonthern end, was revealed at that time, and in its face, thus exposed, lay several fine bones quite open to the day; one in particular, the left ramus of a lower jaw bristling with tecth, a most tempting-looking relic of, probably, the cave-hyena, not only failed to attract the attention of the workmen at: the time, but all its eflorts to bring itself into notiec were utterly frutless during trenty-twn years. We will linpe, for the credit of all whom it may coneern, that it was somewhat less conspieunns before it was washed und bleached by the rains and sunshine of nearly a quarter of a century.

Fig. 4.

It is attempted in Fig. 4 to represent the condition of the dike during the period I have mentioned; the figure is supposed not to show its entire height, but the lower portion only, and the mass of limestone, $u w$, must be understood to conceal about three feet of its southern end.

Soon alter the workmen recommenced their labours in the quarry last March, the removal of this remnant of the outer wall caused the fall of an uncemented portion of the dike which it had previously supported; loose stones, earth, and bones came down together, and thus compelled attention. An invitation of this kind could not be resisted; the principal workman collected the hones, and in a short time found he had got together a considerable number, probably several hundred, consisting of teeth, jaws, skulls, vertebræ, portions of horns, with a large quantity of unidentifiable bone-debris.

Should it be asked-Is it certainly known that that which has been called a dike was really one? Instead of a thin slice of bone-breccia filling a narrow slit in a limestone hill, may it not have been a remnant of a much more considerable accumulation, which once occupied a large chamber or cavern, all but entirely destroyed by the workmen during their former workings? It may be auswered, that workmen, however incurious and uninformed, could scarcely, by any possibility, fail to discover that they had broken into a bone cavern, especially in the very neighbourhood of the famous "Ash Hole," and within a very few miles of the more celebrated "Kent's Hole," both of which had about that time attracted much attention, and had taught quarrymen that cave-bones were convertible into gold; whereas a mere fissure would be very likely to pass unnoticed, or, at most, with but little remark, since they are extremely numerous, and constantly met with by the workmen. Moreover, as has been already said, a portion-about one-fourth-of the outer wall of the fissure was still standing in situs when the workmen resumed their labours last March. Further, the exposed surface of the brcceia itself gave conclusive evidence on the question ; it is so perfectly wall-like that it is diffieult, if not impossible, to believe that it could have been formed otherwise than has been supposed. The handwriting of the departed limestone wall was still legible on the broad sheet of breccia that had been so long exposed.

It may be remarked here that almost all the very numerous joints and fractures in the Brixham limestone have a north and south (magnetic), or nearly east and west direction or strike. A considerable number of these, of both sets, are filled with red sandstone, varying from mere thread-like veins, to dikes three feet wide, occasionally containing angular pieces of limestone, and sometimes traversed by veins of carbonate of lime. It is, perhaps, somewhat darker and harder; but in all other respects it so closely resembles the red sandstone of the central shores of Torbay, as to suggest the idea that the fissures existed and were filled in the early age represented by these sandstones, probably the triassic; whilst others, having the same directions, remained open, or were re-opened to be filled, amongst other things, by the remains of animals which were contemporary with man himself. Several questions present themselves here ; but, being foreign to the purpose of this paper, must be left without further notice at present.

Very near the left or southem foot of the dike is the mouth of a small turnel (r, Fig. 2), having a stalagmitic floor ; its extent is not known. In the left or southern wall of the quarry two somewhat large chambers occur (u and s in Fig. 2) ; they are partly filled with the same reddish clayey earth and limestone debris, the ordinary cave deposit of the district. They are known to be connected; but whether they have any communication with the tunnel just mentioned is uncertain; no attcmpt whatever has been made at exploration; but it is extrensely probable that they are all parts of one considerable cavern.

All the materials composing the dike undoubtedly fell, or were washed in
from abore ; furnishing a clear and good example of what probably occurred at Orestone, near Plymouth, where the observed phenomena appear to compel the belief that the fossil bones must have fonnd ingress, in this way, to the chambers in the heart of the limestone, though traces of an open fissure have not always been so distinct there as conld have been wished.

Whether at Bench a passage from the fumel was the chamel through which the chambers received their contents, is not at present kuown; exeavations would probably soon determine this.

At my first risit an ellort was made to purehase the right of taking down the remainder of the dike and thoroughly exploring the chambers; for some time there was a prospect of this being secured, but the proprictor, Mr. Wolston, has at length decided on sooner or later investigating it himself; and though this may be regretted, it is but just to add that he has at all times allowed me the frecst aceess to his premises, has promised to keep me fully aequainted with the progress of the investigation, to allow me to note every fact that may be disclosed, to be uscd, at my diseretion, for the purpose of seience, and has favoured me with the loan of the specimens exhibited.

No opinion can be given as to whetler or not flint implements or other indications of human existence may be found in the cavern; nothing whatever is known about its extent or contents at present, and the only apology I can offer for having brought so immature a subject before the section is, my desire to keep it fully acquainted with every fact that discloses itself in the district in comnexion with these interesting mansolea.

Every one aequainted with the Torbay limestone will be prepared to hear of the discorery in it of new eaverns at any time and in any number. Three or four, at leasi, can at this moment be pointed out within a short distance north and south of Bench ; one at Freshwater quarry is known to be upwards of forty feet in length; neither it or cither of the others has yet been explored; they may be rich in organie remains, replete with evidenee on the great question of the antiguity of the human race, or they may be totally void of scicutific fact.

The discoveries made at Brixham in 1555 gave a stimulus, both to those who hope to gain knowledge aud those who hope to gain nomey, which will not soon be lost. Quarrymen will not in future be so blind to their own interests as to lay open a dike of osseons breceia without discovering that they have done so, nor will proprietors hereafter be likely to use the language with which one replied to a question I put to him some time ngo respecting a cavern which had been traced into his property. At first he knew notling about it, -"There was no cavern in his ground, certainly." At length, hrightening up, he exclaimed, - "Now yon mention it, I do remember that I once saw a very large hole in thr rock, and I filled it up ly throwing twenty cartloads of rubbish into it." The fear may now be in the opposite dirrection. An minreasoning lore of gain may induce an ignorant activity to exhume the bones, to the great loss of seicnce.

NOTICE OF TIIE FILSWORTH AND OTIRER NEW ROCES IN THE oxfolid Clay, and of tue bluxtisham clay above tilim.

By Marey Sebiey.

The Flawnoth rock is a dark blue orgillaceons limestone full of deeply ferrnginous orlitic grains, ani to some cxtent interlaced by thin veins of iron-prrites. It consists of three subdivisioma, a lower rueh seven feet thick, a middfe elay of about live feet, and an upper roek of nearly two feet, making a total thickness of fourtecn feet. The fossils are such that the upper rock is readily dis-
tinguished from that beneath, while, by the same means, the middle clay is mith equal ease separated from those clays abore and below it. The rock dips down to the south, and at a distance of three miles the middle clay is replaced by sand.
Fire miles north of Elsworth the St. Ires rock comes to the surface, and dips to the east. It is a hundred and thirty feet beneath the Elsworth rock, and rery similar to it in mincral character. Its thickness is three feet, often divided into two beds by a parting clay. It is brought up by an anticlinal, so that on high ground four miles north the Elsworth rock is again met with.
Six miles west of Elsworth is found the St. Neotts rock, which is deep down beneath the St. Ives rock, though not so low as the zone of the Kelloway rock.
But for the breaks by these rocks, the lowest beds of Oxford clay would graduate up, without any perceptible change in life, into the highest beds of the Kimmeridge clay, the coral-rag being absent as such, but represented by a clay. This clay contains a mixture of the fossils of the clays above and below, and is met with above the Elsworth rock at Elsworth and Bluntisham. From the exhibition at the latter place it is named the "Blunt'sham clay." The clay beneath the Elsworth rock is the Oxford clay, so that the Elsworth rock is intermediate in position between that subdivision of the great clay formation and the coral-rag. The fossils unmistakeably show it to belong to the clay rather than the limestone formation, and hence it will be regarded as the highest zone of the Oxford clay, while the St. Ives, St. Neotts, and Kelloway rocks will serve to mark the several zones into which the formation is naturally divided by its fossils.

Thin rocks hare also been met with in the Bluntisham clay in positions which render it probable that they indicate divisions corresponding to coral-rag and calcareous grit.

ON THE PLEISTOCINE DEPOSITS OF NORTH AMERICA.

By Dr. Hector.

The autbor stated, that his recent researches in that country afforded strong grounds for supporting the view, that the diffusion of the erratic drift must have resulted from the submergence of the north-east part of the Continent beneath an arctic sea to a depth of nearly 3000 feet, and that the surface of the country has receired much of its present form by denudation during its re-emergence, at first along sea-coast lines, and latterly along the shore lines of inland lakes, which still exist, but of much smaller size than formerly. By the steppes which have thus been found these deposits may be divided as follows : -

Bordering the lower part of the valley of the St. Lawrence and extending southwards through the valley of Lake Champlain, a marine deposit of boulder clay has been described with mollusca, more arctic in their character than those existing in the neighbouring seas at the present day. This deposit has not been observed at a greater allitude than 600 feet,* and in its nature it would scem to resemble those deposits that must be forming at present in Hudson Bay and in the Arctic inlets and sounds, where the shore ice, kept in motion by the winds and tides, acts like a pug-mill in reducing the preriously deposited drift to the condition of tough clay.

On the shores of Puget Sound and the Gulf of Georgia, in latitude $49^{\circ} \mathrm{N}$., on the west side of the Continent, there are drift clays with boulders and scratched rock surfaces, which, like those clays in the St. Lawrence Basin, do

[^67]me ocenr at a ereat altitude ahove the present sea-line, and in this deposit Mr. Baurman has :dow found marine shells.

Nest in print of allitude, although prohably altogether more recent than the first group, cone the Lake teraces which surround Lake Superior and the upper part of the St. Lawrenee Basin, at an altitude of from 500 to 500 feet. At nearly the same allitude fresh-water deposits are found in the Lake Winiprg Basin, showing that there also the lakes have decreased in size as their waters ereated chamels of escape through the eastern bett of rocky comntry. These deposits form the level prairies round the Red River settlement, and constitute the lirst or lowest prairie stepre.

The helt of rocky country which dirides Indson's Bay from the St. Lawrence Basin, but is traversed by the rivers that flow from the Winipeg Basin, has an altitude in some parts of 1410 to 1600 fect, and its highest portions are covered by deposits of coarse sand with erraties. This drift deposit docs not appear in situatious only when sheltered hy rocky high grounds, but forms a swampy or wooded plain, the eastern margin of which has heen water-worn into deep gulless and pot-holes, or circutar depressions which have no outlet. The rock surfaces in this region are found to be furrowed by scratches which have a southerly trend.

Pasing to the west across the low plains formed of the lake deposits which were before mentioned, we find that they are bounded to the west by m esearpment which marks the castern limit of the second prairie steppe, which slopes from 1000 to 1600 feet utbove the sea-level, and is corered often to the depth of several humdred feet with drift similar in character to that that eovers the eastern rocky distriet. The third prairie steppe, wheh bounds these heary drift deposits to the west, rangers from 2000 to 3000 feet above the sea-level, and is composed of eretaceons strata, but still with a sprinkline of erraties on it-surface. The escarpuent which the hiod steppe presents is nfon an abrupt slope, 500 or 600 feet in height. It follows a line N.W. and S.E., wheh was seen well marked to the nort! of the saskatchewan, and thence sweeping in the above direction with laree bays and indentations, but keeping on the whole parallel to the rock tract to the cast, ind thus forming a trough, through which swept the currents that dispersed the erraties by means of icebergs.

In the centre of this trough there ofeur liills which are composed of masses of the erctaceous strata that have remained undisturbet, and which display the feature known as "Crar and Tail," having the one avpert, cenerally the N. or N. E., furrowed and water-wom, and covered with a profusion of boulders, while in the opposite direction they form a qently stoping plain eomparatively free from erratics, the "tail" being in this case withont loun blocks, owing to the soft mature of the "eras."

It is mot improbatble that the rate of elevation of the east and west sides of this trough has been unegual, for along the base of the esearpment that forms its western margin, enormony bonlelers of magnesian limestone wre deposited at an elevation of mot less than fits fret above the sea, which so far as is known could only have heen derised from strata which form the eastern floor of the trough at an elevation of mot more than sof) feet.

Exocpting the houtder chay mentioncel as oecurring on the Gulf of Georgia, the later depxaits on the weitern slope of the contment are very different from those on the cast, as they enusist of well-worn shingle, with sand and caleareous clay filting all the valless on both sides of the Rocky Ilountains from an alfitude of 50 of feet to the sea-level. These deposits have generally bech moulded by lake and river act ion into terraces which skirt the valleys.

REVIEW.

Nineral Teins: an Inquiry into their Origin, founded on a Study of the duriferous Quartz leins of Australia. By Thows Belr. London: John Weale, High Holborn.

Is this pamphlet of five clapters, containing about fifty pages, Mr. Belt seems to imagine that he has solved the most complicated question within the whole range of geological science. It is difficult to know how to treat such an extraordinary pretension; for, while the mriter is palpably incompetent to deal with the subject, he cannot be classed among those presumptuous charlatans who continually infest it, and who hare succeeded, in no small degree, in rendering any discussion on the origin of metalliferous deposits distasteful to persons of sense or education. Mr. Belt is evidently a painstaking man; he bas made himself acquainted with the best known elementary books on geology; he expresses himseli in a becoming manner; and is doubtless a most worthy and highly respected person in his station in society. But these respectable qualities, although pleasing in themselves, and entitling their possessor to much personal consideration, do not constitute a man of science ; they do not justify a person, wholly unacquainted with the great metallic mining districts in any part of the world, even in his native country (which, according to his own showing, is Mr. Belt's case), from dogmatizing on the entire phenomena of metalliferous reins from a cursory experience in the gold diggings of Australia. The humblest obseryer, prorided he brings but one ciearly-described and well-authenticated fact is welcome as a true labourer in the field of science; and if even upon this fact he should attempt to build an unwarrantable superstructure of theory, his weaknesses may fairly be treated with gentleness in consideration of the sterling coin-the fact-for which we are indebted to him. But Mr. Belt can plead no such palliation. In his whole pamphlet there is not a single new fact. From first to last it is a mere pluidoyer based on the most hackneyed statements of other writers-generally such as are so well known, and have been so often quoted, as to have become really nauseating, and which make Mr. Belt's pamphlet almost as disagreeable to read as the last réchauffé of any notorious book-maker-except that, happily, it is much shorter. 'The collation of observations and facts on any scientific subject, and the establishment of a theory founded on them, is, of course, a labour of great value ; but then it can only be usefully undertaken when the facts and observations are sufficiently numerous and sufficiently well authenticated to afford a secure basis for geucralization, which is not yet the case with our knowledge of metalliferous reins. The man who would undertake it must, besides, be a complete master of the topic which he attempts to handle on so large a scale. It may be pardoned in the mere observer to be imperfectly acquainted with the labours of others; he stands on an independent footing, and is a useful and worthy labourer as far as his own facts go, however generally ignorant he may be; but the man who, assuming a more ambitious position, and soaring from the rofle of a mere observer narrating his own facts and fitting them into others as best he can, into the character of a philosopher generalizing all known knowlcdge on any particular branch of science into a comprehensive theory, is not of the smallest ralue urless he is fairly competent for the wide task he sets himself up to perform; indeed, on the contrary, he generally does great harm, and is deserving of scant consideration.
If Mr. Belt had named his pamphlet after the title of a well-knorn popular mork of fiction, and called it "Nothing New," he would have given the best
idea of its contents. It would, therefore, be a waste of space, and an unfair infliction on our readers, to go scriatim through its pages. In a few words, we may say that Mr. Belt considers the auriferous quartz reins of Australia to be due to pure igneous action-to have been injected in a molten state as we now see them. The dilliculties which every chemieal geologist has suggested to this now entirely exploded riew-of which it is only fair to sar the writer lias some notion-lie sets aside, in a few off-hand sentences. The great questions of the comparative action of heat with regard to other agencies in the formation of the carth's crust, which are at present actively occupying the attention of the greatest living matural philosophers, he disposes of in a very summary manner-so summarily, in fact, that he may he said to "polish them off." He resuscitates that form of complacent sentence with which writers of former years were wont to dispose of any objection to the most ultra-igncous doctrines; and no doubt feels limself secure under this imitation of the strle and views of eminent authorities. He should remember, however, that geology is the most progressive of scicuces, and that what was considered very sound and orthodox a dozen years ago may, in the present day, be a gross anachronism; indeed, a more familiar acquaintanee with the recent expressions of these eminent J'estors of our science, would have taught him that they are now content to express themselves in much more guarded language.

As ordinary metalliferous veins were evidently not injected in an irnenus condition in the state we now see them, Mr. Belt accomts for this discrepaney between observed facts and his hypothesis be affirming that all the phenomena giving evidence of aqueous and other aetions in reins, are due to canses subseguent to their origin, and thus disposes of these phenomena:-"having separated from the inquiry the facts due to secondary agencies, we find the residnal phenomena strictly such as might have been produced by igneous action." Such is Mr. Belt's theory, according to which quartz gold weins are nectalliferous reins in their normal unaltered condition, while ordianry metallie lodes are the same things altered by secondary action. We are not so very mueh surprised at such an extraordinary hypothesis from a man who has admittedly no knowledge of ordinary metalliferous veins; but mas we not fairly ask how a man so unacquainted with his subject could fecl justificd in rushing imto print upon it? The inspection of half a dozen Comish lodes must have scattered such a theory to the winds; and surely if the suhject was worth writing on it was worth this slight preliminary trouble.

As we have said before, we have no doubt Mr. Belt is a most painstaking man, and a lighly respectahle person, who expresses himself very decorously in an exeellent intitation of the ponderons scientitie style. But he is cridently a nam of but one idea. He got the idea in Australia that quartz gold veins were casiest aceomted for hy assumine their igneous injeetion, nad, in accordance with this azsumption, he endeavours to compress the whole phenomena of metalliferons lodes, pieking his data ont of rather old books, a large proportion of which are mo great anthority themselves. In fommer days, we had "theories of the earth"-Hnttonian theorica, Wernerinn theories-written exactly in this spirit, and we know how injurions their effeet was on the pros. gress of gerolog.s. In the domain of srienes, small men must, at least at present, be satiafied with the role of observers of facts: hig men can alone nsefully attempt to grapple general therores-rementher often enough burn their fingers there. At may rate, before Mr. Melt amen farours the world with his views on metalliferous Iodes, or on gold quartz reins, we recommend him to see a lodeif it le only one-in onme great minine distriet ; and to study some recent and really valuable work on aurifcrons deposits, such as that of Oscar Lieber.

THE GEOLOGIST.

NOVEMBER, 1861.

SOME BITS OF HORNS FROM FOLKESTONE.

By the Editor.

Old bones, that would be worthless to anybody else, become valuable to the geologist. There may be nothing picturesque or strikingly singular in their appearance. They may be too rotten or too fragile for the manufacturer ; too sapless for the agriculturist ; nay, too few or too far between to be of any commercial value at all. And yet bits of bones may be inscriptions of much value to the palæontologist. As every letter in the few lines incised on the famous Rosetta stone was a key to some passage in a forgotten language of the past, so every new bit of bone may be the key to some passage in that greater history of a greater past which geology unrolls. Many years ago-how time flies past-I met with a little patch of mammaliferous drift at Folkestone ; I gathered every fragment of bone, every tooth, every shell, which the workmen's picks and spades exhumed, and most of what I could not determine myself at that time, Professor O wen, and my then living and active friend, Mr. Turner, looked over and named.

Amongst the bones I then collected were two of form to me before unknown, and which I often since brought back to mind. Twoboth fragments of horns-flat at the basal part, perfectly round towards the tip; no goat, nor antelope, nor deer, that I knew, had horns like them ; and so those fragments were laid aside (not carelessly)
for future thought and comparison. Shortly sinee in walking through the gallery of the British Musemm, I visited the cases containing decrs' remains, and there, at once I saw, not the comaterparts, but what seemed to me the fac-similes of my bits of horns.

The specimens referred to are those purchased about 1853, of the talented, but unfortunate Bravard, who was killed at the earthquake at Buenos Ayres a few months since. Bravard, as is well known, left France shortly after the memorable coup d'tut, having been much mixed up with political matters; and the collection of Auvergne fossils which he, the Albé Cloizet, and M. Pomel, had formed, were brought to England, and sold to the trustees of our National enllection. The horus and bones of the deer I have referred to, lave neither been figured nor deseribed anywhere that I know of, and I believe the only right they have to their name is the inseription on the tahlet on which they are placed, " C'orves tetracroceros. Brav." 'They are all from Pliocene deposits at Perolles, Puy de Dome. The prineipal specimens are four horus of more or less adult animals, each characterized by, when fully developed, at most four antlers, projecting in frout and coming off from the horn remarkably direct, so as to form almost a right angle ; a young horn, probably the secoud year's; some upper and lower molar terth; portion of maxillary hone with a series of milk teeth; portion of left maxillary bone with the two last milk molars; penultimate "per left molar : portion of right ramus of lower jaw; with all the nowars (three molars, three premolars) in situ; lower portion of femmr ; protions of tihie ; left metatarsal ; calcanemm ; four astragali ; piece of scapula; piece of humerns; and a portion of a sacral vertelra.

Hon of Corms iftrorroceros, Brav.; in Britigh Museum.
In the same eare is a portion of itere's hom from the mammaliferous crag of Norfolk, which, is placed with these remains, but wo doubt its ilentity. The homs of the cirems tatracroceros are also characterized
by a peculiar flatness, while the tip portions of the antlers are nearly or quite cylindrical. It was this feature which so much struck me in the Folkestone horns, and which is a character peculiar entirely to the Cervus tetracroceros and the rein-deer, C. tarandus, to which Mr. Waterhouse inclines to think the Folkestone fragments belong. The comparison of the horns of the large collection of recent individuals of the latter in the British MIuseum has been made, and certainly in some the back antlers present striking similarities. But the horms of the rein-deer are so extraordinarily various, that in the determination of mere fragments it is almost impossible to acquire anything like certainty. Moreover, in the fragments from Folkestone there is a peculiar sulcation, or deep grooving in the central part, which is seen in all the horns of the Cervus tetracroceros, but which I have not noticed in any rein-deer. Geologists might not hesitate to determine the species from such fragments, but no naturalist would. Still, we may be pretty certain that the Folkestone fragments are either Cervus tetracroceros, and so examples of a deer, of which the only known examples belong to a much older age-the Pliocene-than is usually assigned to the other mammals with which they were associated ; or they are those of the rein-deer, examples of which, in a fossil state, are extremely rare in British deposits. Either way they are interesting and worthy of record.

Hundreds of fossils are thrown aside and forgotten, lost and destroyed, because their finders do not know what they are. Pleased am I that these bits of horns did not share such a fate, for their evidence is valuable. Lying in the same bed with bones of the primigenial ox and ancient mammoth, red deer, hippopotamus, and Irish elk, we can now add another rare species to the list, if not a new kind of deer, to the number of the great beasts of that remarkable age. And these bits of horn have thus proved worthy of their saving, as many more bits of fossils might have done, had their owners kept them till they found out what they were.

DFEP SINKING FOR COAL IN THE WYRE FORES'l COAL-FIELD.

Additional Notes, by Georae E. Roberts.

Some other memoranda which I find among iny papers relating to this work (for a section of which, with particulars of shaft-sinking, see " (icologist" of last month) may not be unacceptable to your coalmining readers.

The sjot where the shaft was sunk was 476 feet above the level of the Severn Valley Railway at Eymoor, and about 510 feet above the ordinary height of the River Severn, from which it was distant about two miles. The coal seam met with and worked at the depth of 176 yards, has in other parts of the coal-field a thickness of four feet. The colliers regard it as a Flying Reed (red?) coal. Two of the thin coalseans afterwards sunk through were entirely made up of the remains of Sigillaria ; the coal, in consequence, was "long grained" and slaty. These Sigillarian coals have a considerable range through the Wyre Forest ficld, and in common with most of the other seams, crop out along the western border. At the Baginswood pits, in the north-west corner of the coal field, the upper coal, two feet four inches in thickness, worked by hand-draw, being only ten yards from surface, is a most interenting seam, made up entirely of compressed Sigillaria.

1 lave lately prid these pits a visit, and recommend any one who is studying the structure of this ubiquitous coal-plant to get a block of the Baginswood coal. At the Blakemoor and Gibhouse pits, in another jart of the Wyre Forest coal-fieh, a layer of black slaty coal, halt an inch in thickness, is seen to bo wholly made up of tho compressed spore-cases of Lycopodiace, probably belonging to Lepidodendron. Concerning these, Dr. Dawson, in his lately pmblished supplement to " Acadian Geology," thus speaks, white relating their oceurrence in the Lower Coal mensures of Nova Scotia :-
"There are also immense quantities of spherical or flattened carbonaceous bodies, resembling small shot, which 1 at one time sulposel to be spawn of fishes, but Dr. Hooker regards them as the spore-cases of Lepidodendra." (p. 41.)

The grey conglomerate (No. 53 of the sinkings) was a hard compact rock, made up of variously sized angular fragments of green and purple Cambrian Sandstones. This is the bed which lies inmediately nhove the "thick" or ten-yard coal in South Staflordshire ; bat the place of that much-wished-for sean at Shatterford was taken by twenty inches of nomalous "black and pink gromid," followed by 5) fent of coarse fire-clay containing very few plant-remains. The fire-clays sank through evidenced many distinct surfaces of ustuarino jungle; but if forest-spoils were ever haid upon the argillaceous deposits, after tloods swept them away; little remained to be changed into coal.

The basalt, which at last ended the work, and caused the abandonment of the euterprise, is a sub-crystalline greenstone, rudely columnar at its near-lying outcrop, and containing in places vertical series of spheroids, which show their progress of change, by compression in a heated state, into columns. It may be called a hornblendic greenstone. One interesting feature of it is the quantity of unaltered calcite it contains, disposed in embedded amorphous masses in some cases as large as an orange. Zeolitic crystals also occur in it. In the dyke, which is extensively quarried for nearly a mile, these features are well to be seen; but a visit should also be made to the northerly limit of the outburst, Munster's Hill, which the basalt has capped with " a wild-looking pile of rhomboidal rocks, intensely black and hard ; a mass not concealed by dross and rubble, as at other parts of the line, but lying naked to the light, hid by nothing but the grey crust of lichens."* These amorphous, rudely-columnar masses have a great resemblance to those which cap the Titterstone Hill, and there form the "Giant's Chair."

I do not know of a wilder spot in Worcestershire thau Munster's Hill. A clump of immense yews are rooted at the feet of the basaltic columns, and lie against them, clasping the rugged masses with brown gnarled arms as ancient-looking as the rock itself.

Comparison of the Shatterford basalt with that of Kinlet, four miles westward, is an instructive work. At the latter outburst the Plutonic rock is of the same general character, that of hornblendic greenstone, but it contains crystals of augite and many ritreous crystals of calcite; weathers white, and is rudely columnar, like the Shatterford rock.

ON THE DISTRIBUTION OF MASTODON IN SOUTH AMERICA.

By Charles Carter Blake, Esq.

ONE of the greatest and most significant laws which modern palæontology has unfolded to us, is that principle by which it is definitively ascertained that, as a general rule, the animals of the Post-Pliocene, and indeed all the later Tertiary ages, were restricted to the same great geographical provinces as their representatives in the existing fauna. Amongst the Pliocene Mammalia of South America, we find the same preponderance of the Edentata, the same family of prehen-sile-tailed Monkeys, and the same typical Llamas and Vicuñas, as we find in the present pampas of La Plata, forests of Brazil, or elevations of the Andes.

[^68]But we also fimd amimals which, from all our previms pre-conceived associations, we had considered peculiar to the old world. The Elephants, of which one species (E : - Ifrieranus) now exists in Africa, a second (E . Inelicus) in India, and a third (L . Siumnetrenus) in Sumatra and Ceylon, apart from the extonsive and widdy-distributed evidences Which we tind of their fussil remains in Eurone, India, China, and Australia, extended their geographical province in the later T'ertiary ago over the whole of North America. The species of elephant which we find in Siberia (E. primiycnins) has also been tound aver the whole of tho space lately marked on our maps as the United States. Sunth of the :Suth degree of N . latitude it however gives place to a totally different sprecies of true Elephant (Elepluas Tevianus, Owen, l: Columli? Falconer), the mulars of which, liy their less degree of complexity, were more adapted to triturate the soft succulent herhage of Texas and Mexico. Besides these true Elephants, there existed in North Amerie: many individuals of the genus Jfastodon, to which the present communication more particularly allndes. The Mastorlon Ohioticus of Plummbach (yigmenters, Cuv.) has been found in Post-Pliocene deposits in North Ameriea, while in the Southern part of that continent tho two species, Mustodon Andium and Ifumboldtii, supposed to he diatinct, are found in various localitics, to which I shall more particularly allude.

The Eititer of the 13 th volume of the "Quarterty Joumal of the Geological Society," page 2!11, status, that "the ihestodone Andium vecurs in Pern, Chile, and Tarija ; and that the I/. IImmholdtio occurs in Bumos Ayres, liazzil, and Colmubia." He raters to Gervais and Lamillard as proofs of this statement. The reference to Tarija, how(bre, is a slip of the pen, as (iervais, in Castalnam's royage, ilentifies the species fond there as ILumbullii. We have thas two species of Mastodon in South Ameriea ; and it is allegel ly Lamillard that the one (ficelimen) is confined to the clevated regions of the Cordillera de lon Andes, and that the other (IIombliftin) is fommel in the watersheds of tho Amazon, Urinoco, and lat Plati. It will senredy prove a matter of sumprise (1) the philemophical grolugint, that the speceies (. Indimen) which has the greatest vertieal range shombld also have the greateat homizontal mange in apace. The M1. Andiman has beenf found at a furthor distance from the erpator than my othere 1'rolswsidean qualruped in the sonthern hemisplere, exappting in Anstralia. At the lake" Thgra-tugna, in abunt hatitule S. 3.i. legrees, are foumd the romeng of this animat, is well as of deme in ereat profinsion. They have

 Jommal," xiii. 15:57, p. 2e91). Jt is a singular fact that the last writer should lowe been fortunate emogh te diacover the first elephantine remains in 'Texas, showing the fur thest smenern limit of the genne, Filrphens Tririmus in North Ameriea, and that he should alsu have been at witurss to the furthest sonthern limit in chile of the eontemporary forna, Mustulun Audinu, in Sontl Americis. The present
polar limit of the Proboscidea is 32 degrees South ; and we have evidence of an American Mastodon in nearly the same latitude. But, upou the supposition that the state of the South American continent was analogous to the existing one, ordinary readers can hardly realize the fact that a species of elephant should have existed amongst an assemblage of high hills, at an elevation of 2300 fect above the level of the sea. The numerous indications, however, of volcanic action in the neighbourhood of Tagua-tagua afford us a clue to explain the cause by which such alteration of the aspect of the country as has been manifestly proluced, must have been occasioned. The fragments of bone which Mr. Bollaert was enabled to discover, consisted of portions of a femur and tibia ; those which Don Claudio Gay figures, are the atlas, tibia, calcaueum, fourth metacarpal, and, finally, the almost entire mandible.

De Blainville is of opinion that evidence is wanting that the MIastodon Andium and the Mastodon Humboldtii are different species. Laurillard (D'Orbigny, "Dict. Hist. Nat.," art. Mastodon) denies this theory, and points out that the angle formed by the symphysis in Humboldtii is short, and otherwise differs from the same structure in Andium. I am aware of the fact that Cuvier founded the species Humboldtii upon a specimen alleged to be brought from Concepçion by Baron Humboldt, a place never visited by him ; but I am inclined to think that some error or misapprehension exists as to this statement. The Andes at present act as an effectual barrier to prevent the migrations of large species of animals across them, and unless the upholder of the theory that the La Plata and Chile species of Mastodon are of the same species, accepts also the hypothesis of their existence in South America antecedent to the present disposition of the continent and upheaval of the Andes, he cannot hold the possibility of accidental migration of elephants over the snowy range. If, however, both Andium and IIumboldtii are modified descendlants of some original progenitor, which existed in South America before the upheaval of the Andes, the difficulty in some way disappears. But upon examination of the specimens of Mustodon Andium in the British Museum collection, the habitat from which they are undoubtedly derived is Buenos Ayres. I have no doubt whatever of the perfect accuracy of Mr. G. R. Waterhouse's statement as to their being geographically derived from that country, and I cannot close my eyes to the fact, that we have here evidence of the existence of Mastodon Andium in a spot in which Laurillard, who so confidently assigned the western side of the Cordilleras as its habitat, never dreamed.

Are the differences between Andium and IIumboldtii of specific value? I think not. From inspection of a large series of teeth of Mastodon longirostris (anyustidens) I can confidently declare that there is not greater difference between the teeth of Andium and Humboldtii than between the many varieties of the narrow-toothed Mrastodon. When Cuvier founded the species IIumboldtii, he thought that there was a difference of size between the molar teeth of the two
species. This, when a larger series of specimens is examined, proves to have been an imperfect and erroneons induction. There is no appreciable difference betweer the two species in this resprect. The alleged symphysial difference l camot regard one of specitic dissimilarity. The differences which we observe in the symphyses of the Lilephes mimigenius or in the Elephus antiquus are fully equal to those between the same bone in the two South American species. Specific characters can nevor be founded on parts which are so liable to adaptive change as the symphysial angle of a great trunk-bearing beast.

From a carcful consideration, then, of the whole aspect of this question, I an of opinion that the species Mastodon Andium and Mustodon Humboldtii are not specifically distinct. The Guanaco which climbs the summits of Tupungato, Aconeagua, or Tata-Jachura, is the same animal as the Guanaco which manages to survive in the plains near Puterto Deseado, in Eastern Patagonia, I have already pointed out in your pages, in the "Creologist" for Augnst, that the Tarija Macreuzcheniut, like that of Corocoro, was in all probability the same species as the Macranchenia Darwin found at Port St. Julian. Professor Owen said a few weeks ago to the British Association:-"The cardinal defect of speculators on the origin of the human species is, the assmoption that the present geographical condition of the earth's surface is antceedent to, wr least co-existent with, the origin of such species." The applieation of this erroneons mode of thought has been by no means limited to Ethonlogy, and it has been through an analogous elror that the existence of two species of Mastodon in South America has been asserted, upon gengraphical grombds alone.

The conclusion which I would wish to impress upon the minds of your readers, is that one solitary species of Mastodon existed in South Americh during the Pliocene age. That the distribution of this species, for which the name of Audiam is olviously inappropriate, and that of Humbiohtii undeserved, took placo long prior to the upheaval, through slow volennic agency, of the Audes. This species, for which a more appropriato name might be suggested, flowished over nearly the whole of south America, and like the Meyatheria, Mylodons, Cilmpiodons, Mucraucheniow, and T'oxodons, has passed away, and leaves no evidence to apprise the geologist of the former existence of elephantine animals in South America except a few seattered molars and vertchra, brought down by alluvial deposits from the heights of the nighty mountains in which, possibly, further remains may lee embeelded.

I remain, Sir, your obedient servant, Cifrles Carter Blakf.

SKETCII OF THE GEOLOGY OF BIARRITZ.

Chiefly drawn from a Thesis* by Monsieur Joseph Delbos.
Monsiecr Delbos, after much research, has determined that the cliffs at Bidart consist of the cretaceous rocks, and that these cease going northward towards Biarritz, and are succeeded by beds of the Lower Eocene. The very lowest of these, however, does not appear on the coast, namely, that which he designates as "Marnes à Terebratnles." The first, which is found to the north, beyond the chalk formation on the coast, is a calcareous rock, containing a species of serpula. Mons. Delbos writes as follows:-
"I now propose definitely the following divisions for the nummulitic deposits of the basin of the Adour.
> " 3rd. Upper Series $\left\{\begin{array}{l}\text { 1st. Operculine free-stomes. }\end{array}\right.$
> "2nd. Middle Series-Nummulitic limestone with Serpula spirulcea.
> "1st. Lower Series-Clays with Tercbratula."
M. Delbos then gives an explanation of his section of the coast, starting from the point a, and going northward.
"North of the mass of siliceous limestone, of which I have already spoken, and which belongs incontestably to the chalk formation, there is an extensive depression, occupied by sands blown in from the shore, and which interrupts the continuity of the escarpment for the distance of rather more than a quarter of a mile. Beyond this depression the cliff recommences, and from the point where it first appears abundant specimens of fossils characteristic of the nummulitic formation may be collected from a large fragment which lies detached at the foot of the cliff. (Nummulina, Serpula spirulea, I'ulsella falcata, \&c.)
"Starting from this fallen fragment, the cliff is formed of a yellow limestone, somewhat sandy in its texture, in which here and there softer bands occur. These beds dip E.N.E. Further on, these yellow beds alternate with blue ones of the same texture ; ρ resently, their inclination suddenly changes, and they dip sonth at an angle of 25°, and this continues to the end of this part of the cliff, where the blue argillaceous beds gain the predominance. The calcareous rock has been worked in several quarries which have been opened in this cliff, and it affords a sufficiently good stone for rough building-purposes. It is rich in fossils; among the species which it contains, I may mention Guettardia Thiolati, Serpula spirulcea, de.

[^69]"Facing this cliff, there are some rocks which appear alove the sames of the shore ; at first the yellow sandy limestone but just discovers itself above the surface of the samb, and here it entains the same fossils as the escarpment itself ; but further on, and distant alont 120 yamls from the cliff; there rises a large wellge-shaped muss, mamed 'La roche pointue, composed of yellow sandy limestone, and of whito limestone containing Niemmuline spisse aul Serpule spirulera.
"Annther depression, traversel hy the little stream which is tesignated 'Ruissent du Moulin il' Estaigh,' again interrupts the contimity of the cliff. A sort of connexion between the two eliffis is kept up by a bluish argillacenus limestone containing many fissils,* and which appears here and there alove the surfice of the sand. * * *
"Continning the examimation of the clif", beds of buish clay are tirst observed, which dip at about 45° to the S. E.; these beds are alternated with narrow bands of limestone of the same colonr, enntaining Pygorhynchus sopitiamis, de. These beds sonn hecome horizontal, and retain the same position to the end of the esearpment.
"The altermating berts of limestones are of a yellowish shade (see Sketch of clill). 'These and the associated argillaceous beds become much disturbell and bent, then dip almost perpendicularly, and a little beyond the ophite rock, son to be mentioned, entirely disajperar ander horizontal beds of allnvium.
"It is purcisely opposite this cliff that the large roek stands which is called ' La roche qui boit :' it is an monmous block, ten or eleven yards high, of extremely hard limestone, very white, and slightly saccharoid. The action of the waves has partially polished its surface ; it eontains an immense quantity of altered mmmulites (N. spissu). The colour and the quality of this limestone, so mulike the rocks of the cliff, are due unguestionably to the intluenen of the of hite which appears nhout thirty-five yards sonth of the 'Pache qui boit,' wher the form of a little rock, visible only at low water. 'This ophite is of a beatiful green colour, and has gained a fiviry good prish umder the action of the waves rharged with sam, which beat ngainst it perpectanlly. It is girdled at the distaner of ahout twelve yards by a sort of semicirenlar helt of magnesian limestome, notehed at itw yper erfere, hackish, and in some part red (also of a lowely grey), traversed by thead like weins of sulphate of limes, hard enough to he partially polishod. The senshore sand preventa the estahlishment of the comexion which exists between the ruptured beds of calcareoms rook nul the oplite."

Hare M. Dellous omits cutirely to montion that the remainder of this nemarpmont, till it sinks like the previons one, beneath drifted sand-hills, is compreal of homiznotal heds of monlem deposit, from thirty to forty feet in elevation, and rieh in wegrable mattor. Ho enntinume thata-
"Fegont the last-mentioned intermption in the contimity of the

[^70]

cliff begins a long rectilineal escarpment, which extends to the ' Port des Basques,' marked out with great regularity to the N.N.E., for the distance of rather more than a mile. Opposite the point where this cliff begins, there rises in the sea a rock much more considerable than those we have hitherto met with, and which is designated by M. Thorent the 'Rocher du Goulet:' it is formed of grey-blue limestone, tolerably hard, and worked as building-stone; it dips to the N.N.E., and encloses a great quantity of fossils." (This rock has been so much worked for building that it is below high-water mark, 1861.) "The cliff itself, throughout its whole extent, presents a very uniform appearance. It consists exclusively of alternate beds of bluish clay and soft limestone of the same colour, dipping regularly to the N.E. at an angle of about 40° or 45°. The only fossil found there is the Serpula spirulaca." (As you approach the Port des Basques, the beds become richer. On the shore, imbedded in the rock, I have found several varieties of shells, and also a good deal of wood.) "This long clay cliff terminates abruptly at the Port des Basques against the promontory of Biarritz.
"Here begins a new system of deposits, harder than those which we have hitherto described, and to this circumstance is due the singular aspect of the whole of this mass of rock, fantastically worn by the sea. * * * It is composed of yellow arenaceous limestones towards the south, intermingled with beds of arenaceous limestone of a bluish shade, which, advancing northward, become more and more abundant. These limestones enclose an enormous quantity of small nummulites (N. intermedia), which of themselves almost form small beds; the Eupatagus ornatus is also sufficiently plentiful ; finally, round the 'roche percée,' the Scutella subtetragona is frequently met with ; this fossil has, no doubt erroneonsly, been stated to be found in the Dax beds.
"In the regular strata, rolled pebbles of hard grey subsaccharoid limestone, and also of black flint, may be frequently observed; they are the débris of the siliceous limestone of the chalk period, similar to those in the escarpment of Bidart, and which must have existed as rocks on the shore of the sea in which the nummulitic beds were in process of formation.
" The whole strata which form the mass of the rock at Biarritz are overlaid by a very modern deposit of yellow sand, which on the Attalay attains the thickness of at least fifteen or twenty yards. (This modern deposit beyond the Attalay, beneath the Eupress's chapel, contains wood and great masses of vegetable matter.)
"Beyond the point of Biarritz begins the 'Cote du Moulin,' bordered at first by little escarpments, surmounted by some sand-hills. These escarpments are formed of a very sandy bluish limestone, with some yellowish bands containing an abundance of the Nrommulina Biarritiana, also the Eupatagus ornatus, the Schizaster rimosus, \&c. Low sand-hills occupy the space beyond, for a distance of 600 or 650 yards, after which follows a steep cliff, twenty-five or thirty yards high, composed of lluish saudy limestones, with some yellow bands, con-
taining but few fossils (Pecten, Ostrec gigentea), and dipping to the N.E. at an angle of 25° or 30°.
"Below the lighthonse a very hard fine-graned limestone, or rather a calcareous freestone, presents itself interningled with the other beds, and eontaining C'ytherea I'ermentii, de. Some deposits containing peblles, ten or twelve yords thick, overlie the whole of these beds.
"Beyond the Point St. Martin begin the clifls of the 'Chmbre I'Amour.' They are formed of somewhat soft sandy limestones, with Operentince, Ostrece gigunten, mad lemus transversen; here also may lee ohsmed the same beds of hard bluish calcareons freestono with Sicalaria. de., as those beneath the lighthouse. At tho extremity north of the little bay, the hard freestone is scattered, as it were, through the softer sandy rock in the form of Hattened detached nodules, disposed in sonewhat regular beds. Advancing from tho lighthonse, these nodules increase in volume and become blended together in mone contimons masses, till at last they mitirely replace the more friable rock, in which at first, beneath the lighthonse, they unly partially appeared.
"The preceding description leads naturally to the following conelusions :-
" 1st. The nummulitic strata of the eliffs of Biarritz lip rernlanly to the N.N.E., excepr for a short space where their iuclination is in a reveron direction, opposite the ophite rock. Consequently, in following the conit-line from the commencement of the nummalitic clifl to the point north of the Clambre d'A mum, the strata are in regular segnenee from the older to the more motem deposits.
"-Inlly. From the conmencement of the mumalitic cliff to the Port des Basques, there is a vast system of calcarcons deposits, first aremaceons, ifterwards argilacenus, and characterized prineipally by the
 \&e. At the Port des Basques these beds disuppear beneath the following deposits.
"Brily: From the Port des Basques to the St. Martin Fighthouse, that is to say, through the whole mass of the pribut of Biarritz, and a part of the Cite du Monlin, yellow or blue sandy ealearcous deposits, with rolled pubbles of flint or limestone, follow the strata previously diencribed. The fromils of the former beds are no lonerer fomed. Their phas is taken by the Pinpatagns nrmaters and the Fimmalina interme lin, which appear for the first time.
"Hhly. Finally, from the lighthonse to the extremity at the Chambre d'Amonr, a syatem of hand, fine-mined, calcareons freestone is developed, ratariaterd with Operculina satuls. These rocks no longer comtain the limpateryme ornatns, nor the Serpulie spirulere, lant they preant a curtain mumber of fossils, for the greater purt identical with the sure ice fomm in the Faris hasin, and marnestionably eharacteristie of the 'Tirtiary perion. The Operculines seen here to replace the Nummulites."

The work from which I have quoted contains an claborate account
of all the formations of the valley of the Adour ; but I do not wish to extract details beyond those which relate to Biarritz.

With regard to the rich beds of well-preserved shells found near Dax, and in some other parts of the Laudes, the same author places them in the upper beds of the Miocenc.

He writes on this point as follows:-
"The shelly deposits of the Upper Miocene of the basin of the Adour are represented at three points-one is in the Commune of St. Paul, near Dax.
"At St. Paul, the yellow sauly beds contain an enormous quantity of fossils, and crop out at a great number of points from beneath the sands of the landes."

In the Upper Miocene of this region there appears to be one limited deposit, but a well-defined one, of fresh-water origin.
"Upper group, Sand of the Landes." This he places decidedly as the Upper Tertiary, or Pliocene.

He says, "This formation, which plays so important a part in the valley of the Adour, is, except towards the south, most uniform in its composition. It covers all the Marensin with a thick mantle, reappears at the tops of all the hills, and on the central platean of La Chalosse, and traverses the river-bed (Gaul), disappearing finally under the form of 'molasse and macigno,' beneath the diluvial deposits, from which it is often difficult to distinguish it."

Mons. Delbos' account of the diluvial drifts is very brief, and he makes no mention of the modern deposits, rich in vegetable remains, south of Biarritz. Near the ophite rock they form a cliff from thirty to forty feet high at least. They lie perfectly horizontal, and are composed of alternate beds of sand and gravel, the stratum of vegetable matter appearing at its base, just above the seashore sands.

Further on in his thesis, M. Delbos speaks of the Ophite. He says that in general fibrous gypsum is found near it, but that this does not appear to be the case at Biarritz.

Probably when MI. Delbos examined this coast the seashore sands were rather higher opposite the Ophite rock than they are at present. Under the cliff, at about thirty yards from the Ophite rock, I found a very good example of the fibrous gypsum. It lay-as he states it generally does-"dans des argiles ronges." At the point where I saw it, the gypsum, not much more than an inch thick, lay imbedded like a wedge in clays of the most beautiful colours, veined grey, red, and yellow, and of the texture of stiff paste.

In conclusion, there seems to be little or no question that the Nummulitic rocks belong to the Lower Eocene period; that is to say, to the Lowest Tertiary, and that in general they repose directly on the Chalk.

The researches of geologists seem to have established that the Nummulitic rock exists very extensively in Southern Europe. Mont Perdu, in the Pyrenees, is composed of it, and also La Montagne Noire de Corbières. On the south of the Pyrenees it extends from Vittoria
into the valley of the Ebro. Again, in Languedoc and Danphiné. Nem Nice, in the 1 larime Λ jus, and in Lombarly. Inswitzerland, in Sicily, and in 'Jurkey. Not to speak of Egypt, where this rock hiss long been known to exist.

A. D. Acwortii.

NOTES ON THE GLACIAL PHENOMENA OF WASTDALE, CUMBERLAND.

By Edw. Hull, B.A., F.G.S.

Dear Sire, -T had hoped this year to have heen able to extem over the Northern portions of the Cumhrian monntains some olservations on Clacial Vestiges which I made in 1859 over the sonthern slopes of the same range, and communicated to the Eelinburgh N'ew 'lhilosophicul Jommal.* I have only, however, bech permitted to insestigateat very small tract along the western slopes ; Lut thongh limited to this, the following notes may not be withont value, as there are few observations as yet reeneded of the evidenecs of extinct ghaciers in the English Highlands.

1 may prefice my remarks ly olserving that the first notices of glamial phenomema in the Jalse dintrict were mate by Agassiz and Puekland in their general surrey of the evidences of extinct glaciers in the British Islands; but they were accompanied by very few sumecial examples. 1t is mot, however, from any want of striking instances that till lately they have been passed by almost without notice. Every valley which deveends from the central watershed, fresents the features of a glacier-chamel, and is well furnished with ruches montornice, ferched hlucks, moraines, and striated rock-surfaces. Eien the lakes, which are the special feature of this reginn, are in many instances she to the preanee of terminal moraines, which have actal as cmbankmonts to the waters. In addition to the instanees which I have alroaly enomeraten, I may wow ndd that of W'ast Wher," the wildest, the deepest, the must impressive of all our lakes, wer whon surface the winter's frost cannot sprad a crust."

Wimedale leads up from the undrlating tract of New Rad Sambatone which lines the const into the very hart of the highest momtains. At ity hoad stands Great (iable, an elevation comspienons for its pyranidal ontline as sern from the wrst. On the right of this rises sicnwfell, the culmimating point of tingland, 3166 fect, throwing out some limine, like great butereses, with very gracefully curved

[^71]outlines. Its western shoulder forms "The Screes," a range of precipitous cliffs overtopping banks of shingle which sweep down in one sheer unbroken plane into the deep waters of the lake. The position of the rocks on each side of the lake, together with the straightness of the sonthern line of cliffs, are in favour of the supposition that Wastdale has been formed along the line of a great fracture. Yewbarrow, on the northern side, is one of the most picturesque hills I have ever seen. Capped by vertical eliffs, which ascend almost to a point, its sides fall away on either hand in exceediugly graceful outlines, to which I would draw the attention of Mr. Ruskin, as they illustrate his doctrine of the curves of nature. It is in rain for me to attempt to describe the varions aspects which the landscape here assumes, with the most solemn and wild features she has also combined her most graceful proportions.

On my former visit to the Lakes, I became convinced that this mountain-chain had been a "centre of dispersion," from which glaciers descended in every direction seaward. In Grisedale, I had found strix ranging north. In the neighbourhood of Ambleside, south and south-east; but I had never an opportunity presented of observing a westerly striation. I was therefore delighted (the less enthusiastic reader will, I hope, pardon the use of the only word expressive of my feelings on the occasion) on fiuding just above the village of Strands, near the western entrance of Wastlale, a boss of syenite polished, and distinctly marked with grooves ranging out to

sea. Further up the valley, I obtained at least six good observations, and the invariable direction was west, or nearly so. The highest observation was made on porphyry; near the foot of Yewbarrow.

The upper limit of the glaciation, along the ceutre of the dale, was easily ascertained. The rocks, from the edge of the lake up to an
eleration of about 800 feet above its waters (estimated), were found to be ull clearly ice-monklel, that is to say, wom down into smooth mammillated bosses, often showing striations or gronves; hut above this line, which appeared very constant for a long distance, the rocks nssume the form of crags, sharp and precipitous. (Sce figure.) The contrast here alluded to may be well observed on the flamks of the rock-masses west of Greendale. And if we suppose that it marks the upper limits of the ghacier, we have a measure of the thickness of the ice at this peint. The level of the lake is 160 feet above the sea, and its depth 270 feet, or 110 feet below this. Tlis would give for the total thickness of the ice $800+270=1070$ feet, and for its surface, $800+160=960$, or 1000 feet ahove sea-level. By similar admeasurements, it is probable the thickness of all the extinet glaciers may be calculated.* The length of the glacier (measured from its neve, at Wastdale Head, to the pinit where the first traces of glaciation were observed) appears to lave been upwards of six miles, and it had its sonree anmonst the snow-clad heights of Scawfell, Yewharrow, Kirkfell, and Great Gable. From these reservoirs also proceeded, in all probability, glaciers into Enuerdale, Crummockdale, and Burrowdale.

In Wastdale, there is a remarkable scarcity of some of the more prominent productions of glaciere, at least as compared with many of the neighbouring vallegs. There is very little drift, or momine watter, with one execpitional case presently to be nutieced, and perehed blocks are of rare ocenrrence. 10 gemmal, the mative rock is hare, but invariably iceworn from the water's elge up to the limit alrealy assigned.

But the large moraine which las been thrown across the valley near its entrance, and winch forms the embankenent for the lake, numly compensates for the absence of these glacial momments in other parts of the valley. Viewed from above, it looks like an artiticial bank, as its uppresurface has heen lewelled, and phated with trees. It is nearly 500 yards in length, with a hreadth varying up to 100 yards, and a height of sixty fint above the surface of the lake. Tho water finds an ontlet in a chamel betwern the southern emo of the momine and the hane of the Serees, which here tower aloft to a height of about 1000 fret, a wall of theetling cliffs. I satistied myself, liy a carefnl insuection, that this bank. to which the lake, at least partially, owey its cxistemer, is a true temmal momine. It is either this or man's work, and then latter it certainly is not. It is composed of gravel and subtangular or monded peblates in a clayey matrix, also rnclusing large blocks of porphyry :and other rocks. T'o the south, it terminates, an already stitend, opposite the hase of the Serees, and its nonthern extremity repoes upon ice-monded hosecy of syenite. The perion at which this momane was thrown across the valley wis probably that third stage in the changes of the Glacial Epuch, when, after

[^72]the deposition of the Boulder clay around the flanks of the hills-to an elevation in Cumberland of about 1000 feet--the land was elevated, and glaciers again descended the valleys and "ploughed out the drift." It is only on such a supposition, as deduced by Professor Ramsay from his observations in North Wales, that we can account for the existence of old moraines at levels so far below that attained by the Boulder clay.

I remain, dear Sir, yours faithfully, Edward Hull.

FOSSILS OF NOORTH BUCKS AND THE ADJACENT COUNTIES.

By J. H. Macalister.

As the geographical distribution of fossils is always an interesting subject, it has occurred to me that a few words on the Oolitic fossils of this part of England, not much visited by geologists, may be acceptable to, at least, some of the readers of the "Geologist." It will not be my intention in this paper to treat so much of the geological features of the country, as to give complete lists of the organic remains which have been found by myself and a few others in the various strata of this district. The Oolites of North Bucks and Northampton, though of conrse presenting, for the most part, the usnal character of the system as represented in other Oolitic districts of England (being, as they doubtless are, merely a continuation of those of Oxfordshire, sre.), yet possess several points of iuterest peculiar to themselves. The identity of the "Northampton Sands" (formerly classed with the Lias)* with the Stonesfield Slate of Oxfordshire and Gloucestershire, and constituting the Lower Zone of the Great Oolite, the importance of these "sands" as an iron ore; the occurrence of land-plants similar to the Stonesfield specimens in the Forest-marble of the neighbourhood of Wolverton ; the extensive development of the Kimmeridge Clay at Hartwell ; and of the Gireat Oolite further north ;-all these facts combine to invest these beds with much interest, both to the geologist and the palæontologist.

The strata which I am about briefly to describe, and whose organic remains I shall euumerate, are the following :-

UPPER OOLITES.
Portland rock.
Kimmeridge clay.

* So classed hy Dr. Wright, being separated by him from the Inferior Oolite, which they formerly were supposed to represent.

YOL. IV.

LOWEK NOLITES.
Cormbinsti.
Forest-marble.
Batlı Oulite.
Northan!iton saml.

LIAS.
Upper lias chay. Marlstnies. L. ower Lias.

I eamnot dwell on the lithology of these beds, which differ unt in mineral composition from efuivalent strata in other parts of England ; but, liefore describing their fossil contents, I will content myself by just traciug the boundaries of the varions divisions as I go on.

The Ubrer Oolites-via, the Portland rock and Kimmeridge elayare greatly developed in the Vale of Aylesbury; that fertile tract of comntry lying between the Cretaceous ridfe known as the East Anglian heights and the Oolitic hills of Oxfordshire. Havtwell and Stone (alont two miles from the town of Aylesbury) are equally renowned for the beauty of their organic remains. The fist for Kimmeridge clay, and the second for Portland rock fossils. As the clay and linestone are very useful for economic purposes, several pits and quarries are found in the neighbourhood. The Portland rock is eapmed ly a thin layer of Purbeck stone with a subordinate band of carhonacems earth, which represents the dirt-bed of the lste of Portamd. In the limestone, remains of coleopterons insects were fomm lyy the Rev. P. D. Lrodie; with the exception of these fosith, which are now rarely met with, scareely any others are found. The Portland rock, however, has organic remains in great abondance, but not of great varicty : the following list will show the most common of them:-

Ammonites biplex, Sine. (rar. rotumlus)
Plemotomaria.
Nitict elecrima, Smu.
Curdmon dissimile, Some.
'Trierniat g̣ibbosat, sour.
., incurva, sime.

The Iortland ruek extemes smme way further north than Stone, and tinally disapleas ne:a bletelhey. 'The elay at Hartwell is of a dull lomdon colonn, sand is wry fossilifemons indeed. lint the hitnminons shates which neenr in this formation in Dorsctshire hatve not Inern unticel here, thomph lignite is pretty abmatant. The following is a list of frats from tho Kimmerilge elay of lincks:-

Ichthyounaria	
Flasmsamma	Fiones
Cetiosimma	de.
Pligxturns	

mites Owenii, I'ratt. motemaria roticulata, s

Cardium striatulum, Sow.
Astarte lineata, Sow.
„ Hartwelliensis, Sow.
Thracia depressa, Sow.
Ostriea deltoidea, Sow.
" læviuscula, Sow.
", gregaria, Sow.
Pinna granulata, Now.
Pinua.
Perua quadrata, Sow.
Trigonia costata, Park.
Modiola.
Panopæa.
Pecten arcuatus, Sow.
Pecten.
Serpula socialis, Goldf.
Gryphra rostrata (?) Phil.
'Crigonellites.
The extensive museum of Dr. Lee, of Hartwell Park, contains many beautiful fossils from the neighbourhood, and is well worth a visit. The fossils from the Kimmeridge clay are frequently sparkling with iron-pyrites; and thus they are almost unrivalled in beauty and delicacy; generally they are beautifully perfect and entire.

The Middle Oolite represented in this district merely by one member, viz. the Oxford clay, next makes its appearance. It is a bluish or leadencoloured clay, sometimes laminated, and with frequent bands of concretions; it contains fewer fossils than any other formation in the district, with the exception of the Northampton sand, which has very few indeed.

In a former notice* I have briefly described the Oxford clay of the neighbourhood of Newport-Pagnel and Wolverton ; so that very few words are here necessary. The most important point in its palæontology is the occurrence of marine reptiles (Ichthyosauri and Plesiosauri) ; the other fossils, with the exception of Cerithium Damonis, being common everywhere in this formation. This little shell, + which is tolerably abundant in the Oxford clay of Dorsetshire, but which, I believe, has not been found elsewhere,

I have diseovered in the Oxford clay at Newport-Pagnel. It is an elegant fossil, but hy no means common.

Interealated with the Oxford clay, in some phaces, there are fragmentary portions of a hard limestone enntaining several fossils, and amone then Rostllaria trigita and Ammonites Culloriensis. This stone probably represents the Kelloway reek of Yorkshire, icc., but is rarely found in this part of England. The fullowing is a list of the fossils which have been foum in the Oxford clay of this distriet :-

Localit!.

... Newport-Pagnel.
... Little lindford.
... Wolverton.
... Newport-Pagnel.
... Wolverton.
... Stoke Coldington.
... Newport-Pagnel.
... Newport-Pagnel.
... Newport-Pagnel.
U.traa gregaria, Sime. Wolverton.

Giryhhea dilatata, Sow. Wolverton.
Moxlinla imbricata, sow. Wolverton. Thracia (?)

In addition to these, I have found certain doubtful forms, probably opereula of some molluse ; also an abmulance of lignite, and oceasional impressions of small cones (?). The Oxford elay, flanked by the Lower Greensand and Gault on the ne side, and ly the Lower Unlites on the nther, extends on towards Cambridgeshire and Humdington in a north-casterly direction.

Next in order appears the Cornhrash, whieh is but insignificantly represented. It consists of yellowish white limestones very full of fossils. The principal Inealities for these are near Stoney-simtford (where, as Mr. Brodic informs me, he olserved many comals), Wolvertom, Olney, aud the neighbourhood of Northampton ; also Gayhurst (Ducks), where scveral fossils have been fomud. A very common Shell here is Astarte alima; also a small species of Trignia, probably 7. impressa, which is also fomm near Wolverton. The following fossils were also foum :-

Same.

P'yencelus (tweth of)
Nucleolites clunicularis, L/heryyd
Holectypnis depresuns, lam.
Diadema Fakoria, Wright
Outram gregaria, Some:
Panopama (a long specines)
Modiola imbricata liowley pits.
Lime duplicata, sime. Gayhurst.
Mytilus sublevia, Kinu. Gayhurst, Grendon.

Tame.

Next we find the Forest-marble, consisting of hard blue limestone and clay, which, as it possesses land-plants, is of wore interest than the Cormbrash, which is much the same as elsewhere. The Forest. marble cloes not in the least resemble the Stonesfield slate, as that of Gloucestershire does, in lithological character, not being flaggy or splitting into thin plates; but is a massive and very hard limestone, and very intractable. It is well developed around Wolverton station and town; and the following fossils have been obtained from it :-

The coniferous plants were found between Wolverton station and Laughton, on the cutting of the London and North Western Railway, or rather in the stone blasted for the purpose of building a
bridte over the line. We also find the coniferous wood near New-port-Pagnel associated with Terebratule, de. ; but frequently the fosils are in a fragmentary state and not easy of identification.

W'e now come to the Upper Zone of the Great Oolite, which attains ly far the greatest development of any formation in the district, and hy far the largest umber of organic remains, as the following list will testify: It comsists, thronghont, of hard white limestone, freestone, and blue clay. The freestono is used for building and other economic purposes, and when in this form, the (ireat Uolite exactly corresponds with the " Bath Oolite," having just the apparance of that stone as seen in the vicinity of Bath. The Upper Zone of the Gieat Oolite extends over a layge tract of comntry, and is in many places of considerable thickness, and has a general dip, towards the east. As it is found in large massive blocks, in most places, it is, molike the Cornbrash and Forest-marble, well atlapted for building and other purposes ; consequently there are many more quarries opened in it thau in the above-mentioned furmations.

Fosshls from the Great Oolite ($U_{l}{ }^{\prime} p$ er Zone).
Name. Localitics.

IISCES.

Hybodus grossiconus, $A y$. P'enodus parvus, A!g.

$$
\text { Pucklindii, } A g \text {. }
$$

Strophodus magnus, Ay. ... tenuis, $A y . \quad .$.
Spherodus Fiddington, Northants.
Stromhodus reticulatus, $A y$.

Gayhurst, Bucks.
... Horton, Gayhurst, \&c.
... Piddington, Gayhurst, ide.
... Gayhurst, Horton.
... Gayhurst.
... Ravenstonc, Bucks.

CEPJIALOPOD.A.

Nautilus Pahmii, Lyc. Gayhurst quarry.
Nautilus striatus, Sow. Ekely, Gaylurst, ifc.

GASTEROHODA.

Pulla undulata, been Gayhurst quarry.
Natiea Verneulii, Arch. Near Ekely lanes.
,, Sharpei, Mor. and Lyc. ... Piddington, Gayhurst, de.
Nation, s]. Ciayhurst.
Nerita hemispherica, Lyge and Mor. Gayhurst quarry.
Pleurotomaria (small species) ... Denton, Northants.
Nerinea Common.
Trochus squarniger, Lyc. and Mor. Ravenstone, Bucks.
Trochotoma olitusa, Lyyc. and Mor. Ravenstone, Bucks.
CONCHIFRIRA.
Myacites ilecurtata, Golff: ... Gayhurst quarry.
" calceiformis, I'lil.
.. Denton, Northants. recurva, l'hil. l'iddington, Northants.

Name.
Pholadomya deltoidea, Sow. Heraultii, Ag. æqualis, Sow. Murchisoniæ, Sow.

Modiola imbricata, Sby.
" bipartita, Goldf.
gibbosa, Sow. ...
Isocardia concentrica, Sow.
Piuna ampla, Sow.
Pinna. Hantwell, Northants.
Trigonia costata, Park Denton Stone pits.
Cardium globosum, Bean ... Ekely, Bucks.
" dissimile, Sow. Bullington, Bucks.
" Buckmanii, Lyc. and Mor. Culworth, \&c.
Ceromya similis, Lycett Culworth, Northants. concentrica, Sby. ... Culworth, Northants.
Lucina Bellona, D'Orb. Ravenstone, Ekely.
A rea
Hinnites velatus, Goldf.
Lima duplicata, Sow. impressa, Lyc. and Mor. proboscidea, Sow.
Gryphæa subloba, Dest.
Pectert lens, Sur. Ekely, \&c.
" vagans, Sow.
", areuatus, Sow. Near Ekely lanes.
Ostræa Sowerbii, Mor: Blisworth, Olney, Stoke. " acuminata, Sow. Ekely, Blisworth. " gregaria, Sow. Salcey Forest, Blisworth, \&cc.

brachiopoda.

Rhynchonella concima, Sow.
Terebratula maxillata, Sow.
digona, Sou. intermedia, Sow. obovata, Sow. sphreroidalis, Sow.

Localities.

.. Near Ekely laues.
.. Blisworth, \&e.
... Stoke Goldington.
... Piddington, Raveustone.
... Ekely, Long-Street.
... Weston, Olney, dc.
... Denton, Northants.
... Near Ekely lanes.
... Woolaston, Northants.
... Several localities.
... Cnlworth.
... Gayhurst, Ekely.
... Denton, Gayhurst.
... Fragments iu several places.
... Culworth.
... Ekely lanes.
... Culworth, Blisworth, Ekely.
... Common everywhere.
... Yardley, Hastings.
... Piddington, Culworth, Gayhurst.
... Gayhurst, Denton.
... Gayhurst, Piddington, \&c.

ECHINODERMATA.

Acrosalenia Lycettii, Wright ... Gayhurst quarry. hemicidaroides, Wright Gayhurst, Roade, Blisworth.
", pustulata, lurbes ... Blisworth, Culworth. spinosa, $A g$. ... Culworth.
Hemicidaris Wrightii, Forbes ... Stowe, Northants.
Nucleolites orbicularis, Phil. ... Gayhurst, Denton, \&c. solodurinus, $A g$. ... Yardley, Ekely.
", clunicularis, Llhwyd ... Denton, Gayhirst, \&c.
", sinuatus, Aust. ... Gayhurst.
" Woodwardii, Wright ... Middleton.

Name.
Eehinohrisus Griesbachii, Wright Clypany lontii, Kilcin
," Milleri, Wright

Loctlitics.

Blisworth.
Blisworth, de.
Gayhurst quarry.
Blisworth, Woolaston, dec.

Many of the mollusea oeemr merely in the form of casts; some howwer, are well preserved, and genemily entire; but on the weathered sides of many blocks of Great Oolite, portion of shells, plates and spines of Dehiuites, star-like portions of the stems of Pentalerinites, together with worm-tracks and Serpula, are common enough. In many of the quarries, before reaching the gool workable beds of freestone or hard limestome, a marly beal has to be ent through : this hed is full of shells and N'ueloolites chunculeris and other cehinoderms. In a word, the (ireat Oolite is by far the most fossiliferons firmation uf the district. 'lhough this is its gencral character, yet miles in extent of hard bluestone, with searecly a vestage of a fossil, save at most a few oyster shells, extends over the high gromed east of Fund station ; and what few fossils there are, are nsully in a fragmentary state, bearing evidence of having been driftel by curents.

The Lower Zone next clams our attention, "the Northampton sand" equivalent, ns I before stated, with the Stomestied slate, hut remarkably opposite to that formation in one reppect, namely, that whereas that is full of organie remains-phats, mollnies, echinites, and fish, -this can scarcely boast of more than a dozen specees (fomed at least as yet). The Northampton sands consist of ironstone, sands, sandstones, and slaty limestones, spreading over a lage tract of comery west and sonth-went of the town of Northampton.

The Northampton sands are used as an iron ore to a great extent, as they are peculiarly rich in the hydraten oxidu: 74,081 toms of this ore were raised in the year 1855, and sent into Staflordshite to be smelted ; bat since that time fimmaces have been erected more Weedon for smelting. The flaggy Oolitic stone belouging to this furmation greatl! resembles in appomance the Stone-tield slate, and what orgnic remains have heen fonnd, rememble those of stomesfield still more clonely than thone of the lisas or Inferior Oolite. Athough allieed to the Great Oolite, there is mo phasage hetween them, but the sandatome rets on the Cireat Oolite quite uncouformably.

Lift do Fioshia from the: Northampton Sand.
Jame. Localitises.
Megalo:anru= Sucklandi, M.!. ... Duston stone pits.
Bunes of Dincisaria Diston stone pits.
Belemnitug compronas, siore. ... Distonstone pits.
Cardium Buckmanii, L!yc. ... Duston.
Himitew velatns, frollf: ... Dinston.
Pecten (small sp.) Dustmu.
Trigonia Moretomiq, Loy and Mor: Dinaton, Danes' Hill.
.. costata, sion: Gayton, Danes' Hill.

Name.

Natica elegans, Sow.		...	Gayton.
Lithodomus inclusus, Ph	hil.		Gayton.
Pteroperna marginata, L	Lyc.	...	Danes' Hill.
Gervillia acuta, Sow.		...	Danes' Hill, Gayton.
Astarte			Gaytou, Duston.
Ostreea		...	Danes' Hill, Gayton.
Lima impressa, Sow.	Gayton.
Pecten vagans, Sow.	...		Duston.

The Northampton sand lies immediately above the Upper Lias clay; but as the three members of the Lias developed in this district do not differ much, either in lithological character or in that of their fossils, from the equivalent strata elsewhere, and as I have already taken up, I fear, much valuable space with what I have already stated, I must content myself by enumerating the most characteristic fossils of the Lias without giving any description of the strata themselves. I may add, that most of these fossils from the Lias were found by the collectors of the Government Survey last year.

| Fossils from the Lias. | Upper Lias Clays. | |
| :---: | :---: | :---: | :---: |
| Name. | | Localities. |

Marlstone at Hellidoa.
Ammonites falcifer, Sow. annulatus, Sou: Hollandrei, D'Orb. communis, Sou.
Terebratula punctata, Sou. resupinata, Sow.
Rhynchonella tetrahedra, Sou. vol. iv.

The fossils of the Lower Lias Clay are not very plentiful ; and the course of this elay is much hilden by drift ; such shells as Rhynchonelle, ic., are not, however, uncommon.

CORRESPONDENCE.

THE LUNAR SEAS.

To the Editor of the Geologist.

Sir, - When I commenced reading the first article in the last (the October) number of the Geobogist-namely, that healed, "What has beenme of the Lumar Seas?" I expected to find that some attempt would he made in it to show that it was, at least, probable that seas did formerly exist on the surface of our satellite ; and since astrnnomers eoneur to tell us that the moon is destitute of water, I cannot but think the expectation a reasonable one. But, reasonable or otherwise, it was dnomed to disappointment, as the existence of such seas is quictly assumed, not only in the titular question butalso throughout the paper. Thus we have (page 409), " When we look up to the moon, what do we see! Great ocean carities and no water in them." (Page 410), "They do not tell us what hees become of the vater that once $w a s$ in them," i.e., the so calleal Lmar Seas. (Page 412), "Then" (when the moon was further from the earth) "it was it hall its atmosphere and its ocean." (Hage 414), "1oubtless the mon had once ocean and air," and "One thing, however, is certain, there are waterless ocean cavities on the mon." Now, I confess I should like to have some reason for the helief that any of the "waterless" cavities on the monn were ever "orcen cavities," or that at any time "the great Ocuans IProcllarum was a rolling sea, and the Mare Screnitatis lay glittering under the gollen streaks of our earth's bright beams," before even spoculuting on the question, "What has become of the Lumar seas?"

1;ut waiving this point, and assuming that there were formerly "Iunar Seas," oin the simple grounds that, as Sir Johr Herschel tells us, "there are large regions perfectly level, and apparently of a decided alluvial character in the mon." " Why is it "of no nse to say it is AlL gathered up on the other side"? A statement of the basi- of this inutility would have been acceptable; some reply to the reasoning of Sir John Herschel on this point, for example.t Should we mot he informent why " we camont beliewe that r" Possibly, however, the basis of nur alleged incredulity is supposed to be containel in the next passage. "The moon always presents me side to our earth, and therefore her ocean waters nught to be frawit up on this, and the the other gide." Cuformately, howeser, the fact atated will not earry the inference placed umon it. Fien if the mon had been a perfect phbere, with ita gometric contre comeident with its ennten of gravity-wheh has berndoubtedand having wator distributel over ita murface without any matked preference for either hemisplere: : all othor thing lining as now, the rarthis attraction could not draw, or haw a tendency to draw, hor ocean waters all up on the side always presentell to the earth : at most it could produce two neeanic protuberances diametrically nppuaerl, ome on the point of her surface nearest the earth, num the other at that tnonat remonte from it : in fine, two high water points, which, nomitting the Whatinna of the monn, would le stationary; sinee, in that case, the earth would appear immovalis fixed in the heav-rne, as seen from any point ont the monn's gurface. Whilst, if the moon were an constructed that all her watera were gathered up on that side always turned away from us, the attraction of the earth would only

[^73]have the effect of slightly helping to keep them there, certainly not to transfer them to this side; and this not because of the intensity of the earth's attraction on the moon, but because of the difference in this intensity as exerted at her centre and at the surface remote from us; such difference enabling the earth to pull her satellite slightly away from the water on the remote surface.

But to proceed. Supposing it to be a fact that "we cannot say there is not a residual balance in favour of approach" (of the moon to the earth). Is it not making an unusually bold use of inability to infer from it that there is such a balance? But waiving this point also, and assuming, for the sake of applying a test to the speculation, that the moon "has once been farther off-very much farther off," it by no means necessarily follows that she has ever yet come "sufficiently within the influence of the earth's attraction" for "the waters of the moon to be transported to our globe." According to the hypothesis, the moon is at present nearer to the earth than at any former period, and, therefore, nearer than at the time of the deluge of the "speculation." Now there can be no great difficulty in determining whether the thing could happen at the present distance; that is, whether the earth's attraction on a body on the moon's surface, placed in the straight line joining the centres of the two globes (the most favourable position for the success of our world in the struggle), would be greater or less than the moon's attraction on the same body. In short, Is the earth's power, at present, to steal a "Lunar Sea" greater or less than the moon's power to keep it \} If less now, then, a fortiori, according to the hypothesis, it must have been less in all former periods.

Let E be the earth and m the moon, AB the line joining their centres A and B, and c abody on the moon's surface in the line \triangle. Now the attraction of a body varies directly as its mass and inversely as the square of its distance from the body it attracts; such distance being measured from centre to centre.

Putting the earth's radius $=1$, the distance of the centres is 60.2734 , and the radius of the moon - 2729 ; hence the distance of the body c from the seat of the moon's attraction is, on this scale, $=2 \boldsymbol{2} 29$, and from the centre of the earth $=60 \cdot 2734-\cdot 2729=60 \cdot 0005$.

Also, taking the mass of the earth as unity, that of the moon is ${ }^{\circ} 011364$.
Then, if A and A^{\prime} represent, respectively, the attraction of the earth and moon on the body c, we have

$$
\begin{aligned}
\Delta: \Delta^{\prime} & =1 \times \cdot 2729^{2}: \cdot 011364 \times 60 \cdot 0005^{2} \\
& =0.0744744: 40 \cdot 89375 \\
& =1: 549 \cdot 12 .
\end{aligned}
$$

That is, in round numbers, the earth attracts the body 550 times less than the moon does ; or whatever inclination our attractive influence may give a "Lunar Sea" to precipitate itself on us, the moon gives it 550 times greater inclination to stay at home ; and according to the hypothesis, this disparity of inclination was still greater in earlier times, and the more so in proportion to the antiquity of the time.

But suppose the organ of Stay-at-home-ness-I think the phrenologists call it "Inhabitiveness"- o be so feebly developed in a "Lunar Sea," that it would proceed on its travels, is it certain that it would go to the earth? Why not to the sun? We are told (page 414) that "it is not likely." So I think. But let us see whether the earth or sun would hold out the greatest attractions at present for a "Luaar Sea" on its travels. It is simply the question, which of the two bodies attracts the moon most powerfully?

Leet s, E, and m be the sun, earth, and moon respectively ; and the last in conjunction with the first, as seen lrom the second. It will be sufficiently aceurate for our present purpose to take the distance of the centres of the earth and moon as $=$ (i) radii of the furmer body, the distance of the centres of the sun and moon

as $=23,4184$ times the same unit, and the mass of the sun at 359,551 times that of the earth; then, putting s and E to represent the attractions of the sun and earth on the moon, respectively, we have

$$
\begin{aligned}
8: \mathrm{E} & =359551 \times 60^{2}: 1 \times 23,981^{3} \\
& =80899: 35952 \\
& =0: 4 \text { nearly } .
\end{aligned}
$$

So that the sun's clain to a visit fromin "Lumar Sea" is greater than the carth's in the ratio of 9 to t; and if the mom, according to the hyputhesis, were fome ily farther from the earth, she wont be, hy so much, nearer to the sm, when is cornjunction ; and bence the attraction of the earth on tho moon would bo less, and that of the sum greater, at all earlier periods.

Apologizing for the length of this letter, I am, yours, $\& \mathrm{c}$.,
Torquay, Oct. 12lh, 1861.
William Pexgelly.

To the Ellitor of the Gcologist.

Sitr, - Mthough the sabject of the introductory paper of the Octuber number of your justly poppular journal more projerly belongs to the science of Astronomy than lichlory, yet, as mome fow of your many reaters may be led from it to form unjust views of a hy no means improbable reasom which has been assignel for the absunce of hoth air and water in apprecialle puantitios in that portion of the mon's surface which has ever heen suljectel th our observation, I think I may he excused for offering a few remarks on this suljiget, more especially as they may mugest an answer to the query propounled, "Sieeing there are waterless ocun (!) cavities on the mon, where have these waters gone to!"

It has homg heen a well-ascertaned faet that the mom rotatus on her axis, amel performe her revelution romel the earth in the same perion of time; it is also well known that if a stich lomalel with a heayy weight at one emed and a light one at the other low swong remm liy means of a ntring attached to the centre of this atick, that the heavy enel will in the circulation assume a powition further from the hand than
 it has ! meen anrgenten\} hy Profesgor Hanken, that the same canso which makes the heavior cmil of the stick thacritu. the larer circle may in all probability be the reawn why the mon always frewnts the mann, or at hast very nearly the same face to our eirth, in, in wher words, why the time of rotation om her axim and revolution rousal our tath comende, namoly, that in the mosh, as in the stick, the centre of gravity deme not woincito with the eentre of symmetry. Let us now see what efloct this wrold hase on the distribition of water and air on the surface of a
 of the effect promuctal in a globe of xactly the same figme as theae borlies would be on amall as in mo way to affice the truth of cur delluctions or their applications; then, firat, let us take the cate of a glele (fige. 1), it which the true centre, or centre" of symmetry, and the centre of gravity coincide. In this case supposing the sur-
face of the globe to be smooth, it would be surrounded by a stratum of water, P , of equal depth all over, and this again by an atmosphere also of equal depth. As soon, however, as the smooth surface gets broken up and converted into heights and hollows, the water would betake themselves to the lower partsthat is, the parts nearest the centre of gravity-leaving the higher or more distant parts dry, these again covered with an atmosphere now of unequal depth, this varying with the height, that is, the distance from the centre of gravity of the different parts of the surface. This may be said to be almost the condition of our earth, varied by tides in the sea, and winds, $\& c$., in the atinosphere: the cause of these is no sulject for discussion here. Let us now suppose a globe (fig. 2) in which the centre of gravity, B, does not coincide with the centre of symmetry, A. Draw a diameter through these points (A and B) and prolong it to C ; the laws of gravitation will in this case make all the waters

Fig. 1.
 belonging to such a globe concentrate about the prolonged diameter on the side of the globe nearest to the centre of gravity, and, provided the surface be altogether smooth, they will form a perfectly circular sea, D , deepest in the centre, gradually shallowing towards its circumference ; this again overlaid by all the atmosphere, E, assuming in its outline in like manner a perfectly circular form and also deepest in the centre; inequalities in the surface of the globe will of course modify these appearances, but a sufficient distance between the centres will occasion that side of the globe most distant from the centre of gravity to be as destitute of water or air is that portion of the moon's surface which has ever been exposed to the investigation of our telescopes. Unite two such globes as in fig. 3. In which A, representing the earth, has its seas distributed all over its surface, the whole having an enveloping atmosphere, and B , the moon, having its centre of gravity, x, more distant from the earth than its centre of symmetry, B, then its water and air would take the form represented in the figure ; and the moon always keeping the same side towards the earth, it is quite evident that her sea and her atmosphere could never be seen by an inhabitant of the earth. It is thus clear that no mountain ridges are required to keep the Lunar Seas from flowing towards the side next our earth, nor in this case would any of the visible inequalities there ever be able to retain the smallest appreciable quantity of either air or water.

The effect of gravitation, as exerted by the earth on the waters of the moon, supposing it thus constituted, is by no means so readily understood: but strange as it may seem, it would only occasion such a tide in the Lunar Seas as would tend to increase their central depth; in other words, to heap up their waters in that part of the moon which lies most distant from the earth.

Even to the unassisted eye the surface of the moon showing different shades of colour, may suggest the idea of heights and hollows existing in that planet; the telescope proves the existence of mountain ranges generally of a circular form, and of large comparatively level plains, which at one time were supposed to be seas, and bence their names, "Mare Nubinm," \&c., \&c. Modern observation proves that $n o$ waters roll in these seemingly arid wastes-in my opinion, the inquiry which here naturally suggests itself to the observer is not, what has become of the water's of these so-called seas? but, did waters ever exist in them? When examined
by telescopes of great puwer, such as Lord Rosse's magnificent reflector, the mountain ranges seem almost without exception to bo of voleanic origin ; generally circular, with a central valley, having again in it centre a sumall conical hill, they resemble most wonderfully our terrestrial voleanos; even the lava currents and volcanic stratification are in some clearly traceable, while neither on their rugged sides, nor on the enomnous blocks which in one or two instances are visibly strewed over the flat buttoms of the central valleys, docs tho alirading power of water appear ever to have exerted its strength, even although these central valleys aro mostly sunk below the level of the general surface. At the same time it is but just to state that large regions aro also to be found perfeetly level, and seemingly possessing an alluvial character, and in one or two eases mountain ranges which afliorl no proof of volcanio structure have also been observed.

Another question naturally suggest.s itself. Allowing that at one time seats rulled and rivers ran on tho face of the moon presented to our earth, and that by some as yet unknown fnfluence these waters had been alistracted from their origimal abode and drawn down through the opened windows of heaven in such enorntous quantities that "all tho ligh hills that were unter the whole hearen were covered." What has now hecome of these waters? Why do they not yet prevail? They do not seem to have been returned to the moon.

Before concluding this short and imperfeet notice, it may be right to state that even our earth, having, as maty be realily seen by inspecting one of the common terrestrial glolies, one of its hemispheres mostly covered with water, while ont the other, land is in large excess, womld indicate a slight difference between the truo place of its centre of gravity and eentre of kymmetry. I may also stato that in tho case of a glohe of the wize ant constitution of our monon (being rather more than 2100 milea in diameter), a distance of ahout forty miles In tween these two proints would oreasion the phenomena above meferred to. It might alsw be a subject of no suall intereat to inquire into the appearances which a world constituted as tho monn is thers supposed to lie, would present to its inhabitants; but this, with many other inturesting, and therewith connected discussions, belonging moro propirly to Astroumy, camot be here entered into.

I au, your obedient servant,
Reswallie, 15th Oct., 1861.
Jayes Powhe.

CRADLEY PTERASPIDES.

Dear Sir, - On the part of Mr. Roberts I must be thankful, I suppose, for the concession extracted from Mr. E. R. Lankester, whose "every" has now diminished into "most," and whose " most," after another month's recollection, will probably shrink into "a vanishing quantity."

At the earliest opportunity I shall submit the fish in question to the examination of Sir P. M. Dc Grey Egerton ; meanwhile let it pass as P. rostratus. This note will therefore close the subject. With many thanks for the kindness and courtesy of the Editor,

Yours, \&c.,
Malleus.

HUMAN REMAINS IN THE VALLEY OF THE TRENT.

To the Editor of the Geologist.

Sir,-It was my inteution to abstain from offering any opinion upon these "remains," until Dr. Bevor, of Newark, had recovered them and given me an opportunity for their inspection; but the letter of J. H. W. in your last number induces me to offer a few remarks.

The first account of these remains came from a mutual friend of myself and Mr. F. Drabe, residing in the Vale of Belvoir, and from some want of detail in the communication, it was supposed they were found in the "Vale,' but on a visit we found the true state of the matter, that they were found in an excavation made for the foundation of a bridge built by the Great Northern Railway at Muskham, a village about two miles from Newark. We visited the spot, and made notes from Mr. Chowler's very clear and detailed account of the excavation, with which he was familiar from its commencement to its termination, it being upon his farm. Most unfortunately, in geologizing recently at Aust Cliff, on the banks of the Severn, I lost my pocket-book containing these notes, but the details are yet so fresh in my mind that I can recal them without difficulty.

The excavation, although surrounded on all sides by a very pure gravel of an ochreous character, such as is common to the Trent valley, was not made in a gravel, but in a succession of soft, unctuous, alluvial deposits, sometimes sandy and pebbly, butall dark coloured, and so soft that a stick could be thrust into them with ease ; the beds were so distinct as to give the appearance of being deposited at different times ; at least, the inpression produced was that the materials were not all poured in together. It was at the bottom of these beds, and before penetrating into the gravel beneath, that the remains were found : the conclusion I came to was, that originally there had been a deep hollow or pit, either natural or artificial, which had been filled up with river-silt by a succession of overflows of the Trent; such depressions in the Trent valley are common enough. I saw one opened in continuing the Great Northern line to Nottingham ; it was filled with a soft, black, tenacious, peaty mud.

The character of the remains is somewhat against their being found in a "drift" gravel ; elephant remains are common enough in the "drift" of the Soar valley,* and they may easily have been brought into the Trent by floods washing them out of the banks of the Soar, flowing as it does for many miles through beds of this "drift gravel;" and at the junction at Red Hill these would be poured into the Trent stream, and mingling with modern remains, would be swept into these hollows in the vailey at the time of any great flood. This would account for the pottery, a
very puzzling aflair, if wo suppose these remains contemporaneous with the drift gravel and dephant remains.

I should suppose the drift gravel of the Trent valley was deposited when the waves of a tidal river (possilly reaching as far up as lurton-on-Trent) washed on the one side the Bunter Sandstone, on which stands Nottingham C'astle, and on the other the steep slopes of " Clifton Grove," and the long ridge of 'Iriassie hills terminating at Red Hill. depositing the gravels foumd so alundantly on their northern sides, but that certainly would be an age far, very far back in time, compared with tho age of the deprosits at Muskbam.

Leciecster, 15th Oct., 1861.
James Plant.

FOREIGN CORRESPONDENCE.

Alstract from Professor Suess's Paper
ON THE LARGE CARNHORA FOUND IN THE AUSTRIAN TERTIARIES.

(Imperial A cademy of Sciences, Viemm, Trocecdings, Vol. xlii.]'. 21ĩ, Meeting, Mareh 7, 1861.)

(Thanslated by Coùt Marschall.)

Maxy years before Darwin's eclemated throry came to light, the question whether the repeated changes in animal aml vegetable crention were the effects of changes in the external conditions of organic life, had berol disenssed amone many palarontologists.

The solution of this question having to be songht for only within those deposits the Fanma of which is so mearly allied to that of present times that we can hope for a mather clearer idea of the comblition in which these extinct forms were living, 1 have, a long time arot heren gathering a store of materials for the history of the Viemma 'Jertianiss, intenting, in obedionce to latcon's pecept-"Non dispm-

1 have now to treat this matter,-first, in its stratispaphical aspect, Noweribing the chaneses in extermal physical cireumstances, then as a gumation of palamotology, inguirine into the aetion of those changes on the oranic being covenl with them. I have provionsly had necasion to publish some resnlt of my invertigations in both frese directimen (hee Acal. Fros. 1860, vol. xxxix. 1. 158-1G6) ; and among the moxt impromat of them I my momber the separation of the
 ment of mpatal uphatvinge, of convality of the apatently different
 several succensive Fimma of terrestrial mammalia. Since that time the moms liberally athorded to me hy 1 li Majosty's Iodd-Chamber-
lain's Office,* have enabled me to visit during the summer of 1860 the whole western side of the Vienna basin, and to measure altitudes fit for being made a basis of a tabular synopsis of the bathymetrical distribution of our tertiary mariue fauna. M. de Schwabenan having kindly informed me of the discovery of a Tertiary bone-bed at Baltavar (IV. Hungary), the Imperial Geological Museum eutrusted me with a mission to this place, where, by long-continued diggings, I succeeded in finding, in an horizon which I think answers to the gravel of Belvedere (Vienua), remains of species most characteristic of the well-known Fauna of Pikermi, in Attica,-such as Machairodus cultridens, Hycena Hipparionum, Dinotherium sp., Rhinoceros sp., Sus Erymanthius, Antilope brevicomis, Helladotherium Dunervoyi, Hippotherium gracile, \&c.

A rich collection of Pikermi fossils recently sent to the Imperial Museum by Baron Breuner-Felsach, then His Majesty's Ambassador at the Court of Athens, came in due time to confirm me in the conviction of the identity of my Second Mammalian Fauna of the Vienna basin (Inzersdorf, Belvedere) with those of Pikermi, Eppelsheim, and Mr. Lartet's "Miocène supérieur" (Cucuron, Vaucluse). \dagger

Other remains of Mammalia, preserved either in public or in private collections, have convinced me that our Vienna marine deposits, including remains of Mastodon anyustidens, Mast. tapiroides, Anchitherium Aurelianense, and Listriodon splendens, answer exactly to M. Lartet's "Miocène moyen," an horizon to which, as proved by the specimens in the collection of the Joanneum at Gratz, the coalbearing tertiaries of Parschlug, Eibiswald, Wies, and Aflohtz (Styria) must likewise be referred.

The coal of Zemlye, near Totis (Hungary), including remains of Anthracotherium magnum, together with the deposits of Zouercado (Venetia), Cadibona (Piemont), and Rochette (Canton de Vaud), represents another and lower horizon, answering M. Lartet's " Miocène Inférieur," or the "Aquitanian strata" of the Helvetian Palæontologist, and the Fauna of which is anterior to the formation of the Vienna Basin in the strict sense of the term.

Before general results can be drawn from the comparison of terrestrial Mammalian Faunæ, the species of some of the most important families must be duly determined and limited, to obtain (at least partially) a basis zuch as has been obtained from the marine Fauna by the distinguished researches of MM. Hörnes, Reuss, d’Orbigny, \&c.

For obvious reasons Carnivora are constantly very inferior in individual number to their herbivorous contemporaries ; and consequently their fossil remains are comparatively scarce. Even in our country the individuals of Ursus speleeus, burjed in one single cave under diluvian deposits, may in some cases be numbered by hundreds, and the remains of badgers are said to be equally frequent

[^74]in the caves of N. Bohemin. One single cave near Theissholz (W. Hungary) afforded remains of bears, wolves, foxes, martins, and hyanas - Imp. Gcol. Institute, Jahrbuch, 1858, Verhandlunyen, 1. 14i) ; another cave in Hungary contains a remarkable quantity of Felis speleca. The real cause of these great numbers is, however, that these caves were once the retreats of these animals, where for a number of sulsequent generations their remains were accumulated. Carnivora are notably searcer in the diluvial Loam (Löss) of tho plains; and what I myself saw in such localities is little better than some few fragments.

Besides some loose teeth from the marine littoral deposits of Nussdorf, near Vienna (referable, as M. H. von Meyer remarked many years ago, to four different species, one of them probably insectivorous, but insufficient for accurate determination), and an anterior half of a lower jaw from a Mammal (probably referable to the fanily Canider), out of the lignite of Eibiswald, kindly communicated to mo by Professor Oichhorn, I know only three speeies of Tertiary Carnivora existing in Austria, and these are Machairodus cultridens (one individual), Hyencu Hipparionum (two individuals), and Amphicyon intermedius (one individual).

Machuirodus cultridens.

The only remains of this large and powerful Carnivora known hy me to have been found in Austria is an upper angular tooth from Baltavar, perfectly agreeing with the previously deecribed specimens from Epplesheim and Pikermi. It may he, therefore, sufficient for me to notice a peculiarity left ummentioned by other descriptions. The ex-denticulated external edge is notably inclined towards tho inner side of the tooth beneath the upper end of the erown, as indicated in Professor Owen's British Foss. Mammalia, p. 180, fig. 69, on the right. Isolated tubereles appearing first on the middle line of the opposed side, at last join upwards in forming a second denticulated edge; a slight trace of denticulation is likewise traceable near the middle line itself. The same particularities have been noticed by Professor A. Wagner in tho teeth from Pikermi, preserved in tho Museum of Munich. The localities of Machairodus cultridens hitherto known, are Eppelsheim, Pikermi, the Arno Valley, and Baltavar. The tooth found in this last-named place is in M. de Scluwabenau's collection at Oedenburg (Uungary).

Hyena Hipparionum, Gervais.

The remains of this species, the first representative of the genus Hyona on our globe known to nccur, have been disenvered some in Austria, and two halves of lower jaws fomd at Baltavar ; the one is in the Vienna Imperial Museum, the other in M. do Sehwabenau's collection. Among the Pikerni fossils presented by Baron Breuner-

Felsach to the Imperial Museum is a left upper jaw, from a young individual just changing its teeth; a remarkable specimen, as almost proving the identity of Hycena Hipparionum, Gerv., with H. eximia, Roth. and Wagn., and admitting a more accurate comparison of this species with Hycena spelcea and their living congeners.

The iudividual first described by M. Gervais (Zool. Pal. Franş, p. 121, pl. xii., f. 1) differs from the Pikermi specimen only by being less in size ; another individual (loc. cit. pl. xxiv., f. 2-5), described by him as being "equal in size to Hycenc spelcec, and II. crocuta," leaves no donbt as to the specific identity between the individuals of Pikermi and Cucuron (Dept. de Vaucluse) ; affording at the same time an argument for the diffusion of this species over the whole of Middle Europe.

The tubercular tooth of H. Hipparionum surpasses in size those of any other living or extinct congener ; and the shape of the root suggesting the presence of an independent apophysis on the posterior portion (somewhat damaged in our specimen), the form of the fossil tooth stood next to the tubercular tooth of young individuals of the living H_{0}. fusca. There are still other analogies with the dentary system of young individuals of living species.

Amphicyon intermedius, H. v. Meyer.

The fresh-water limestope of Tuchoritz (Bohemia), first described by Professor Reuss (Vienna Imp. Academy Proc., 1860, vol. xlii., p. 56), contains a certain number of Mammalian remains, among which, besides those of Rhinoceros or Acerotherium, of Cherotherium Sansasniense, Lart. (Sus Charotherium, Blainv.), and Palceomeryx Scheuchzeri, H. v. M., mixed with some few impressions of leaves (Diospyrobrachysepala, A. Br., and Leguninosites Proserpince [?], Heer), Professor Suess has recognised eighteen loose teeth, entire or fragmentary, belonging to one and the same individual of a large carnivorous nammal.
The laniary tooth of the left lower jaw, quite different from the analogous teeth in the genera Felis, Hyiena, and Ursus, belongs evidently to an animal of the family Canidce, evidently of more omnivorous habits than any other of this family, and larger in size than Canis Neschersensis, Can. Issiodorensis, or any other fossil species immediately referable to the genus Amphicyon, Blainv.

The laniary tooth of the upper left jaw, far inferior in size to the same tooth in the Wolf, and of a more omnivorous character, next resembling Amphicyon minor, Blainv. (Tab. xvi.)

The fragments of molar teeth, minute and incomplete as they are, prove the existence of at least three molar teeth (one more than in the genus Canis), of which the third or hindmost is provided only with one root. The incisive teeth resemble those of Amphicyon as figured by Blainville; one of them shows conspicuously the compressed and flattened shape characteristic of this genus. From all
these circumstances, the following constitution of the dental system of the Carnivore whose remains are found in the fresh-water limestone of Tuchoritz may be inferred. Incisors very much flattened, without superior apophysis, the outer upper ones canine-like ; canines strong, moderately incurved, of oval transverse section, each with two strong vertical ridges; Pre-laniaries very high, number moknown ; Laniaries, especially the upper ones, comparatively small, of evidently ommivorous character in both jaws; Upper Molars more than two, the last one rooted ; of the Lower Molars the last or penultimate, with single root, is only known.

All these characters concur in denoting a geuus of the Canide less carnivorous than the typical genus Canis, and even less so than any other form of the Tertiary genus Amphicyon as made known by Blainville. Notwithstanding certain analogies with Otocyon, the least carnivorons genus of living Canide, there is no reason for generically separating the form here in question from Amphicyon.

None of the species established either on Blainville's figures nor on gencrally rather incomplete remains found in Tertiary deposits being found to agree completely with the specimens from Tuchoritz, I thonght prop er to consult II. H. v. Meyer, who had previously described some species of Amphecyon from the Tertiaries of S. Germany. This distinguished Palaentologist answered me kindly in the following words: "The species whose teeth you were pleased to send to me in figures, I think to belong to my Amphicyon intermedius. The transversal tooth answers a complete specimen which I know to have come from the freshwater limestone of Kirchberg, near Ulm ; not quite complete specimens of upper and lower laniaries, and outer upper incisor from the Molasse of Ermingen and Heppbach, are only different from their somewhat larger size ; they answer still better to incompleto teeth, in fragments of upper and lower jaws of Amphicyon intermatius, found in the brown coal of Köpfnach (Switzerland), and probably also in the Molasse of Günzburg."

Remains of Amplicyon, so far as is known at present, have exclusively been found in deposits ranking among M. Lartêt's " Miocène moyen," and " Mioeène supéricur," perhaps even only in the first of them. As far as I know, they have not yet been met with in the strictly so-called Viemaa Basim.

meeting of savans at speyer.

By H. C. Sorby, F.R.S.

Having been present at the meeting of German naturalists (Versammlung deutscher Naturforscher und Aerzte) held at Speyer in the middle of last September, I thought that probably a shor't account of such papers as were more or less closely connected with geology might interest some of your readers. On the whole, the meeting is analogous to our British Association, the various branches of science being divided into nine different sections; but a larger number of miscellaneous subjects are brought before the general meetings. I confined myself entirely to the section for mineralogy and geology, at which, however, no very great number of papers were read.

In opening the proceedings, the president for the first day, Dr. Nöggerath, gave an account of M. Daubrée's experiments in connexion with the theory of voleanos, described in the May number of the " Geologist" for this year, p. 195, and expressed doubts as to whether with an indefinitely greater thickness of rock than that used in the experiments the tension of the steam would be indefinitely increased. M. Daubrée, on his arrival a day or two after, admitted to me that this doubt had already occurred to him, and said he intended to clearit up by experiment.
Professor Blum, whose investigations and writings on pseudomorphs are so well known, read a paper on the question whether certain examples are really due to alteration, or whether, as argued by M. Delesse, they are merely crystals of a foreign substance enclosed in an unaltered crystal. He exhibited a very excellent series of specimens, which I had previously carefully examined with him at Heidelberg, and they appeared to me to completely establish his own views with reference to those particular cases. After this the president said that the subject of pseudomorphs had been brought before the members of the section, hut perhaps they did not know that a manufacturer of pseudomorphs was present amongst them, and called on me to exhibit and describe the specimens I had with me. I said that in my experiments I had endeavoured to accomplish my purpose rather by leugth of time than by a very high temperature. In some cases I had kept crystals of various minerals in the appropriate solutions for many mouths, at the ordinary temperature ; and for other pseudomorphs had enclosed the crystals in tubes of glass or brass and kept them for some weeks or months in the boiler of a steam engine at a heat of about $145^{\circ} \mathrm{C} .\left(293^{\circ} \mathrm{F}\right.$.). In this manner I had succeeded in making a considerable number of pseudomorphs, similar to those met with in nature ; the only striking difference being that often the manufactured specimens are of smaller grain, and lave sharper angles. Amongst them are carbonate of lime in the form of gypsum, of fluor-spar, and
of carbonate of baryta ; carbonate of iron, and carbonate of zinc in the form of calcite, and of aragonite ; carbonate of baryta in the form of the sulphate ; and carbonate of iron, and the black oxide of iron in the form of gypsum, in which latter two instances there has been a complete replacement of the original constituents, but the crystalline furm is perfectly preserved.

Dr. Kurz read a paper on the variegated sandstone of Germany, the chief point being whether certain bels which have been looked upon as deposited one over the other, were not really contemporanenus, hut formed under diflerent physical conditions. A fter which Dr. Mohr made sume observations on the origin of limestone. He thinks shells and corals abstract thein calcareous substance from the gypsum dissolved in the sea water, and that the carbonate of lime hrought into the sea by rivers is altered to the sulphate by the sulphuretted compounds given off from decaying organic bodies. Dr. Retenbacher deseribed in detail a new species of I'terodactyle from Solenhofen, and then Dr. Otto Buchner read a paper by Haidinger on his views respectiug meteors, of which notice is made in the last number of the " Geologist"

(p. 420). He exhibited the section of an interesting specimen which had a structure similar to that of the Septaria so well known to geologists, and throngh his kindness I am able to reproduce a print taken from it.

Dr. Buchner is now occupied with a monograph on meteors, and is anxious to figure all that are known. For this purpose he would feel extremely obliged if any one who possesses specimens would send drawings of them to him, to Giessen, with a statement of their weight. Drawings of those in the British Museum are already promised.

Professor Knop gave a very complete account of certain copper ores from Africa, describing the various decompositions and changes they have undergone, and confirming his conclusions by experiments. This led to a considerable discussion, in which it was argued that in some places the facts were the very opposite to what the author had stated, and it was concluded that in some instances reverse chemical decompositions had occurred, as, for instance, the change of carbonate of lead to the sulphuret, and of sulphuret to the carbonate.
M. Van Beneden described the numerous and excellent fossils now being found in excavating for the fortifications at Antwerp, including a number of vertebrata. The shells are, on the whole, like those in the basin of Bordeaux, and show that the strata are of Miocene age.

Mr. Grothian exhibited some fossils from the tertiaries and chalk near Brunswick. The most remarkable of these were some curious

and interesting sponges, and through the kindness of the author I am able to give outline drawings of the most characteristic forms. One of the priucipal objects he had in view was to show that the different sprecies descrihed by Goldfuss and Römer are only varieties.
lrofessor Kjerulf, of Cluristiania, read a paper on the extension and origin of the iron ores of Norway, which he argued are due to ernption ; and, as far as the mamer of their occurrence is concerned, may be well compared with trap dikes. At the same time, by the term eruptive he did not necessarily mean that they were of mere igneons origin.

Dr. Blialoblotsky brought forward various objections to the theory of the purely igneous origin of granite. As is well known, and as has been pointed out by many authors, those difficulties are so great, that not a few geologists have gone into the opposite extreme, and almost entirely denied the instrmentality of an elevated temperature. Since I myself have argned against both these extreme views, and in favour of a theory which I look upon as a sort of happy medium, I anm so far prejudiced as to admit the truth of some of the author's objections, but to think he carried his conclusions too far against the igneous theory.

Dr. Volger afterwards exhibited and deseribed some pebbles, said to be sometimes water-worn, which oceur in a brecciated vein. Tho spaces between the fragments and pebbles are filled with a crystalline deposit of quartz and felspar, and thus the deposition of those minerals from water (most likely at a high temperature) is rendered very probable.
'rofessor Blum read a paper on some peculiar agates. In ono case there had been a horizontal deposit at the botton of the cavity, and then the upper part had been at first coated over with a concentric layer of chalcedony, and finally filled with crystalline quartz. The chalcedony having been subsequently removed, the nucleus of quartz was left quite loose and unattached in the upper part of the cavity. This communication gave rise to a lengthened discussion, in which Dr. Volger sail that in his opinion agates were not nsually formed hy the direct introduction of siliceous matter into empty cavities, but that there previously existed either a piece of limestone or a cavity that had been filled with calcareons spar, which had subsequently been replaced by agate. In this manner he would explain why in many cases the layers of agate are of such an uniform thickness both at the top and bottom, which he contends would not have been the case if they had been empty cavities filled direetly. In surport of his views he described some interesting veins in Saxony, which at a great depth are calc-spar, higher up a mixture of this with chalcedony, and at the top only the latter with pseudomorphs in the form of calcite, thus proving its replacement by chaleedony. After this, Professor Schünhein exhibited some fluor-spar, which when pulverized gave off ozone. Hitherto he had met with such specimens at only two localities, but suggested that mineralogists should examine
those from others, so as to learn the circumstances under which this peculiar variety had been produced.

At the general meetings no paper of geological interest was read except that by Dr. Zöllner, on the nutrition of plants, in which he described some experiments made along with Liebig, showing that the inorganic constituents are not merely derived from the substances existing in a soluble form in the soil, which would soon be washed out by the action of the rain water, but that the rootlets have the power of dissolving substances insoluble in rain water by means of an acid excretion. They had fornd that the development of the rootlets is in inverse proportion to the richness of the soil, and thus by an increase in the sphere of their action the rootlets make up for the poverty of the soil.

PROCEEDINGS OF GEOLOGICAL SOCIETIES.

Liverpool Geological Society.

October 8.-Tue Rev. Professor H. Griffiths, Vice-President, in the chair. "Report of the Excursion made by the Society to Holywell, July 11th, 1s61." By Henry Duckworth, F.G.S., F.L.S.
The mountain limestone of the neighbourhood contains many species of the ordinary fossils in profusion; Productus giganteus, P. semireticulatus, Lithostrotion basaltiforme, and Syringopora geniculata being the most common. The formation may be divided into the following subdivisions:-

1. Numerous beds of chert.
2. Shale and limestone with concretions of chert.
3. Black limestoue.
4. White limestone.

The position of the cherts in No. 2 is similar to that of the flints in the Chalk formation, but their form is different, being round, flat concretions, thick in the centre, and gradually thinming towards the circumference.
"Report of the Excursion made by the Society to Coalbrookdale, July 31st, 1561." By George H. Morton, F.G.S.

The low land to the west of Coalbrookdale, towards Buildwas, is Wenlock shale; the lofty ridge, including Benthall Edge and Lincoln Hill, is Wenlock limestone, with Millstone-grit, and the Coal-measures reposing thereon. The following fossils were obtained on the occasion :-

Wenlock Limestone.

Wenlock Iimestone.

1. Heliolites Murchisonii.
2. " megastoma.
3. Propora tubulata:
4. Favosites Forbesii.
5. „, cristata.
6. ", fibrosa.
vol. Iv.
7. Lebecheia conferta.
8. Halysites catenularia.
9. Syringopora bifurcata.
10. " fascicularis.
11. Thecia Swindernana.
12. Cyathophylluun articulatum.

3 к

Wrmlack limestone.
13. ()mphrma Murchisonii.

1 1. Areolites Grayii.
1.). Cystiphyllum sp.
16. Calymena Blumenbachii.
17. Ahlyris tumita.
15. Rhyinchonella spherica.

| 19. | nuenla. |
| :--- | :--- | :--- |
| 20. | borealis. |

21. Atrypa marginalis.
22. " reticularis.
23. Strophomena depresessa.

24 . Euompholus rugosus.
2.5. ,, discors.

2t. ", seulpus.

Wenlork Limestone.

27. Enompholus funatus.
28. ,, carinaths. Henloct Shale.
29. Encrinital stems.
30. Calymena tuberculosa.
31. Jingula.
32. Orthis hybrida.
33. " bíloba.

34 . ", elegantula
35. Rhynchonella sp.
36. Lejitena transversalis.
37. Acroculia:

Crustacea are rare at Coalbrookdale, when compared with the same formation at Dutler.

Abstract of paper "On the Inferior Oolite." By the Rev. S. H. Couke, M.A.
The Infirior Oulite, as developed on the Cotteswolds, near Cheltenham, ennsists of four chief divisions.

1. Ammonite Sands, about forty feet thick, transitional between Ubuer Liats and Interior Oolite is the character of its oreanie remains, sume being perentiar to it, as Rhynehonella cynucephatus, well seen at Froeseter and Harestield Hills.
2. I'a-grit, or P'isolite, forty feet thick, confined to the immediate meighbourhered of Cheltenham; pisolitic in structure, with many fossils, some peruliar to it.
3. Freestone amd Oolitic Pearl spries, thont a lmmered and ninety feet thiek Leckhampton IIill; the freestone much quarried for building, but generally unfo-siliferous; the (Olite-marl-bed, about seven feet thick, produers many fossils, whech are very constant; near sitrond it contains a thin eoral rect, with Aerimerr.
t. hagstoue, about thirty-cight feet thick; a hard grity rock, with many fomils ('ryynhere Buchontunit, also fomud in thro Swiss Jura and swalica; and
 thicknean ower the whele distriep, white all the inferier divisions, alome with the lipper Lias, thin out, and finally disappear towards the cast and south-cast. Thus at stonesficld the ragstone is thity feet; resting on Upper latas six feen, and that on Markone twent F -lise fere.

Infirme (tuhte is atse developed ne r Dundry, where the chief fossiliferous bod protably cenrespend in plase whathe (heltemham l'isolite; also in Dorartahere, near IBedprot, where it forms the enast sectiens, but is melo disturbed If fanle Tts fans in these neere a uthern lacalities dillers mueh from the
 them. It is abo largely derelogeal on the Iorkhire eoast, about seaberouch, where it remehes the thathues of a ven lundred fret, ami produces thin beds of onal, with many forms and phons. Here, tan, its upper beds extend quite

On the 2 tht of Alengh there whe a join meting of the Berwiokshire and Tromeside Naturalige' Cluh at Aluwiek. 'The greolegreal paty went to Ratrliengh, under the ahle equ danere of Mr. Gerome Tate of Jhwiek. The great
basaltic whin sill at the Crag is divided into two distinct beds, between which are strata of limestone and shale. The great basaltic crag, on which the tower stands, is seventy or eighty feet in thickness, and slopes to the southeastward ; but towards the south end of the section it dwindles down to a few feet thick, proring that it is not a regular continuous stratum, but a wedgeshaped mass intruded among the mountain limestone beds; and, in accordance with this, the heated igneous basalt has changed the shale below into porcelaine jasper, and the limestoue above into crystalline marble. From the top of the crag Mr. Tate pointed out the range of this basalt through the county, from Kyloe on the north, to Glenwhelt on the south; and especially showed that its relative position among the limestone strata is not the same throughout its rauge ; in one part a well recognized limestone sill is immediately above it, and in others many fathoms below it.

Glasgow Geological Society.

The annual general meeting of this Society took place on October 3rd, when the following geutlemen were elected officc-bearers of the Society for the ensui.ır year:-Dr. Scoules, M.D., F.L.S., President; Thomas Struthers and John Young, Esqrs., Vice-Presidents; James Horne, Esq., Honorary Secretary; Robert W. Skipsey, Esq., Treasurer.

Council of Maragement.-Messrs. H. W. Crossker, Wm. Johnston, J. C. Douglas, Mark Fryar, F.G.S., James Stewart, Ed. Wimsch, Jas. Armstrong, Wm. Carey, James Thompsou, Walter Graham, Andrew Armour, James Easton.

The following lectures are to be delivered during the winter session :-
October 31.-"On the adrantages of Geological Studies, as recreativeas a mental discipline, and as promoting æsthetic culture." By Rev. William Frazer, of Paisley.

Nov. 7.-"On the Volcanic Rocks of the Scottish Carboniferous Formation, as illustrated by the extinct rolcanos of Aurergne." By Archibald Geikie, Esq., F.G.S.

A course of Seveu Lectures on Inorganic Geology. By John Scouler, Esq., M.D., F.L.S,, President.

Nov. 14.-General view of Geological Science-causes at present in actionchauges of climaate. Nov. 21.-"Decay of Rocks from Chemical and Mechanical Canses, and consolidation of Strata." Nov. 2S.-"Renovating causes-Volcanic Action." Dec. 6.-"Influence of the Organic Kingdoms in the formatiou of Strata." Dec. 13.-"Stratified Rocks and their Classification." Dec. 20.-"Igrueous or Eruptive Rocks." Dec. 27.-"Metamorphic Rocks."

January 9, 1862.-"On Dislocations and other Disturbances in Coal and Metal Mines." By Mark Fryar, Esq., F.G.S., Glasgow School of Mines.

Jan. 16--"On the Winning and Working of Coal." By Ralph Moore, Esq., Miming Engineer, Glasgow.

Jau. 23.-"Ou Chemical Aualysis as an aid to Geological Inquiry." By Dr. Wallace, Mechanics' Institution.

Besides the above course, there will be the usual series of papers and dis cussions.

BRITISH ASSOCIATION MEETING.

THE BURNLEY COAL-FIELD.

By Josepu W'utaker, Member of the Manchester Geolugical Society, and T. T. Wilkinson, F.R.A.S., \&c.

Althongh of limited area, the coal-field of Burnler is uncommonly rich, not only in its stores of fossil fucl, but also in points of stratigraphical interest, and in organic remams. It comprises within itself a eomplete series of the middle and lower coal-measures.

It mar be deseribed as occupying a basin like a ralley surrounded by hieht ranges of hills, amongst the most prominent of which may be notieed l'endle on the north, loulsworth on the east, Gorple towards the south, and Hambleton on the west, some of which rise to near fwo thonsand feet ahove the level of the sea. Geographically it occupies the lowest portion of the sulles, geologically it is the highest, when considered with reference to the stratification of the district.

The most productive portion of the field unterlies the town of Burnler, where it assumes the form of a long trongh, bounded on the east and west by two lines of upheaval, ruming nearly parallel.

The greatest depth in which the sirata has heen piereed nceurs on the Fulledge eatate, where a depth of six handed feet has heren attained, and where the following seams of coal have lieen found:-The Dog Hole Mine, or top bed, six fert thick; Kershaw Bed, three feet: Shell Bed, iwo and a-half feet; Burnler Old Five feet, or main coal, five feet; Higher Yard Bed, three feet; Lower Yard Bed, Low Rottom, or four feet coal; Thin Coal, two and threequarters feet; Great Mine, or Bing Ped, four feet.

These are locally known as the Burnley "Top Beds." Ther inelude about thirtr-fire feet of enal embedded in rbosit six hundred feet of intermediate strata. For a depth of about two hundred feet below these no enal oecurs.

Then come the Arley series, or Habergham mines, consisting of the follow. ing workable scams:-The China Bed, two feet thiek; the Bandy Bed, threo feet; the Arley or Habergham Mine, four fert ; giving at total of nine feet of coal to about four hindred and forty five feet of interposing strata.

A series of strata dewid of roal of at least five-lmudred fert in thickness here again form another natural division of the mensures, which is sueceeded by the fiannister series enmprising a fort mine with a hard gamister floor ; the *pa Clough Top Bed, two and a half feet thick: Spa Clough Bottom Bed, four fere ; or a total of about right fret of coal with six hundred and eighty feet of interveninge strata.

From the lowest mal of the fiamister serims to the Rongh Rock, or the highest meintrer of the Millstone-grit formation the distance is something over thiree hundred feet.

Henere, omitting many thin seams of less than a foot in thickness, there is, from the higheat mine of the Rurnley mesasures to the highest member of the Millstone-grit, an entire total of uver fifty fect of conl for a deptla of two thousand and twentr-fise feet of strata. The millstone grit series of enals oceur next in the desernding norder, rousisting of three thin srams of kess thickness than one foot, none of which lave been worked in the neighbourlood
of Burnley. Aiter which the ligher and lower members of the millstone-grit formation are developed in great thickness, passing down into the Yoredale Rocks, or limestone shale, and finally into the Carboniferous Limestone of Clitheroc. Of course, it is to be understood that the whole of the above cnumerated scrics of strata have not been sunk through at any one place, neither can we point out any particular locality where ther are exhibited in section; but the whole of them crop out between Burnley aud the north eud of Pendle Hill, and be taking adrantage of the cloughs and rarines which present themselves on the way, nearly the whole of them may be noticed; or, if a pit we:c sunk from the centre of the coal-field in Burnler, to a sufficient depth, the entire series would be found to overlie each other in the above stated order.

In describing the rocks of the Burnley coal-field and their fossils, it will be found convenient to notice them in the ascending order, begimning with the limestone shale, or Yoredale rocks. They consist of very dark and finelylaminated shales, replete with fossils of marine origin, such as shells of the genera Avicula pecten, Goniatites, Orthoceratites, Posodonia, \&c., \&c.; they also contain fish remains of rarious genera, including that of Pelfeoniscus. The Yoredale series is well developed on the north-west, north, and north-east sides of Pendle Hill, skirting along its base from Pendleton Hall on the west to Burst Clough on the east, a deep ravine which takes its name from the pentup waters of the morass on Pendle Hill having twice burst forth in great force during the seventeenth century, laying bare the rocks to a height of at least two thousand feet.

The higher and lower members of the Millstone-grit are the next rocks in the ascending series.

They consist for the most part of coarse-graincd sandstones intermised with water-worn quartz pebbles ; being divided by thick beds of strong stony micaceous grey shale.

There are many good sections of these rocks exposed to rien in the ricinity of Pendle Hill, where they are dipping nearly south at angles of from twenty to forty degrees, the intensity of dip increasing in a southerly direction.

The millstone-grit formation is poor in fossils, with the exception of a bed of shale of about twelve rards thick, which occupies a middle position between the higher and lower portions. The outcrop of these shales is exposed in the brook at Roughlee and at Hanson's Scar, near Sabden; at both of which places it contains fossils of the genera Phragmoceras, Goniatites, Avicula pecten, Posidonia, and Orthoceratites.
Near the top of the grit formation there occurs three thin seams of coal, known as the millstone.grit, or Brooksbottom series of coals, the outcrop of which may be seen in the road behind Height House.

The roof of the lowest of them, which consists of a fine-grained, compact, light-coloured sandstone, has been extensively quarried along the line of its basset on Read Height for road materials, and has been thought by some persons to be identical with the ganmister, or mountain mine, but from which it differs in the following important particulars :-1st. It lies a considerable distance below, while the true gannister is known to be abore the "Rongh Rock." 2nd. The hard stone which is found in connection with it forms the roof of the coal and not the seat, as in the case of the gannister; and, 3rd. Possesses all the characteristics of a roof rock as distinguished from that of a seat rock.
The next ascending basset is that of the Rough Rock with the Boaredge and probably the Featheredge coals. A good section of this rock, together with the coals usually found in comection with it, is exposed at Height Side, near Padilham.
The outcrop of the Rough Rock is followed bs that of the gannister, or the mountain mine series of coals.

The lowest of the gandister serjes, which is a four feet eoal, identical with the Epar Clonash bontom bed, is perhaps the most interesting, on aceount of its forils, of an! mine iu the liurnhey measures.
lis roof consish of a thin stratum of very fine black shate, of abont four nebere, in which there are embedded large mombers of very fine shells, in a high -tate of prescration, of the limerimem, I'formis, ('alillus, bolleruphon, ide., thegher with the jaws, teeth, and seales of tishes. This thin stratum of shate in sucecected by another shate (the preten), in which the comditions of life hase bern entirelv changed; the Pimprobhons, dee., which were so numerons in the precediug shale, hase bern contirely swept ofir, and their places supplied by mmense mumbers of Jocoloss, Guniatiles, and Orthoreratites.

The peeten shate rember a thickness of several feet, and is followed by a third whate, in which the conditions of life have been once more changed; the ouly representatives found in this shale of the immonse number of shells that inhabited the waters by whieh the peeten shates were deposited, being a few very large foniatites, which appear to bave survived the chages that destroyed their predecessors.

In the last-mentioned, or third shate, there are embedded small ironstones modules, in which are enclosel fery small, but very cleganty marked, (ionicefites, specilically distinet from those of the preceding shate; others of these balls, when broken, exhibit entire specimens of gamoid tish.

It is well known in some locatities as the "Bullion Coal," in ennsequence of being interspersed with pritous nodules, called by the miners "bullions," sinate of whish contain S'yilluriut, Inpidudendra, aud other coal-measure plants, in a hich state of prescrsation.

The hundred and forty feet above the bullion coal, there lies the middle eoal of the fimmester series, or spat Clough top bed, which is succeraled at at distamec of twenty-one feet by the foot mine, with a hated gamister floor.

In the roof of the former of the above coals there have ben fouml some very line rays of the Giypuctunthus, also teeth of lihizodus, Megalichethys, and Inibplychines, buget her with seales, plates, jaws, bones, \&c. Also, six lumderd and serenty-five feet above the samister, the Arley series of coals ocenrs, consinting of the Ilabergham, or Arley mine, four feet ; the Dandy, there feet ; and the China, wo feet. From the bone-bed in the black shate roof of the lowest, or Arley mine, which is the most valuahle of the Bumber mines, splendid -pecimens of fish remaims of the genera Mogulichlhys, Rhivodus, Dipluhtus, de., have been colleeted.

The ditanee from the Arley th the lowest mine of the Burntey hieher series is about four hundred and sinty feet. It is a four feet coald divided into two neame ly a bed of "ling," in which, lying in heaps, are cmbedded coniferons froml froit of the kelnera Trigmucarpim. The rouf of this coal coutains a small apreeies of Anthreensiu, also some grod Iapidustroli, enclosed in ironstone nortules.

The next higher eosal is abont two and three-guarters feet thick, and identical with the Fulledere thin bed; it is exeredingly rich in ichthyological remains. The parting between the rual nud rouf has yidded very the jaws, teeth, scales, amb wretibral bones of the Megolichthyse Miblertii, also very perfect teeth of the Plemoplychius pectinalus, '? apicalies, togrother with rays belonging to the liyrarionthus, Mytomber, Plearatonthus, \&ec. The roof of this enal is a very finely laminated blark shale, rephete with the remains of fossil fish, some of which were extmind during the Association Exhibition in the Free Trade Wall, Manchester, hy sir lluhp 1). M. G. Vigertom, M.P., F.R.S., F.G.S., \&e., and the l:arl of liminhillen, D.C.L... F.R.S., \&e., and have been declared by the abouse eminent ichathoughots to be entirely new to seienec. It also contanis a bery nitemated lorking bitalve-shell.

About trentr-one feet above the thin mine there is a bed of impure cannel, over which there is a band of large Authracosia. In the shales below the cannel two species of Anthracosia, much smaller than the overlying ones, are met with.

The next overlying coal is a four fcet, having a roof of strong blue shale, containing an abundance of coal-measure plants, some of which have the Spirorbis curbonarius adhering to them. At a distance of seventy-five feet above the last-named coal, we have the Lower Yard Bed, the roof of which contains a band of very large Anthracosiu, thought by some geologists to be identical with the Anthrocosia robusta found over the Arley mine in the Wigan district. The outcrop of this mine, together with the overlying band of Anthrocosia, is exposed near to the north entrance of the Towneley tunnel.

The next ascending coals are the Higher Yard Bed ; the Main Coal, fire feet; Shell Bed, three feet; and the Kershaw Bed, three feet; none of which have any fossils in connection with them worthy of special notice.

Ncarly twenty-one feet above the Kershaw Bed, and about thirty feet from the surface, lies the Dog Holes coal, the highest and the thickest of the Burnley mines. The roof of this coal, consisting of a light grey sandstone parted by bands of blue shale, whencver laid open, has revealed in the greatest abun dance ferns of the genera Teuropteris, Pccopteris, Sphenopteris, \&c., together with both the stems and leares of Lopidodendron Sternbergii, Calumites, and Stigmariu ficoides, perforating the rock in cvery direction; some of the latter laving been traced for many yards in a horizontal position, sending out their rootlets at right angles to the main stems to a great distance. Large fossil trees of the genera Sigillaria are also abundant, some of them reaching a diameter of several feet. Seven such were found in the limited space occupied by a small cotton mill recently erected in Church-street, Burnlee, by Mr. Dixon; and others were found in Mill-lane during the construction of a common sewer. The whole of them being in an apright position, thus afforded the best possible evidence that they had gromn and flourished on the spot.

The whole of the overlying rock may be described as an immense fossil forest, occupying the central part of thic Burnley coal-field; the town itself being situate ou what was once one of its richest lagoon jungles, replete with the flora of a former geological period.

ON THE OCCURRENCE OF GOLD IN MERIONETSHIRE.

By T. A. Readwin, F.G.S.

The author confined his observations to an area of about twenty square miles, situate uorth of the turupike road leading from Dolgelly to Barmouth, county Merioneth.

Professor Ramsey has ably described the geology of this district, in a communication to the Geological Society of London, IS54 ("On the Geology of the Gold-bearing Districts of Merionctlishire.")

The Dolgelly district is bounded, or nearly so, by the picturesque and tidal river Mawddach, the great Llawllech or Merioneth anticlinal range, and the little river Camlan, to which may be added a continuation of about three miles further north-east, at the junction of the Cambrian sandstone, and the Lower Silurian Lingula-Hags of the Geological Surrey, and included in the surveymaps 75 sonth-east and 59 north-east.

In this district are found the Cambrians overlaid by the Lower Silurian Lin-
gulas. The Cambrian roeks are coarse grecuish-grey grits. The Lingula-lags are aremacenus slaty-beds, interstatified with courses of samdstone. Caleareous and greenstone dykes frepucntly penctrate both the Cambrian and Silurian roeks. In the latter, the direetion of the dykes is generally parallet with the lines of bedding; in the former, if any particular order ubtams, their general direction is rather aeross the strike.

The metalliferous products are chictly galena, copper prites, blemte, manganese, and mundic, most of which are frequently fomed associated with native gold.

According to Sir Roderick Murchison, "The most useful position of gold is in quartzose veinstones, that traverse altered palwozoic slates, frequently near then junction with eruptive rocks, whether of igneons or of agueous origin. The stratitied rocks of the highest antiquity, such as the oldest gneiss, or quarte rocks, have spldom borne gold; but the sedimentary acemmatations which fullowed, or the Silurian, Devonian, and Carboniferous (particularly the first of these three) have been the deposits, which, in the tracts where they have undergone a metamorphosis or change of structure, by the intluence of igneous ageney, or other causes, bave been the chief sources whenee gold has been derived."-Siluria.

Refering to the diseoveries of geld in the Dolgelly district, Professor Ramsay says: "In the Ural Mountains, South Australia, Canada, and other parts of the workl, gotd occurs in roeks of the same gencral are, and apparently under the same cireumstances."-(" (ieologist," Feb., 1555.)

Sir R. Murchison's statement is singularly corroborated by the position of the quartzose vein in the Clogan mine, distinguished as the "gold lode," which traverses altered palmozoic slates, near the junction of an cruptive har of porphyritic gremstone, and the same law appears to obtain, also, with respect to all the gold-hearing quartzose veins of the Dolgelly district, upon the ores of which the author has mate a rery large number of experiments during the past eight years.

There are, in this district, about twenty localities in which gold has been discovered, risible, in quartz, or associated, more or less, with galena, blende, copper-pyrites, telluric mismuth, carbonate of lime, schist, baryta, ironprites, \&c.

By far the richest discoreries of golil lave heen made at the Dol-y-frwyng, Prince of Wales, Cambrian, and the Clogan Mines. Gold has also been found in the "Marime Drift," by the IIon. F. Walpole, Sir Augustus Webster, mysclf, and others; and Mr. Arthmr Dean, in a paper read before the British Association in IS1t, stated, "that a complete system of anriferons reins exists thronghont the whole of the Snow donian or Luwer Silurian formations of North Wales."

Epon faith in this statement molh current gold of the reahn was expended at the Cwmbeisian Mines, and very litue bullion oblained by smelting operations, for reasons whith are now not very diflienlt to muderstand.

About ten years later, gentlemen of my own acquaintanee, after having set the most eminent assayors to work, 10 prove the accuracy of Mr. Dean's statement, expended nestly as mush momer upon the same spot, in the erection of machmery, which produced even less gold by amalgamation than the former method, although it was then held as an axiom that gold always exists in a mefullir state, that mercury always lins an atfinity for gold, and, therefore, whenerer gold is present in minerals, mereury will necessarily dissolve it. This did not, however, prove to be the ease.

The resulf of nperations "pon some humlred and fifty tons cane at length to be ennsidered, at the hest, an imigmatical falure, as the following extract from notes of the experiment will show.

Memorandum of one of thirty-seven large experiments at the Cwmheisian Mines, in 1854 :-
Experiment No. 7.-A bulk of four and a-half tons of metalliferous minerals quartz, \&e., was triturated in forty-two pounds of mercury. The result was without amalgan. The mercury was of the consistency of paste, teu pounds of which, on distillation, gave serenty grains of residual metal, which contained 18.4 grains of gold.
A qualitative analysis of this metal gave gold, silver, lead, mismuth, zinc, arsemic, and traces of copper and iron.
The distilled mercury contained traces only of zinc and arsenic.
Eight samples of ore were taken from the same heap as the above four and a-half tons, and qualitatire analyses made. The results were, silica, lime, maguesia, alumina, oxide of iron, oxide of manganese, copper, zinc, sulphur, antimony, arsenic, gold, silver, and in three samples carbonic acid.
It had been proved before the experiment, and has since been proved, that there were several ounces of the "Royal Metal" in the bulk operated upon; but the quicksilver, in that instance, as in many others, became sportive, neglected royalty, and took up with "associates" of less dignity, although, intrinsically, of more real utility.
This, howerer, was anything but the result expected.
At the Dol-y-frwynog Mine, about two years afterwards, Sir Charles Price erected machinery, at a great cost, for the extraction of gold by amalgamation. Several huudreds of tons were operated upon; but the machinery itself being only a bad imitation of that used at the Cwmheisian Mines, the result was a failure equally provoking.

Of all the gold localities of this district, at the present time, the mine in the Clogau Mountain is the most interesting, as it is the most profitable. The Clogau Mine, as it is called, is situate at an elevation of one thousand feet above the level of the sea. The "Saint David's," or "Gold Lode," is the most remarkable feature of this mine.

The direction of this lode is nearly east and west, and is almost perpendicular. It is about three feet wide, and is composed of quartz impregnated with sulphides of copper, lead, iron, and occasionally telluric mismuth, with much native gold, which is generally distributed in minute particles throughont the quartz, but very frequently in rich strings or bunches. A shallow adit has been driven on this lode about twenty fathoms, and a winze sunk to witnin a few fathoms of a deeper adit, which has been driven from the north about forty-eight fathoms, and touches the gold lode a few fathoms further east thau the forebreast of the shallow adit.

This lode is at the junction of the Cambrian sandstones and the Lingulaflags of the Lower Silurian rocks, and was worked many years since, and a large quantity of what was then called "poor copper-ore"" raised and sold. More of it was requested by the Flintshire smelters at an advance of five shillings per ton!
It is a singular fact that, in 1854, the grass-grown refuse of this "poor copper-ore" was examined, and large stones were found showing positively the presence of native gold in extraordinary quantity. Many of the stones weighed several pounds, and lad gold disseminated throughout. The author was once told by an eminent gentleman in London, who ought to have known better, that getting the gold into the stones was "an ingenius contrivance bet wixt a jeweller and a watchmaker."

One specimen of this "refuse" in particular, containing a large quantity of gold associated with telluric-mismuth, has the mark of a boring-iron, which has passed quite through the solid gold.

Some of this "refuse ore" was put to the test by Mr. J. C. Goodman, and, VOL. IV.
in one instance a lundred pomels weight sielded fourteen and a-kialf ounces of golld.
This remarkable load has been experimented upon, for limited periods, and in varions ways, be several persons since the gold diseovery of 1h51, and many strings or shoots of gold obtained eqgally rich; but, owing to the uncertain operations of amalgamating machines on the one hand, and the mines themsilves being the sulbjeet of tro chancery suits on the other, the general value of the lode in bulk has not, until recentiv, heen determined.

The anthor has for a long time been of "pinion that it is impossible to arrive at an approximate value of aurifurous minerals in bulk by the orlinary process of assay. Assays are likely to prove delusive, simply on accome of the unequal distribution of the precious metal in the minerals. Many men of great abilities state the contrary ; but they camot do it for all that; for, if they camot obtain a fuir sample to assay, it is impossible that the assay to the bulk can be proportional.
In proof of this the author referred to a record of thirteen experiments made ly himself just a year sinee, upou a hundred and twelve pounds of auriferous finartz from the C'logan Mine, part of a stone weighing ahout four humdred weight, which was broken from the lode on Whit Sonday, 1560, sent to London, and crusbed and sampled by Johuson and Son.

These experiments were sery earefully made, heeamse a gentloman in London, of very high standing in stich mattiers, had deelared the value of the ore hy assay to lie nine poumds only per humdred weight, whist the mithor had ventured to declare it worth thirty pounds. He happerned to be right, becanse trials of seven ponnds weight are likely to be nearere the mark than thase of only four lumitred stains.

Lastly, he stated briedly the result of artual reorkimg operations for gold at the Clogan Mine, wine the begimuing of the present year.

Tons. 1!11 12 3	P'wla.					Oumes. $\because 11$	J)wis. 1.4
	11	uf growl rmartz, gave of golli					
	17	of bolter	-	-.	..	! 17	$1)$
	11	of luel	"	"	"	:17i	6
207	*	fromithor	lulk	f11	(6)心, gav*	1311	0

Th thia, if we add fifty-uix nunere, the result of experimenta in 1480 upmen five tons, we liave a towal guantity of one thousamb three humbed and seventy
ounces of gold from two hundred and twelve tons of auriferous mineral, being at the rate of about six and a-half onnces to the ton!

The author belieres this to be the first public record of a hundred weight of gold having been obtained from the Cromn Lands of this country, the value of which is about fire thousand threc lundred pounds.

This "Royal Mine" pays a royalty of one-twelfth to the Crown. The cost of gold-extraction has been very inconsidcrable, and there is a probability of a contimance of a yield of gold at the present rate for some time to come.

Scren years ago, the author determined, unwisely, perhaps, never to leave this rexed question until he had mastered it. He has done so. Experiments are ended. It is proved, what many then doubted, and many more derided, that grold does really exist in the Dolgelly district, and that it can be extracted from the minerals in remunerative quantity. He was glad to have had the opportunity of making this statement before the Geolugical Section of the British Association for the Advancement of Science.

At the conclusion of the paper, Mr. J. Beete Jukes, F.R.S, F.G.S., Director of the Geological Survey of Ireland, said the existence of gold in North Wales hod long been known, but it was not in sufficient quantities to render its produce ion remunerative.

A discussion ensucd between Professor Smith, of Sydney, Australia, and Mr. Readwin, upon the modes of extracting gold from its matrix; Mr. Readwin stating that, at the Clogau mine, particularly referred to in his paper, the gold was extracted, at present, chiefly by a process of amalgamation.

Professor Smith inquired whether some of the mercury was not lost in the process? To which Mr. Readwin replied that some of the mercury was always lost; it hecame so finely divided that some of it was sure to be carried away.

Mr. Smith said he perceived that in old North Wales they were falling into the same difficulty as their friends in New South Wales. There were many things which would have a singular action upon mercury, and likely to injure its effect on the gold. The action they had was a chemical one, and therefore the gold producers of New Sonth Wales had depended to a great extent upon mechanical action exclusively, and generally they had been very successful. If anyone conld point out any means by which gold could be satisfactorily scparated from the quartz it would be a great boon. The mechanical means they cmployed in New South Wales would leave only half an ounce per ton, which was considered very fair. The production of gold in Old North Wales, as detailed by Mr. Readwin, surprised him very much. The yield of gold in Victoria or New Sonth Wales did not exceed one ounce per ton of quartz, and in many instances half an ounce was considered a fair yield. The digger of Australia would be extremely proud to get it in such quantities as six ounces per ton, as Mr. Readwin had stated the yield of the Dolgelly quartz to be. From three to four ounces per ton would be considered very good anywhere in the gold districts of Australia. In some small localities the yield had been as high as thirty ounces, forty ounces, or even more, per ton, but they were exceptional, and did not last long.

Mr. Readwin remarked that there was this difference: in the one case the gold was obtained; in the other, not. There was no difficulty about it. By the process of amalgamation care should, of course, be taken not to intrude any mineral that would have the effect of neutralizing the affinity of mercury for gold. In reply to the last observation of Professor Smith, Mr. Readwin said he believed that the same law of produce obtained with respect to gold as with other metals. In the case referred to it certainly appeared to be so.

In answer to another question, Mr. Readwin stated that the actual cost of obtaining the one thousand three hundred ounces of gold was, he should think, not more than three hundred pounds.

Lest there should be any misunderstanding as to the arerage yield of gold in the Dolgelley distriet, he berged distinetly to state that the average yield would not, in his opinion, exceel half an ounce to the ton of ore; but itrere were several extroorlinary exceptions to the rule in some of the quartz-lodes of the district.

A gentleman asked what was the cost per ton of ernshing the quartz?
Mr. Readwin said that as the machmery was workel by water-power, the actual cost of crushing per ton would, probahly, be less than half-a-crown.

Professor Smith expressed his sarprise, as thie mst per ton in Australia was calculated on an average at one pound per ton. He referred to the fact that most of the firms there used the Cornish stampers for ernshing the quartz, and that it answered the purpose well.

Mr. Readwin said that he also had witnessed the operation of gold expraction br meaus of stamp heads, and it was found to fail, in eomseypence of the linelydivided state in which the gold oceurecl ; so tine, inded, that it tloated away on the surface of the water and was lost ; tho heavier portions were, of course, retained.

Mr. lieadrin exhibited some extraordinary specimens of Welsh gold, and offered to explain to any person interested, a process hy whieh minerals antagonistio to the free amagamation of mereury and gold, cau be sucecssfully treated.

List of the Gold Localities of the Dolgelly District.

At Cwmberisian Uchaf, gold has been fouml in galema, mundic, conper-pyrites, quartz, blende, schist, and arsenical iron-pyrites.
Cwmbeisian Issa, in galena and blemede.
Dol-y-frwyog, in galena, quartz, baryte, and mundic.
North Dol-y-frwyog, extracted from quart z, eopper-pyrites, and gossan.
West Dol-r-frwyinoe, in quartz, schist, and baryte.
Tyddymgladis, in argentiferous galena, copper-pyrites, clay-slate, talcose-schist, gossan, and blende.
C'acrwernog, in galena.
berthllwydd, in argentiferous galena and arsenical iron-pyrites.
Prinec of Wales Nine, in blende, galena, quartz, aml clay-slate; but prineipally associated with blende.
West Prince of Wales, extracted from quartz.
The Cambrian Mine, in blencle, carbonate of lime, schist, quartz, clay-slate, iron-pyrites; but chiefly in blende and guartz.
Victoria Mine, extracted from quartz and gossan.
Lachfraith, extracted from quartz mud iron-pyrites.
Wellington Mine, in ruartz and copper-prrites.
Capentain, extracted from quartz and galenta.
Vigra, extracted from gosum, quartz, and enpper-prites.
Clogan (aouth (irant), extracted from gossan, blende, quartz, and copperprites.
Clowini (Middle (irant), traees of geld in enpper-fyrites.
Clogan (dinth (irant), from "Saint David's Lode," in quartz, copper-prrites, rarhomate of lime, talcosc-schist, galena, and associated with telluricbismuth.

NOTES AND QUERIES.

Flint Implements at Aylesford, Kent.-Sir,-A few weeks simce, a friend of mine picked out of some river drift which had been dredged from the Medway near to Aylesford, a most highly-finished flint hatchet. I am sorry to say I fear we shall lose it for our museum, as the finder is going to take it to Oxford. I have not had the luck to get a specimen, but hope to do so, as that elerated bed of ancient river-drift at the back of Aylesford church ought to sield some.-Yours, \&e., W. H. Bexsted, Maidstone.

Elompialus carinatus.-Dear Sir,-Last montl the Liverpool Geological Society made an excursion to the Silurian district of Coalbrookdale, during which many interesting fossils were obtained. From a quarry of Wenlock limestone on Benthall Edge, I obtained a finely-preserved specimen of Enomphalus carinatus, retaining a considerable portion of the shell. My reason for calling attention to this fact is that I eannot ascertain that this shell has been discovered in the Wenlock series before. Both in "Siluria" and Professor Morris's "Catalogue of British Fossils," it is mentioned as occurring in the Aymestry Limestone. Perhaps, if you consider these remarks worthy of insertion in the "Notes and Queries," some oue of your numerous readers will inform me whether this shell has hitherto been met with in the Wenlock Limestone.-Yours, \&c., W. S. Hortox, Liverpool.

Native Cofe in Moratia.-Native cokes have been found at MährischOstraw (Moravia), at a depth of about two hundred and eighty feet, along the line where one of the eoal-beds worked there is in contact with eruptive rocks. The metamorphic action has penetrated into the coal to a depth of three or four inches. A similar occurrence was observed in 1856 in the coal-beds of Witkowitz, partially altered into cokes by the contact of greenstone.

REVIEWS.

$$
\text { "Proceedings of the Geologists' Association," No. } 7 .
$$

The seveuth number of these Proceedings has reached us, and it is with pleasure we remark, not only an improvement in the diction and printing, which would indicate that the matter has received some editorial care, and has been passed under some competent eye, but there is an improvement also in the quality of the papers themselres. In the first paper our old friend Mr. Wetherell, who for so many years has done so much good work in looking over little things, treats "On the Opercula of Ammonites in Flint Pebbles from the Grarel of Whetstone." In all strata containing ammonites the trigonellites should naturally be expected to be met with-as indeed they are-for to suppose them rare is a mistake, as any one may prove by cracking off sideways pieces from the mouth-edges of common grey-chalk aumonites, such as Am. variuns, Am. Mantellii, and Am. navicularis. What is most wanted to be done is some one to spend his time in breaking up different species of ammonites and figuring the kind of trigonellites which belong to each. Another of Mr. Wetherell's papers printed is "On Oviform Bodies from the London Clay,

Chalk, and Greensand," in which he draws attention to certain minute ohjects often fomed in the cavities of the tubes of fossil 'Teredines, but the origin of which is still mexplained.

Mr. Goorese E: Roberts has contributed a "Motice of the Plant-bed ent intu ly the Severn Valley Branch of the W"est Midland Railway," the specimons met with being charfly carbmiferons ferms of the genera Pecopteris, Neucopteris, and Sphenopteris. (If the last a now species "with very small hut most degant pinnules," resembling a delicate form of Hymenophyllum, from New Zealand, was abundant.

The Woodencdites Robertsii, Morris, was first met with in these shales.
A long paper by Mr. Gray "On the Geology of the Isle of P'ortland," is illustrated by one of those pieces of hached wood far too common in modern geological bouks. Of the short eomings of the papere itself we are disposed io speak lightly, for the sake of the spirit in which it is penned, but there is one part to which we hope the author will devote more accurat attention. After speaking of the bone-fissures in the Portland stone, he adds:-
"Graves are frequently met with on varions parts of the island, and from the discovery of rases, coins, and other articles in them, are arknowledged to be: of koman origin. These grates are generatly sunk down into the ealeareons slate of the Purbeck beds, and the body was deposited within a catere, rulely formed of unhewn stones or slates-withont the intervention of a cutlin- the earth being tilled in upon a covering of similar material.
"It would appear that the hman remains are onlv found in fisumres lmencath the culcurrous slate, so that it is highly probable that the weight of the earth, in the above instances, cansed the heret ofore undisturbed laver of slate bet ween the graves and open fissures to give way, and lameh its contents into the space below. Captain Manninge, Her Majesty's Lientemant of J'ortland, and resident magistrate, has in his cabinet at Portland Castle, a good collection of fissureboues, sliulle, and wither haman remains, iss well as the bones of the deer, boar, and other animals, foumd in fissures in the rentral quarries, nud therefore liclono the ealeareous slate. In a cabinet, in the offiec of the Commanding Royal Fingineer, Vem Fort, there are also several specimens of bones, the laterer having been found on the Vern Hill, where the ealeareous slate is not developed. These bones erere not areompanied by hmman remains. The fissurebones of Portland are generally found in good preservation, usually separate, but often cemented togrether hy carhonate of lime, the shells of land smails being rarely nasociated with then. In some of the fissures, passed throngh by the V'ern Diteh excavation, here were diseovered mumbers of shells, very delieate, yet well preserved, and similar to those described as eommon in the Jowss of the Vialley of the khine, viz., Ileliar plebiun, Hrlix nomoralis, and Cyclostoma itegrmes. Numbers of them were detached, hat they were principally cemented together with broken pieces of stone, and cherty fragments, into a comeretionary mass, by a filmation of carbonate of lime crystallized, zand encrusting each. The specimens obtaned were thirty feet from the surfare."

Wee eonfess we do not clearly comprehend what the anthor means. If be momets to ser that the hman hones are older than caleareous slate, we decidedly think lie is wrong. On the other hamel, we do mot see the value of whether a fissure extends down through other strata to the caleareous shale or whether it dows mot.

The suljeet of human remains has a high interest just now, and Mr. Gray bhould grise 119 the exast particulars of these bone-fissures and their contents.

Mr. ('urtis eontrihutes a wote "()n the Gault of Alier Holt Forest" and Mr. Piekering, Mr. Liomel Wordward, and other gentlemen hare contributed other papers on lifferent subjeets, the series concluding with an illustrated one
on geological hammers, in which some queer specimens of stone-breaking implements are duly figured, but not one of which is properly fastened in its handle-if the woodcuts before us are to be trusted.

The Committee announce their intention of haring excursions next year to Cambridge, Hastings, Harwich, and Lewes. We approve highly of this early noticc of these trips, as it is very desirable for the members of such a society as this to read up and study beforehand the features and fauna of the district9 and strata they risit in their instructive excursions. The resumption of the Society's meetings will take place on the 4th inst.

The Coal-Fields of Great Britain. By Edward Hall, F.G.S.
It is not many months since we read and reviewed a rery admirable account of our coal-fields, by Mr. Hull. The oft-mooted question, "How long will our coal-fields last "", and the commercial aspects of the probable increased exportation of coal, through the late treaty with France, turued attention pointedly to the subject, and with the maps, sections, and labours, published and uapublished, of the Geological Surrey, extending over two-thirds of the coal districts of Eugland, and assured of the cordial assistance of his colleagues, no one could undertake the reply with a better collection of materials, or so good a cbance of success: And a yery truthful answer Mr. Hull did produce, and the public appreciation of it is proved by the enlarged second edition before us. It is not to be expected that the answer first given should have been perfect, and, consequently, we find slight modifications; but to the main features the author consistently adheres, while in the intervening time fresh materials have been gathered. Amongst the additions is an account of the mineral resources of Scotland, which has been included with those of Eugland and Wales ; and sections of the coal series of South Wales and Somersetshire. The production of the various coal-fields has been modified in accordance with the "Mineral Statistics" for 1859, collected by Mr. Hunt, and a map showing the area of the productive coal-fields, and the probable depth and extent of the coal formation below the newer strata, is now furmished, besides an additional horizontal section of the formations in Lancashire. Chapters on the "Duration of our Coal Suppls," and on "The Physical Geography of the Carboniferous Period of Britain," are also added, and in justice to Mr. Hull, it may be fairly spoken, that he has produced what others have thought about and talked about, but never accomplished-a complete handbook of the British coal-fields.
In his preface, Mr. Hull alludes to the criticism of Mr. Vivian, in his "Lecture on Coal," and the statements of that gentleman on the resources of the South Wales coal-fields; but at present he makes no attempt at reply, giving this rather witty reason for procrastination, that as Mr. Vivian places the duration of the coal-field at 5000 years, and himself at nearly 2000 years, there will be abundance of time for arriving at an amicable conclusion on the subject, before the course of events shall have verified or falsified either of their calculations.

In the appendix, are some interesting notes on coal-mining in foreign countries, amongst others, in China and Japan. In respect to the former, mention is first made of the statements of Marco Polo, the traveller of the thirteenth century, that coal was in use in his day in that country. At the present time, the coal is "worked in the cliffs of the Pe -Kiang river, at Tingtib, by means of adits driven into the side of the hill, at the outcrop of the coal-seams. The works are carried on in the most primitive manner,
without the airl of machinery, and the mode of working coal through vertical shafts, which may be considered as the second stage in the art of mining, appears little known. In this respect, as in almost every other, the Chinese are far hehind their neighbours the Japanese. Probably, if an inhabitant of the Celestial empire were shown some of the largest collierics of Newastle or Wigan, le would searecly deign to look at them, or would gravely inform rou that they had similar or better machinery, and deeper mines, in "Pekin side."

Mr. Oliphant, in his narrative of Lord Elgin's mission, states that coal is proenred from a mine abont live miles distant from the important city of "Whang-sheh-Kang," or "Yellow Stone," on the river Yang-tse-Kiang, about four hmudred mites from its month. He also states that coal is raised in Japan somewhat extensively, but as a goremment monopoly. "One mine, at a place called Wakamoto, in the interior of the main island of Niphon, was visited hy some of the Dutch mission. They describe the mine as being well and judicionsly worked, and the eoal as bitnminous in its nature, and made into coke for use. That the coal is worked by means of vertical shafts, appears from the fact that the Prince of Fizen once ordered a steam-emgine from Enrope for pumping the water out of his mines; but, through the native jeatonsy of the presence of foreigners in the conntry, refused to allow the Dutch engineer to prect the machinery upon the spot. The Japanese, howeser, are quite independent of thuropean aid for such an oljeet, as they thoroughly understand the construction and management of the stean-engine. Kiempfer, in his 'History of Jipan,' also refers to the abundance of this mineral, stating (hat it is dug in ereat quantity in the province of 'Tseknsen, and in most of the northern provinces. The rich and productive empire also yietds abundanee of goll, silver, copper, and iron, and the Japanese armonrers excel the Eurnpeans, and perhaps any other nation, in tempering steel."

Short and brief as are these referenees, and introdnced more even as matters of curiosity than anything else, and brief as is the chapter on the Coal-tields of the World, we are still glad that there is even this little mark of attention shown to the subject of foreign eoal-fields, for hereafter will it not be only the question of how long our coal-fields will last, but we shall have in consider, as our coal-mines get depper, how far foreign conntrics can compete with ins in setting their cost of carridge against our cost of uplift and deep-mine draining; whether they will bring their coal-protuce to our market, or carry it to other markets where material and machinery ean he worked together.

We must not, however, consider that we have anythine like a perfert knowledre of the stores of fossil frel laid up in the erust of the earth. The constant finding of coals and lignites, usahle as fuel, of other ages than the carboniferons, leads us to conceive the idea that future disenveries of most valuable beds mas from time to time be made in deposits of various ages, althongh mone of these are likely to equal the reritable coal-scams of the carboniferous age.

THE GEOLOGIST.

DECEMBER, 1861.

SOME OBSERYATIONS ON THE ACCUMUTAATION OF CAVE-DEPOSITS.

By the Ret. Hexrt Eify, M.A., F.G.S.
The usual mode of accounting for the bone-breccias so eommonly found in caverns open to the day can scarcely be considered by any body as quite satisfactory. It seems usnally taken for granted that that mixture of sand, clay, small stones, and fragments of bone must necessarily have been brought there by streams of water, or washed in by waves. And yet in many instances-perhaps in by far the great majority of instances-nothing can be imagined as much less likely to have happened than the aggregation of such materials by any means of that kind : that it shonld have been an occurrence of almost universal prevalence may well be deemed impossible. For under what circumstance can it be conceived that floods of water, in every region where open caverns exist in the rocks, should have picked up a heterogeneous collection of bones just in time to lay them quietly down again in every hole into which the muddy stream could gain access? For we must really suppose so well-timed an aequisition of future fossils, before we can admit the usually received hypothesis of the manner in which they were deposited where we find them; since no one can suppose that the whole of the solid matter borne along by any great flood-not to say by every such
flool-enuld have heen such as we observe so constantly in these bme-hreceins.

The utter insufficioney of this way of solving the diffienties which these eollections present may be seen in the account given by M. Alfred Fontan of two bone-caverns in the Montagne du Ker, at Massat, in the Department of Ariege, as extraeted from the November mumber (bis) of the Quarterly Jommal of the Geologieal Society of London, page 4is.

After noting that there are many of these hollows or grottos in the momntain, ho says: "Amongst these caves, two are remarkable on accomet of their extent. One of them, sitnated near the summit of the mount, at an elevation of about a hundred metres (three humdred and thirty feet) above the bed of the valles, is approached by a spacious vestibule, or onter chamber, with two large and lofty circular entrances, one of which faces the north, the other north-northwest. The soil of the outer chamber, which, like the rest, was dewoid of all stalagmitic concretions, was smooth and horizontal, rising alove the sill of the entrance. With the exepption of a small portion near the north-north-west entrance, where a few fragments of pottery were found, mixed with cinders and coal, it presented tho nppearance of an ahandoned river-bed. Λ sandy loam, sprinkled with gravel or small rolled pebbles, occupied the centre; whilst at the edges, against the wall of rock, larger but similarly rolled pebbles appeared to have been thrown up by the eddying or movement of the water. These deposits contimued in the same way for a distance of a hundred metres along the principal gallery; only diminishing in thickness as they extended further inwards, and entirely ceasing at the furt her end.
"This arrangement, combined with the presence at such a considerable clevation of rolled pebbles, most of which were dillerent from the rocks of which the mombtain consists, nppeared to the author as solely nttributable to those diluvial cataclysms which geology points to as having occurred at seseral periols anterior to historical tradition. In orler to understand these faets, he determined to study the nature of the deposits; for which purpose he caused a deep trench to the duge in the soil near the northern opening, and extended it to the lateral walls. The result of this first attempt was the disenvery
of a large quantity of bones of carnivora, ruminantia, and rocientia, amongst which were most abundant the great cave-bear described by Cuvier, a large species of hyæna (H. spelæa), and a large Felis (tiger or lion), all mixed together, rubbed and broken, giving evidence of a distant transport, or at least of a violent displacement. Besides the cinders and charcoal at the surface (with which were associated fragments of pottery, an iron poignard, and two Roman coins), another bed of cinders and charcoal was found at a depth of more than three feet in the ossiferous loam, and here M. Fontan found a bone arrow. head and two human teeth; the latter were at a distance of five or six metres one from the other.
"The second or lower cavern is situated at the foot of the monntairi, close to the road, at an approximating height of twenty metres above the bed of the river. Its only opening, which, like those of the upper cavern, is contrary to the present direction of the water, leads into a tolerably spacious chamber, the ground of which consists of a blackish earth and of large rolled pebbles (some of them granite), amongst which are scattered, in the greatest confusion, fragments of bones belonging to animals either of extinct species, or of such as have for the most part long since ceased to inhabit these regions. They belong principally to deer (Cervas elaphus), antelopes, and murochs; and there were a few remains of feline carnivora (apparently a lynx). Among'st these were found worked flints and numerous utensils of bone (deer's bone chiefly), such as bodkins and arrows; the latter were the most numerons, and are carved with oblique grooves, probably for poison. Some of the bones bear marks of incisions made by sharp instruments in flaying or cutting up the carcasses.
"In each cavern a chasm crosses the gallery and terminates the deposits; in the upper cave at a hundred metres, in the lower one at about seven metres from the entrance."

After a sentence or two of argument, M. Fontan observes: "From all these phenomena, the most striking feature in my opinion is this, namely, that the Valley of Masset appears to have been at one, and perhaps at sereral periods, the theatre of a vast inundation coming. from the north-morth-west or west, in the opposite direction to that of the present course of the waters of this region."

Now who can aceept this as a satisfactory lypothesis of the forma. tiun of these deposits? It seems a needless labour to examine it in detail: it is incredible, upon the face of it, that the bone-breceias of these and mmberless other caverns similaly circmmstanced could lase been accumulated in any such way.

But I feel rery contident of being able to offer an liypothesis which will meet all the ordinary facts of these cases, and against which on insuperable objections can be alleged.

It so happencel that, some fears ago, I lived in company with a spamel dog, I may almost say during every hour of its life, and in its daily habits I saw, unless I am much mistaken, an explanation of the origin of the bune-breccias. Though a very small creature, it was an indomitable lmonter ; no weather stopped it; to range the fields, the woods, and the ditches stmounding them was its one passion. W"et, dirty, und tired it came in at dimer-time, and hawing eaten its meal, it lay down to slrep. Upon awaking it began the operation which wits furely enteded hy the camivora of the eaves, amd to whieh, as it seems to me, must be refered the cminns mixture which now oecuphes their floors. With its teeth it pulled the mud from its long hair, and one would hardly have helieved, had he not seen it, the leap of sanel, clay, amd pebhles which so small a dog left upou its rug. Had it been allowed to guaw bones in the stndy-a delight which was forbiden-the ordinary materials of the breccias wonld lave been complete-quite complete for it deposited more than one or two of its own teeth, and abundance of its own hair, upon the tloor.

Nothing conld better consist with the hypothesis thins proprosed than the facts observed hy M. Fontan. Of his two caves, one was from two humberland fifis to thaee hmudred feet nenter to the level of the valley than the other. 'There accordingly were found the largere pehbles. Hew entatin is is that the larger prey would be taken to this more readily acessible den, aml wond bring in larger masses of mud, with lar mer stomes tixal in them; and not unfrequently in the hoofs of the large deat amimats the ammelos, for instance-and in the feet of the carnivorat themerlves; while in the eavern higher up on the hill, smaller portions, surd as reand be carried in the month witlont dragginge, wonlal more enverally be elisposed of, and with these smatler pebbles would be alded to the accomulation.

Occasionally, I believe, there is an appearance of stratification in these deposits. But this by no means contradicts the hypothesis here offered. It might very well happen that a cave of this sort would be frequented by different genera of beasts of prey in succes-sion-the cave-bear, hyæua, and tiger-each of which might occupy it exclusively for a lengthened period, and bring in different kinds of soil, as it sought its prey in the marshes, the meadows, the woods, or on the mountain-side. And, in M. Fontan's account, there seems to be proof that something of this kind had happened, for he found luamy sand in the upper care, and a blackish earth in the lower,-a distribution of material very well agreeing with the view here taken, but not quite consisting with the notion of deposit by water; as sand and loam are usually heavier substances than black earth, and would rather than the latter have been left on the lower level.

I think, then, that the deposits of the open caverns may be ascribed for the most part to the carnivora frequenting them, which must hare brought in, adhering to their own feet and fur, and to those of their pres, a prodigious quantity of earth stones, which we must needs believe would remain where they left it, mixed with the fragments of the bones they guarwel, unless we are prepared to say that the floods washed all that out first to make way for a similar deposit brought from somewhere else.

CORRESPON゙DENCE.

CREATION BY LAW.
Sir,-I make no exense for offering to the intelligent readers of the "Geolo. Glst'-a periodical in which the freest discussion has been invited and earricd on respecting the "Origin of Species"-the remarks which a careful verusal of the latest published works on the subject hare led me to express. I alludo chicfly to Professor Owen's "Palaeontology," a second edition of which has recently been given to an admiring world, and to the excellent little work by Mr. David Page, which yon noticed in the "Geologist" for September.

In both these works there is a strong appeal made in farour of a "constantly operating secondary law," by which the several species of animals have been called into being. Prof. Owen's generalizations are as follows :-
"Palæontology has yiclded most important facts to the highest range of knowledge to which the human intellect aspires. It teaches that the glube
atlutted to man has revolsel in its orbit throngh a period of timo so rast, that the mind, in the endeavour to realize it, is stmaned by an effort like that by which it strives to conceive tho space dividing the sular system from the most distant nebuda.
" Pabrontology las shown that, from the inconceivably remote period of the deposition of the Cambrian rocks, the earth has been visifed by the smn's light and heat, las fuen fertilized by refreshing showers, and washed by tidal waves; that the ocean not only moved in orderly oseillations regulated, ns now, by sm and moon, hut wns rippled and agitated ly winds and storms; that the atmosthere, hesides these movemente, was healthily induenced by clouds and rapours, rising, condensing, and falling in ceaseless cireulation. With such combitions of life, palanontory demonstrates that life has been enjoyed during the same countless thonsands of years; and that with life, from the begiming, there has been death. The carliest testimony of the living thing, whether coral, crustacean, or shell, in the oldest fossiliferons rock, is at the same time proof that it died. At no period does it appear that the gift of life has been monopolized by contemporary individuals through a stagnant sameness of untold time, but it has been handed down from generation to gencration, and successively enjoyed by the countless thousands that constitute the species. Palleontology further teaches, that not orly the individual, lout the species perishes; that as death is balanced by generation, so extinction has been concomitant with the ereative power which has produced a succession of species; and furthermore, that, in this succession, there has been 'an atsance and progress in the main,' 'Thus wo lenm that the creative force lins not deserted the carth during nuy of the epochs of geolnoical time that have suceecded to the first manifestation of such force ; nud that, in re-pect to mo one class of immals, has the operation of ereative foree been limited! to one geological epoch; and perhaps the most impertiant and signifiemt result of palientological researel has been the establishment of the axiom of the continums operation of the ordaned hecoming of thespecies of living thinge." (" J'alaontology," 2at edition, p. 2.)

In a dingram illustrating the abore generalizations, the genetic snecession of animal life is sammest up. It appears from this convected statement of the latest disenseries in palacontology, that the class of fishes mones its first appearance in the l"puer Silmina strata, and l'rof. Owen traws the conclusion that "those fperies which are most nseful to mon have inmediately preceded him in the orter of "rention," and that they "have superseded species which, to judge ly the bony" кarpikes (Lepilusters) were much less litted to aflord mankind usapid and wholeмоnie food."

The earliest known reptile is fomm, not, as generally suppresed, in the Devn. nian nge, lint in the Conl measures, and all the carliest crented forms belong to the lowngt or Gimoce phalous kroup, nunlogons to the lirpidosirens, or mud-iishes, which attracteal sumbeh attention at the Crystal Palace some time ngo. It is not mut the Tertiary times that the reptiles sppronch in organization to those of the prevent elay.

The class liords is refresinted hy foripuints in tho Üpluer Trias, in which atintim, howerer, no estidence lins yit buen found of act nal hones, which moro comeluaise peroot is mot fotiml binds the lawer Chalk. Ill the carliest created hirtls exhilhit the chnmeters of the urder c'ursmene, "characters of the embryo or immature individands of the "higher orters of hirds, and are consequently placed at the lowest step of the seale of ornithic organization.

In the higher clais mammalia it is most interesting to find ngain that the grentest part of the onrliest ervaterl mammalin helong to the lowest orvers of the clases. Wie find marumpials in the ('pper'Trins (Mirrotestes), and in tho Oolitic heds. Wo fird a solitary sumbll vigetahin feeding pachyderm Sterengnalhus in the Oolite, mad a dombeful cetarion in the Gremennif. But it is not till tho Einecme division of tertiary time that wo lind tho clans reach ita culminant development. The forlie createl mammals were the nearest to the iteal arehetypo. The fussil
 the exi ting muk-deer uad tapire. The former extinet animals, however, gave
place in the Miocene to true ruminants, and to mammalia more closely resembling the existing famma. It is not until the Pliocene period that we find mammalia of the same species as the present. Some of the extinct forms, as tho rhinoceros, elk, and hayna of Europe, lived down to the period when man existed with, and probably extirpated them. At Abbeville, in France, and Köstritz, in Saxony, the remains of man aro found in the samestrata as the remains of thoso amimals which are now confined to more tropical regions. The antiquity of tho human race, as proved by the discoveries of M. Boncher de Perthes, is thus thrown back to a historically distant period, though a recent one geologically. As Prof. Owen says, "There seems to have been a time when life was not; there mas therefore be a period when it will cease to be" (p. 412).

Professor Owen, after recapitulating the order in which animal life made its appearance upon earth, devotes mnch space to the subject of the extinction of species, and points out many species of animals which are vanishing before the onward march of civilized man. The dodo has disappeared from the Mascarene Islands within the last two hundred years. The beaver, once common in Wales in the historical period, survives still in the back woods of America, and is rapidly becoming extinct. The chase in Europe has almost extirpated the races of bears, wild boars, wolves, elks, and wild oxen, which peopled our English plains within historic times. The aurochs, descendant of the once formidable Bison priscus, is only preserved in Lithmania throngh the careful protection of the Emperor of Russia. The author of the present paper has been personally assured by an intelligent Moor, Hadj Arábi Ben-Is, that the broed of lions is rapidly verging: towards extinction on the slopes of the greater and lesser Atlas. The elephants and rhinoceroses of Abbeville were contemporary with man, and most probably were extirpated by him. In the last century a colossal cetacean existed in enormous shoals in Belring's Straits, bnt has since succumbed to the ravages of tho whalers On the other hand, many species, of domestic animals, as, e. g., the horse, ox, sheep, \&c., have been introduced by man into geographical situations remote from their original habitat.

With respect to the momentous subject of the " mysterious coming into being" of species, which has been canrassed amongst scientific men for the last hundred years, it is my object to endeavom to lay the present state of the question clearly before your readers.

The position in which the contending forces of special creationsts and progressionists rest at present has little changed from those occupied by the great chiefs and antagonists of past science, Cuvier and Geoffroy St. Hilaire amongst palxontologists, Lyell and Sedgwick amongst geologists. The same creeds and watchwords are maintained by the hierarchs and generals of the day. But they are professed and given by different disciples, and by less obedient and eren more mutinous sentinels. It is impossible for the most " prepossessed uniformitarian" to contend that there is not springing up at the present day a rast section of geologists who agree with Baden Powell in his memorable declaration that " while those arguments most commonly relied upon against transmutation are completely refuted, there is still no positive evidence to establish it as a demonstrated theory. Yet, as a mere philosophical conjecure, the idea of transmutation of species, under adequate changes of condition, and in incalculably long periods of time, seems supported by fan analogy aud probability." Whether obscured by the dazzling sophisms of over-zealous teleologists, or mutilated in the corrupt elementary treatises of the day, the great morphological principles of urity of, and adherence to, archetype, and successional development throughout geological time, proclaimed by Owen, St. Hilaire, and De Blainville, seem fairly to have maintained their claim to be treated as legitimate postulates. The successive and special creations, "invented by Curier as Ovid invented metamorphoses," are no longer universally regarded as the way by which the enormous phenomena of living beings have been produced. The belief is rapidly increasing amongst biologists that the true appreciation of the causes which have originated such changes is to be arrived at by a careful examination of the phenomena exhibited by the lower animals; $e . g ., p a r t h e n o g e n e s i s$, and the alternation
of genemations. To form a just conception of the whole animal kingilom, such whole should ho regarded in its most simple nspect, and it is not by a pertimacions megation of all theories, and by "an ussitication of the organs of intelligence," that scienco will be admuced. While, on the other hand, any pronfs which transmutationists may adduce should alone rest mon a studious regard of the phenmena of embryolory, nul unon a synthetie modo of trenting nature.

The fice is now more clemly unterstood that " the types of anmals first doveloped are more like the embryonic forms of their respective groups, and tho pros. gression observel is from those gereral types to forms moro highly specialized." (Owen.) Thus the embryormminants Anoplotheritm and Dichenton of the Eocene period appared hefore the present stacs and antelopes, and, in common with nearly all tho Focene mammalia, mantaned their typieal dentition of forty-fomteent, which has since griven place to the move speeialized and modified dentition of the firms of the mesent day. The lowest organizet mammalia appeared first nu our planes. At least fomefifths of the Scomdary mammalia belong to the lower sub-elaseses hyen- and Lissen-cophete, bearing chose anatory, and perhaps atlinity the oriparons vertebratn. "In all tho orders of ancient animals, there is an ascending armbation of charactor from first to last." Professor Owen has proved that "there are traces in the old ileposits of the earth of an erganic pro. gression among the suceessive firms of life." "Man, the last ereated, whose organization is regarded as the highest, departa most from the vertehrate arehetype." Wo must rogard it as an event depending upon somo higher law than that of mere emprieal cuincidence, that the most typieal animals shombl he fomm first in the seale, and the most spectialize. last. These remarkable concinteners, compleet with the astenishing haets revealed th as hy the labomrs of those mathvalists who have by thwir iresearehes un the changes and metamorphoses of the lower ammals, dispowerel the great law of l'urthenagenesie, ly which suceessive altermate gonerations of animals are produced liy and firon some mimals in mo why resembling them, such probueed animals, or their chrsendants, in tmon reverting back to the original form (c. y., the tape-worm), seem th "impress upon the mints of the most exact reashacrs in biology a comviction of a constantly op"rating scoondary crentional law." (Pahontology, p. 417.)

1 have the grontenst donbt myself whether "momal soloction" is this remer rensa-this secomelary hww whifhas prohned species. At the Britifl Association last Sipptember, Prof. Bubington said:-

 ought to latal us to lee much more act l" the staty of inalividurl forms."

Dr. lauhester, at the same meeting, (x]pessed his belief that : -

Abstract

* Thase who hal supported Mr. Ihtrwin had dome si rather on the ground that his hypotheais lad twan it methent of elieiting, nranging, mad elassitying n certain get of fineta, than bever tuen mancepted thmary of the origin of mpecies; Mr. Jarwin's motrongest opponcmat furms. Thoy dul not reenllect that esery depurture hal heen proluced hy some pliysical law - hy some force operatmg ugon that farticular form: nom that it was necessary to atuly what hat been the extemind circum tuncem prowluchis that change, whether the distinct origin of elpeces was belicved in or not. A kreat mathraliat, who wha still a fricull of Mr. Darwin, mice amil to him (1)r. Isukpater). 'The mistake is, that Durwin has denlt with origin. Why il the wot gut has farta in fore us, and lot then rest?' He believel that that wan where the finblic were in error-in supposmg that those facts explained the origin of apecien."

Whila condemning the univergal npplication of the selective principle as an active ngent cajmble of pronlucing the complichted fauna of geological oges, Int me express my admiration for those convincing passages in which Mr. Darwin ctiers a solution of the curious fact of the presenee of wingless birds, e. p., the Apterys of Now Zeraland, the Dexlo of Mauritins, the Nesiotis of Tristo da Cunha, in islands remote from the great emintints. Natural Selection here mat modify a hird's wings, where monctionn retuirnment fur their development oxista, hat it con mever, in my hamble upinion, produce an Grathonhynchus (1) a whale from any birl or Citimanrian.

My readers will have read the chapters in which Mr. Darwin lays stress upon the enormons lapse of time required for the deposition of the geological strata. However they, like Professors Phillips and Thomson, may impugn the exact details of his statistics, they rise from the pernsal of these chapters with the full conviction that the time required must have been immense. They ean only comprehend such arithnetical amomet hy a comparison with those results which astronomical or mathematical science has arrived at, as to the vast distance between our ghobe and the solar or sidereal systems. In this extensive field they must reflect that the small portion of space in time which falls under their immediate cognizance and observation is not sufficient to enable them to pronounes with any certainty as to the rast laws which may govern the whole. An anonymons writer on the subject, by a direct illustration of the well-known phenomena* of Babbage's calculating machine, lays great stress upon this argmment, and I confess I am inclined to regard it as an approach to truth. By some originally conceived law, consonant with the development of the original type, species which invariably propagate descendants immediately resembling themselves throngh countless ages, may, after the expiration of some given limit of time, op muder the influence of some muknown cundition, suddenly change their powe, and develope organs which are superadded to the distinctive characters of their original type. I can see no other way of accounting for the existence of such "veeedingly aberrant forms as the Ptenolactylus or the Oraithorhynchus. Onr induction is not sufficiently rast to lay down general rules upon the sulpject; but I think that if the old principle of "snecessive" and "special" creations repre senting the so-called "theological" cpoch of thonght, be abrogated, the principhe of the uniformity of progression by natural selection, representing the equaliy baneful " metaplyssical" stage, cannot erect itself a temple on the ruins of the former. It is only by a regard of the question of the origin of species, as one muler the influence of some dynamical law, that a solution of this great problem can be arrived at. (Comtc. Philosophie Positive.)

In the words of the eminent writer in the "Edimburgh Review": "Circumstances are conceivable-changes of surrounding influences, the operation of some intermitant law at long intervals, like that of the calculating machine quoted by the anthor of 'Vestiges,' under which the monad might go on splitting up into monal, the gregurina might go on breeding gregarine, the ceicaria cercuri,, \&e, and thus four or five not merely different specific, but different generic and ordinal forms, zoologically viewed, might all diverge from an antecedent quite distinct form."

Mr. Darid Page, in his recently published little work on the "Worll's LifeSystem," exhibited the spirit in which the adranced paleontologists of the pregent day have accepted the principle of Creation by Law, while they wisely abstain from defining its method, or fixing the precise process by which new species are originated.

I am glad to see that Professor Owen has elsewhere condemned any imaginary scheme by which some anthropoid ape, e. g., the Gorilla, might, by Mr. Darwin's principle of Natural Selection, become a man. He is too well aware that the species is yet unknown to naturalists which is sufficiently allied to mankind to have served as its immediate ancestor. No person can serionsly think that mankind, with its peculiarly developed brain, could have been reeruited either from Gorille or Diyppitheci.t Those naturalists who assert man's simian origin,

[^75]whilst pledering themselses io the as yet mproved empirio mothot of Natment Selection, retard tho "mpid and right progress" of zonlogy, mmindful of the Baconian warning that "knowlelge, whilst it lies in 刀phorisms and observations, romains in a erowime state ; lut when oue fashioned into melhols, thongh it may be finther polished, ilhstrated, and fitted fur nse, it no longer increases in bulk aud substance."

The stuly of the palanoblological and biologiend feiences has revolutionized modern knowledge. The attention to system and drenil, whieh sarans of a prast Frberation se enrofilly bestower upon animals and plants, is now problucing its gronl fruits, and the eonfused mass wh fincts and whservations which havo been eollerted is now giving place to wide and eomprelsensive genembizations. 'Tho mind of mokern scientitic men has been "slowly and insensibly withbrawn from imaginary pietures of catastrophes and chaotic confusion, surln as had hannted the imarination of the early cosmogonists, Numerous proots have been diseovered of the tranguil drposition of sidimentary matter, aml the slow and suceessive terelnpment of organic life." He who has studied the sulbject with care, quits it with the ennscionsuess that he has learnt the important hesson that, however specialized and monlified mun's structure, ho still retains within him the remmants of the old primaval ifeat, the old paterus, exemplare, and archetypes of boing, in whoso porfect imge he was originally designed; however remute in point of timo ho may be from the carliest meariation of lifis on this grobe, he still bears traces in his early coreer of a close malogy to tho loweat ormanized monad ; and, above all, le, from the simple elemmes of tho wigimally ereated spinal chom in tho lower vermbata, has developal a complux mgan of thomght far surpassing that poesessed by amy uther unimal furm.

C $\operatorname{CLACDERS}$ IN WALES.

Ry Professon A. C. Ramsat, F.R.C., F.(i.s.

Tu the yoar 18 sh I read a paper hefore the Cenlogieal Society " O_{n} the Superficial Acrumblations and Simber-markings in Nort h^{\prime} Walne", in which 1 athempten to show that there hand been wo ghaciev "prochs in that combtry, ome lafores mul the other after the deposition of the lamblder drift, which was phaghed out of sume of the harger vallus ly the secomethand smaller set of claceios ; and in a hater werk oin the ohl eshecers of North Wales, 1 weut further, slowing that cohl suffiecent to form glaciers lasted durine the whole time of submergence now emargeree, both when the higher monntain-tops stome oun of the sea as a chaster offomall islands, and afterwards when the whole laml rese ont of the water.

The first of thean memoirs tonelhed on several suljeents mat inmediately comected with the glaciation of Wales, thengh hearing in a larger seme on the smane (iendegieal periond, fand on the same sed of quations. This the Commeil of the Geologieal Society deciled mot to print in the formal, on the eromm that it was too specenlativeah mpink with which, in at anat bata me I mow cencide. One
question was, however, raised in this mprinted matter which I do not yet remember to have seen in any published paper, and I now mention it because of late the attention of many persons have been more and more drawn to the discussion of the subject.

The opinion I then held was that cold great enough to have produced the first and larger set of glaciers in our own neighbouring counties might have arisen from an elevation of land equal to, or greater than, the amount of depression that it underwent during the middle portion of the glacial period. I then stated "that I hold it as a sound doctrine in Geology that any amount of depression that any part of the earth's crust may have undergone, may have been equalled there or elsewhere by an opposite movement, giving an equivalent amount of deriation. Bearing this in mind, it seems within the limit of fair speculation to suppose a possible uphearal, equal to, or exceeding the above-mentioned known amount of depression (2,300 feet ${ }^{*}$) -an elevation probably sufficient to have produced a degree of cold, taken in connection with other conditions, equal to the production of glaciers on the first and greater scale. This land (Wales) would then consist of a lofty central cluster of mountains, with numerons valleys, down which the larger glaciers flowed, debouching upon an elerated platean of land, part of which now forms Anglesea and the sea-boards of Carnaervonshire. A further extension of this flat, dotted by other elusters of mountains, now forming the high grounds of Britain and Ireland, would spread as far as the 100 fathom line indicated by Sir Henry De La Beche in lis ' Theoretical Researches,' including the German Occan, the the Irish Sea, and a wide tract of the Atlantic stretching northward along the coast of Norway."

In 1846 the late Professor E. Forbes published his celebrated memoir'" On the Distribution of the Fama and Flora of the British Islands," in which, in consequence of a partial ideality in the littoral fauna of the North of Europe and of North America, he inferred a former direct union of these continents across the area now occupied by the North Atlantic. Generalizing on this idea, I conceived it probable that this northern continent might have stretched so far south "that the mean annual Isothermal line, and the January Isothermal line, that in Central Asia and in North America run nearly east and west in latitudes about 55 degs. and 38 degs., wouid be continued in the same direction across the continent instead of curving northwards, as they now do, under the influence of the Gulf Stream. The mean annual Isothermal line of 32 degs. Fahr. would then pass across the south of Scotland, and the January line near the soutlo of Spain. Across the Altai Mountains, in Central Asia, at points between these lines in latitudes 49 degs. to 51 degs. north, the snow-line is 7,034 feet above the sea, and in those mountains (from 9,000 to 10,000 feet high) at the Colonne de Katome, there

[^76] leant there degrees tumber morth than this, and it instead of heing part of an iskand, that district, at atherere clevation, were pat of a bund continent sprading cast and west, we shonld have in its peaks :ond valleys all the conditions necdlal for the formation of large ghaters: and the same may be said of other mombain regions of the British lshands."

1 bow send you these speculations for what they are worth, allhough in the long rum I think it will appeas that the wite-spreade ing, lomecontimed, and most intense cold of the giacial period was due in some mexplamed canse far more gencral than any mere changes in plysical geography.

BRITISH ASSOCIATION MEETING.

ON A NEW POINT IN THF STHUCTTRE OF SIGILIAARA, WITH SOME にEMARKS US THF BIVALNJS OF THF, COAL,

13: J. Wr. Sater, Esin., F.G.S.

A wowe the reaty fine enltections of fossil-phants in the Manchester Maseum, are some suecinsus of Sigillatiat well wortly altention, and which shaw, as I bedieve, a new print of stmelure, bearing on their apmat ie habits.

Thes hedrage to that seetion of the gemus which is distinguished hy the leatscars, bebing arranged chose together in the rertical rows, mot at a distaner ap:at, ans in mest of the species. So chase, indeed, that they press on one another, and empel rach other fo take an hexagonal form.

At ertain primis along the trunk, new lines of sears are interpolated, so as (1) mathe the momber of ridges greater (and at the same time the individual ridges narrower) in the somger portions of the trees. In Pintularin these interealations wry mulh at particular spots, foming a sort of varis, or nowe, mot sery obsemely marhed. It these peints, tow, in er turin spectes, the

 lis.rnfount.

 acars, mot hexatental, mor purse shaped, as the Icaf-scars betwern them ame, hut
 wheh the varmbe banden of the leaf arive, but denply indented, and with a

The lork of the se small merpolated sears is so different from those of the loaf-rows "hif! ame clearly bent interpeatated ridgers. for thery die out at carch
end), and their position is so much what they would have if the swelled portion here cmitted rootlets, that I think they must je points in the stem from which roots have been giren off, such as we sec coustantly in water plants and marsh plants.

Fig. 1.-Reduced rough sketch of Sigiliaria (Favularia tessellata), showing the porition of the root-scars.

Fig, 2. - A ferr of the leaf-scars (a) and rootlet. scars (b) of the natural size.

Such roots from the nodes or varices of the plants are indecd common cnough in all ronting stems; but there is no reason to belicre these stems were sumk in the carth up to this point. All the appearance of the plant is against this. In a specimen of F. tessellata from Pornton Colliery, the nodes ocenr at distances of a foot apart, while the specimen is only six inches wide. The freshmess and sharpuess of the sears below these points, too, sufficiently negittires this idea; for in the underground portions of Sigillaria the leaf-scars are much obliterated, and the rows irregular, cven before we reach the true Stigmaria scars on the large bifureating roots.

But if the Sigillaria grew in water, as there is the strongest reason to beliere they did-and the anthor referred here to Mr. Bimney's observations and the conchsions of Prof. Rogers-it is likely enough certain of the species should have this rooting liabit. And the structure I look upon as one more scrap of evidence (in addition to the extremely fine nature of the sediment in which they grew, and the sea-shells, and amelides, and worm-tracks intermixed with them) of the watery habitat of the coal-plants.

I am not now arguing for the water being salt; I thiuk that can be well
inferred from ollow dita- pertaps chiefly from the mature of the animals of the conl-me:sures. I will only say that there are in the ucighbourhood of Manchester instances of thick beds of coal, orerlaid imamediately by uniform fane shate (without a particle of grit or sand which mimht indieate a subsidenee of she surface), which shales contain oaty marine shells. The majority of the shells, however, of the middle amd upper coal-measures are not so decisive of their habitat, and I wish now to call attention to some of these.

Fig. .
The sn-called " / "in" lrands of the roid-measures are so well known ins mot To need description. In the cemblition of hraad hanhs often several fert thick, they occur thronghome all omr lichts: and though rare in the lower mensures, they are not abeent from them. A mmber of species have beren deseribed, some of them probalaly the mereat sariction of the there or four well-marked forms originally decribed by onwerby in the "Mineral Coneloology." But others are distinct forms, and some sit remain to the distingnished and added to omr lists. Some species appear to be characteristic of particular scams or hands in the eoal, and to be almost eomfined to these; ot liers, as the rommon I nin "culus, are fommed eron so fat drom ins the mountain limestone shale, and lived on th the close of the emat period with a wite geographient range.

Ther have been distingui hed from the laio of ome fieshwaler lakes and risers by I'rof. King, ame though it is as got hr no means rertain that they are allied to the Myuthe, the character of their epidermis, and the intermal position of the ligament that binds the shells tugether, leads to the belief that they were mariue slefls.

Athraen ior. - They are thick shella, and set destitnte of hingereteeth. The
modern genera of Unionide are generally strougly toothed, except the thin Anodon and its allics. Again, they have a thick winkled cpidermis. Enionide have not this, Myade have, and the ligament is internal, as in many Myade. The shape is oval, broadest in front, beneatl the beaks.

Anthracomya.-Generally found with Anthracosia; diflers materially; the shape is broadest posteriorly; the shell thimer ; lingeless (so far as known); epidermis wrinkled.

Myalina:-Quadrate shells, slightly inequiralve, but not at all so much so as Aciculd, and with no produced linge-line, and no tecth. Myalina has an area. Their place is doubtful, and all their analogies are with marine genera. Epidermis not yet observed as wrinkled. These three genera constantly occurin soriety.

If, therefore, we could substantiate the marine character of any one, we should be sure of the rest. And this is the point to which the attention of conchologists shonld be directed. It is not yet certain that the Anthracoiny, is really allied to the Mya, thongh its want of hinge and wrinkled thick epidermis farours the view. Nor do these shells, or Anthrucosia, except very rarely, occur with undoubted marine shells, Productu, Spirifer, or Cephaloporlous mollinsca.

But then, against the idea of their being freshmater forms, there is the fact that no shells like Paludina or Melania, or any of the familiar forms in the Purbeck or Wealden deposits, occur in the coal bands. The bivalves were certainly not purely freshwater. They were probably not even inhabitants of the open sea. They lived most likely in muddy lagoons of quiet salt-water, and hence the peculiar and marked character of these characteristic coal-shells.

It is desirable that all who may hare opportunity, by means of their workmen, of collecting carefully, should obtain these shells in quantity from each sean and locality, and endeavour to ascertain what species are peculiar to cach bed. The plants are likely to be more generally spread, and, indced, we already know more about their distribution.

ON AN ALUMINOUS MINERAL FROM THE UPPER CHALK, NEAR BRIGHTON.

By Messrs. J. II. and G. Gladstone.

The anthor said that in an old chalk-pit, at Hove, there are many faults, and some of them are filled up with a white mineral that runs along the dislocated layers of flint, and sometimes embeds the shivered fragments. It has the form of agglomerated masses, which are porous, and easily fall to pieces. One piece that was analysed proved to be well defined hydrated bisilicate of alumina -that which has received the name of collyrite-with no other impurity than one per cent. of carbonate of lime. Its specific gravity is 1.99. Another piece containcd thirteen per cent. of earbonate of lime, and five per cent. of additional carbonic acid, which must have been combined with the alumina. As the silicie acid was proportionately smaller in quantity, this picce of the mineral was riewed as collyrite in which about half the silicic acid was replaced by carbonic acid.

GEOLOGIC.AL SL゙RVEM OF TASMANIA.

Br C. (int t.1), BrQ.,

The formationz treated of were the liper Patatozoie marine deposits and the coal-mentures. The apparent conformahility of the fwo seretome was

 Dirholas Coaltidh, comprdmeding the varions portions dereloped upon cither side of the Break " Dave Valley; the whem the Dunghas Riser Coaltiold, beywern lome l'ant and licheno. In the first the position of the prineipal s"mus of poal, aldhomeh highly adsantareons on their bring worket, is at an
 abose the seat. Thure were at least six distinct seame in the Monnt Nietulas coadfode, one of whieh was of superion quality and twelse feet in thicknes. Sher the diseonery of the sean, experiments hase been made wheh, thongh amply sutticient to prose the value of the mal for domestie purperse, and fir
 as ceale to permit of the determination of its value as a stean-fuct. A memark-
 paratheril. The Morey coal-fich was one of rem frw in Ta mania which is achatly workeal; for, adthough the extent of eod thromshont the ishand is
 condacted.

THE IMPERIAI, GBOLOGICAL INSTITUTE OF VIENNA.

Sir R. I. Mfurdienn commaniated information from the Director Matianger, repuetenge the present state of the lmberial (ienkerical lastitute of Viemas. That important institution was one of many which were very likely to hane
 of Du-1ria. It wis fommiol by Dr. Haillinger, one of the first geologists in
 in frour of the in titution, the gowermment hat momeded all the tams in farour of gerelugieal seience which had beenformerty granted, and the Imprial
 funtabtrin

CARBONIFEHOUS LIMESTONE.

İr Mr. Jichaumon, C.Fi:

It tails of the earbmiferous limestone as laid open by the railway-enting and humel near thombhury, noth uf Lisistol. There was a brameli railsay
 In mahne this trouerse, it was meeresary to cer acros s a ridge of limestone, of
 trone Gn the whole the strita were derpe and singiext to wey ereat eomer-
tions. In some parts there were hroken bands of coal, thrown about in an extraordinary way. The whole of the highly-inelined strata were surmounted by new red sandstone. It was remakable that there was in this cutting an enormons amount of calcareons and other grit, some bolics of whieh might be supposed to have formed a regular part of the montan-liuestone. There were also large masses of red substance, eridently formed ly concretion.

ON THE GRAṄITE-ROCKS OF DONEGAL AND THE MINERALS ASSOCLATED THEREWTTIT.

> Br R. II. Scott, Esq.

The author gave a short aceount of a mineralogical tour made by him, in company with Prof. Haughton, the result of which scemed to throw soate light on the passible origin of granite. The district visited was Donegal, which county consists mainly of gneiss and miea-skite, and is traversed in a north-east durection by an axis of gramite. This granite is of a peculiar eomposition, containing two felspars, one orthose, but the other not albite, as in the granite of the Morne mountains, but oligoclase -a mineral whose oceurrence in the British Islands had only been noticen within the last twelve months. Prof. Hanghton, to whon this diseovery is due, was unfortunately uable to attend the meeting. The faets were brietly these:-The granite coatains oligoclase and quartz, which combination appears to be a proof that the roek never was in a melted condition; as in that case these two minerals would have acted on each other and formed common felspar. It lics in beds corresponding to the general lie of the strata of the country, and in its character is essentially gueissose; and, lastly, at points inside the area of the granite, metamorphic rocks (limestone and slates) are found with their bedding, which is nearly vertical, mechauged. These bands rim for a distanee in one ease of nine miles across the country. The condition of these rocks is very similar to that of the same rocks outside the granite area; and it is a point of great interest to determine how they got there. The solution of this offered by the author of the paper was that the whole of the rocks had been originally stratified, and lad been subjeeted to some actions which hat becu termed metamorphic. The result of sueh aetion was to convert some into granite, some into gnciss, and some into crystalline linestone and miea-sclist, without very muel altering their relative positions. The possibility of granite being produced by ofther means than simpte heat seened to them to be proved by the oceurrence of felspar in quartz-veins, whieh are usually admitted to have been filled by meaus of infiltration. There were several points in conneetion with these grauites whieh showed a close relation between them and the granites of Norway. The whole question required a careful chemical and mineralogical exanination, which could not be coneluded for some time. Amoug the types of rock found in Donegal is a syenite, the felspar of which is oligoclase. The origin of this rock the author is disposed to attribute to the addition of limestone to the granite. A similar syenite occurs at Carlingford, but contains anorthite, a felspar which would result from the admixture of a larger quantity of limestone than is necessary to produce oligoclase, and has been proved by Prof: Ifaughton to have such an origin. The anorthitc- yenite ucrer occurs unless limestone is present in large excess, which is not the ease in Donegal. The distriet described is very rich in minerals, soma cetremely rare.

Oこ TIIL FAULTS OF TIIE LANCASIIRE: COALAFIELD.

(3) Thexim (imacx, Esq.

The author proposed to point out a law which appears to geven the diree tion of the prinejpal lines of fault in the Lameashire eoaltiehl, and to endeavour 10 show, on the principtes laid durn by Mr. IIopkins, that this latw is a neecssary ebuserpence of the foress whieh produced the upheaval of the enalliedt. ()n the easem and morthern sides the roal-measures are bomaded hy millstomegrit, which rises conformably far beneath them. The intensity of upheaval along the eastern boundary was certainly great, as might be expected from its proximity to the contral upheaval of England, and there sems reason in beliere that it inereared in magnitude morthwards. The foree of elevation along the nothern bomary seems also to have increased towards the cast ; sinee it would appear that the north-enstern was a point of maximum clevation. On the suth, the coal-measures pass regularly but unconformably bencath the Permian and New Red sandstone formations, the bomdary-line being deoply indented by faults, along which promoutorics of New licd Sandstone rum ni iand the heart of the eraltield. That the portion lying between the Uphotland and fimatary fanlts eontoins the same measures, and has been acted upou by the same forees of cleyation as the main body of the coallichle camot be doubted; bat its prsition without the basin, and some irregularity in the Herections of its limes of fanlt, lead the anthor to think that heal causes have "hiefly determined the armangement of the measures. It womld appear that

 a. peared alon that the westemboundery has been a line of uphearal of smatler a id more miform intensity, and that towards the smoth the anome of elevation hos decreased to a mimimus. The upheavolarea may be roughly smpesed to be whlong in shape, its lunger axis rmming in an cist amb west direction, and while its sontherm and western siles remained tixed, its north-rast corner was devated in a ertiond direction. As to the extension of lines rmming nowth and somth nerons the area, it is crident that it will increase as we recede from the wistern side ; in fact, it varies very mearly as the somare of the dislanee from that side. In the same way the fonsion of a line ruming east and wos will bary very neaty as the squiare of its distamee fron the somthern bomdary. 'Thas, aner the ublifeed area there will be two sets of parallel ten-- ions, the one acting in a north and south direction menty, and bucressing in tagnitude from west to east ; and the other in an cast and went direction nearly, amb in reasing in maveminde from south to morth. Tha alteration in the shape if the area produced hy its estemsion will mate the lines of temsion derviate is hithe from a merthedy and esterly dieection, sis that the nugle betwern them will never be quite arght angle. The author had applied A!r. Huphins's ral.
 the direction of the first formed set of fissures: 1. Il heon the two tensions nre epual, n fissure will tend to be formed in a direceion at right amerg to the Ene hasecting the angle hetwoen then. 2. When the tomsons are unequal, in wheh the temdeney to form it fisbure is grealcot, makes a langer angle, with the diecetion of the grater tom iem than with thit of the other, this angle temes
 ou the dintame from the wetorn homadary of the area, and the other on the di tane from the sonthern hromary, the temsom will bee equit when thene di, banes ere unat. Hemes, in enery part en this line the fisares will trad to
run in a north-west and south-east direction. The line just mentioned will divide our area into two parts, a triangle and a quatrilateral. The distance of erery part in the triangle from the southern boundiny (and henee the easterly tension) is greater than from the northerly onc. The differenee, too, increases as we go northwards; lience the lines of fracture will tend to chance from : nortl-west and south-east into in north and south direction more and more as we go further north. Similar reasoning will show that in the quadrilateral the direction of the fissures will tend to become more and more nearly east and west as we go towards its north-cast corner.

REMARKS ON THE BONE-CAVERNS OF CRAVEN.

By J. II. Burrow, Eso., B.A.

The author said that the cave-remains before the mecting were found mainly in Vietsria and Doukerbotom eaves, near Sctile, Iorkshire. These caverns are but two of a large mmber whieh oecur in the mountain-limestone, and more especially in the Lower Sear Limestone (of Phillips). They are of various kinds, dry, wot, from a few rards in length to a mile, merely passages, or seooped out into great ehambers. Doukerbottom consists of two chambers, with rery long passages between them. Victoria Cave, whieh was discovered by Mr. Jaekson, of Settle, has in it four large chambers, elose to each other, and before the flooring of clay was washed in, probably forming one gigantie apartment. The general section of the caves is:-First, from a foot to eighteen inches of soil, in whieh are the bones of reecut animals. Second, about six inches of the ancient flooring of the cave, when it was inhabited by man : in this mere found all the antiquities whieh were discovered, and the bones of animads similar to those last mentioned. Third, dense stiff clay of very great thickness, in which no antiquities and scareely any bones were found. Fourth, the original rocky floor of the cave, resting on which were bones differing in colour, lightness, \&c., from the others. The antiquities found in the second stratum were flint implements, adze-heads of stone, sling-stones; of bone-arrow-heads, combs, and pins; shells and wolf's teeth pierced for a neeklaec. These were evidences that an uncivilized raee had oecupied the eave; but besides these were fibulx, armlets, and rings of bronze and iron; and coins of Roman emperors, from Nero to Constantine. The bones found were of recent historic period, animals sueh as the wild boai and the wolf; but with these were other animals of prehistoric age, the carc-tiger and the cave-hyæna, found side by side with the antiguties; and it has been argued that they are therefore contemporaneons with man. The author, however, showed that their prescuce in such a position was aceidental, and proved too mueh; for, if these bones were contemporary with the antiquities, they were also contemporary with the coins, which come down to 400 A.D.-a time at whieh we are eertain, from history, there were no such animals in England. The present evidence from these caverns of man's contemporauiety with such anmals was not to be trusted.

UTHER PARTS OF THE SOUTH OF SCOTLAND.

By Mr. Muse-Humf, F.(i.S.

Mr. Milne-Teme deseribed sereral examples of these "Kams" in lheruickshire, Ruxburghaire, and other places. He stated that they were so recrular is to have the appearane of raifway-embankments or fentitications, and that they had oftem beem mistaken for the latter. 'They were from forty feet to sinty feet in locight, and sometimes conld be traced for thee or four miles. They were fomed at varions heights above the sea 1 p to seven hundred and fifty feet. In - xamining their internal structure they were seen to consist generally of sand, gravel, and boulders; the latter generally romeded, but also oceasionally anguliar. He adverted to the fact that they are sometimes intersected by rivulets and even rivers, but that not withotanding this they had all the appearance of hasing, been when orgmally formed, continnons. The author olfered sonse remaths on the ageney supposed to have been eoncemed in the production of these "kaims." He repudiated the notion of their formation by glaciers. He considered they were due to the action of water, as indicated by their intermal structure ; and supposed that they must have been formed by the walers of the ocem when they stond at least cight handred fect above its present level. Tlie ouly question, as lie thourht, was whether they had been thrown up as shmarime guits or bamks, or whether they had heren formed by a poeces of senping ont, when the lam? emerged from the ocean. Ilis opinion watered beteneen these two riews, but he wat inclined !o favour the last, as he thought that the volent action of tides and enments was inconsistent with the layers of fine sand which frequently occurred in the kaims.

KFM IRKS OS THE TEMPERATULE OF THE EARTH'S CREST, AS

Wim. Fairbairn, lisq., LI, D., I:K.S., said-II is mew mene than fon years

 materials of which the ramtis cmas is compmad, and were proseruled wish a wew lathe solution of some questions wharding the probable thickness of the

 inerease of temperature in the cartlis crant iterlf. These whersations wote
 durine the sinking of one of the derpest mines in Vingland, the coat-mime
 such a depth a low he unalfoted by the tomperature in the shaft, ame the
 hours. It is very diftiont to arrive at acenrate datit on the sthjeret of the
increase of temperature lin the carth's ernst. The experiments hitherto made give, unfortunately, somewhat conflicting results, and eren in the same mine the rate of increase of temperature is by no means uniform. This is shown rery clearly in the results obtained by Mir. Astley. It is scarcely probable, howerer, that the temperature in the minc-shaft influenced the results, and we must therefore seek the canse of this irregularity in the rarying conducting power of the different strata, arising from different density, and different degrees of moisture of the strata. As to the rale of increase, they appear to confirm previous experiments, in which it has been shown that the temperature inereases direetly as the depitl. The rate is at first rather less than this, afterwards some what greater, and at last again less, but on the whole. the straight line on which the temperature increases as the depths nearly ex presses the mean of the experiments. The amount of increase indicated in these experiments is from 51 degs. to $57 \frac{3}{5}$ degs., as the depth increases from $5 \frac{2}{3}$ yards to 231 yards, or an increase of 1 deg. in 99 fect. But if we take the results which are more reliable, namely those between the depths of 231 and 655 yards, we have an inerease of temperature from $57 \frac{3}{3}$ degs. to $75 \frac{1}{2}$ degs., or $17 \frac{3}{3}$ degs. Fahrenheit. That is a mean inerease of 1 der. in 76.8 feet. This rate of increase is not widely different from that discovered ly other authoritics. Walferdin and Arago found an increase of 1 deg. in 59 fect in the artesian well at Grenclle. At the saltworks at Rheme, where an artesian well penetrates to a depth of $\tilde{6} 60$ yards, or rather more than the Dukinfield mine, the inerease is 1 deg. in $5 \neq 7$ fect. MLM. de la Rive and Marcet found an iucrease of 1 deg. in 71 fect. In one respect the observations in the Dukiufield mine are peculiarly interesting. As they give the temperature in various descriptions of rock, they appear to prove what has hitherto been partially suspected, namely, that the conducting powers of the rocks excreise a considerable influcnec on the temperature of the strata. If we add to this the influence of the percolation of water, we shall probably have a sulficient explauation of the irregnlarities observed in the experiments. From the abore observations we have evidence of the existence in the earth of a central heat, the temperature, so far as can be aseertained, inereasing in the simple ratio of the depth. We do not, however, presume to offer an opinion as to whether this inerease contimues to infinitely greater depths than we have yet penetrated, as observations upon this point are still imperfect. But, assuming as an lyypothesis, that the law which prevails to a depth of $\boldsymbol{\gamma} 00$ yards continues to operate at still greater depths, we arrive at the conclusion that at a depth of less than two and a half miles the temperature of boiling water would be reached, andat a depth of 40 miles a temperature of 3,000 degs. Fahrenheit, which we may assume to be sufficient to melt the most refractory rocks of which the earth's crust is composed. If, therefore, no other circumstance modified the conditions of lifquefaction, all within a thin crust of this thickness would be in a fluid state. 'This, howerer, is not the ease. At these depths the fusing point is modified by the pressure and conductivity of the rocks. We know that in volcanic districts, where the great subterrancan laboratory of nature is partially opened for our inspection, the molten mass, reliered from pressure, pours forth from volc:mic craters currents of lava which form a peculiar class of roeks. Besides this, it has been ascertaned from Mrr. Hopkins's experiments on soft substanecs, such as spermaceti, wax, and sulphur, that the temperature of fusion increases about $1 \cdot 3$ Farenhcit for ever 5001b. pressure per square inch, that is, in other words, that the temperature of fusion under pressure is increased in that ratio. If we assume this to be the law for the materials of the earth's crust, and correct our previons calculations in accordanee with it, we shall tind that we have to go to a depth of 65 miles, instead of merely 40 , before the point of fusion of the rocks is reached. It must, therefore, be observed that Mr. Hopkins's later experiments witli tin
and baryte，iln not show sueh an inerease of the point of fusinn in conse－ quebe of pressure，and he is leat th the belief that it is mily in the mote com－ pressible substances that the law holds true．Indepembently of this，however， Mr．Mopkins points ont to me that in the above calculation it is assumed that the comductivity of the rocks is the same at great depths an at the surfice．In npeosition to this he has shown experimentally that the conducting power for hat is at leat twiee as great for the dense igneons rochs as for the more superlicial sedmentary formations of elay，sand，chalk，\＆c．Ame these close－ graned igneons rocks are those which we believe must most resemble the rocks at great depthis below the surface．Now Mr．Hopkins shows that if the conductive power were doubled，the increase of depth，correspondine to a given increase of temperature，would be denbled，and we should probably hare in descend so or 190 miles to reach a temperature of 3, ， 100 dergrees，besides the further increase which investigation may show to be due to the influence of pressure on the temperature of fusion．Dhr．Hopkins therefore concludes that the extreme thinuess of the crust assumed by some geologists to account for roleanic phenomena is momble．Catenlations on entirely indejemient data led lim to conclude that the thiekness did not fall short of 500 ，instead of su or fo miles．If it be so much，he is further led to beliese that the super－ licial temperature of the crust is dhe to some wher canse than an internal fluid of muclens．It remains a problem，therefore，which my friend，Mr． Inopkins，is endearomine to solve，as to what is the actual condition of the carth at great ilcputhe，and the relation of terrestrial heat to voleanic phene－ mena．

Mr．WV．Mopkins considered the paper of Dr：Fairbainn merited more enn－ futence than any which hat hefore heen given to the public；for no previnus communcation had so laresely taken into aceome the varions cirematames in comection with deep mines，which bore om the temperature of the rarth＇s ernst．The condition of the rocks and walls，as well as the water in mines， must necessarily have a varying effect upon the temperature；and these facts had not previonsly received sulfecient attention at the hamds of those who had made experiments．One great adsantage of the experiments recorded hy the l＇resident of the Asociation was that lhere were made in a mine hefore it had been worked．The strata of thekinfied mine were very mach inclined，and there was a gond deal of water in it．For this reason great eantion was needed in working it，because a wet mine gave a ligher degree of tenperature than a
 experiments in mines．Dr．Yairbaim supposed that 3 ， 10 （1）degmes micht be the temperature of fusion．It might be greater for all they hinew．He shombd lie inclined to think it was greater．I thehnese of 4100 ir 1,000 miles for the crust of the carth was more erombistent with his own whservations，and he postively insisted on at greater depilh than 101 or $2(0)$ miles．

VELOCITY OF L．LFTHOL゙AKL．WAV゚に．

> By R. Multr, E q., P.C.A.

The wheriments which were comelucterl at the large blasting－operations at Holyhead were malertaken at the joint request of the liogal Soriety and the Pritioh Asorintion．Mr．Mallett coufessed that a fril yeats ano hee with under the in preacion that the velocity of the wave－patiele of an sathouake，

threc sears ago, on experimenting at Naples, that he satisfied himsclf that the wave-particle velocity was extremely hw. The ware-partical relocity in any ordinary earthquake did not excen 10,12 , or 14 feet per second, being abont that which a body would obtain be falling of a table. The extreme limit o! carthquake-wave velocity appeared never to reach more than $\$ 0$ feet per sccond. The only example of this ligh velocity was mentioned br Ifumboldt as occurring in the Rio Giande, where, during an earthquake, the bodies of men were thrown mpon a bank nearly 100 feet high. The shock was in this case vertieal, and the force was equal to a velocity of about 50 feet per second. It was a curions fact that the 14 feet velocity at Naples, and 80 feet in this latter case, corresponded with the respectire heights of the roleanic mountains.

THE EXTINCI YOLCANOS OF WESTERN VICTORIA.

By Mr. James Borwich, F.C.S.
Mr. James Borwiek denominated the south-western par: of Tietoria and the adjacent portion of South Australia the "burnt fields" of Anstralia. The comutry referred to lics chiefly between the slate and granite dividing the diggings and tertiary limestone of the sea-coast, and has an area of nearly half the size of Eugland, extending from the Bay of Port Plillip, near Melbourne and Geelong, to beyond the western border of Yietoria, by the Glenelg. The great basaltic plain of the west has fers interruptions from the bay to the border, and from the shore to the central ravge. The basalt is of all yarieties, and furnishes in its decomposition the finest soil to the agrienlturist. Many rounded lara hills are found on the plateau of the dividing range ; and caverns, nearly 500 feet in leugth, exist in the basaltic floor of the plains. On the south-west side of the great salt-lake Corangamite, there are basaltic "rises." Below are huge barriers from 10 to 60 feet in height, 15 miles long by 12 broad. The ash or tufa has the same appearances as that the author observed at Lake Albano, near Rome, and at Pompeii. It is occasionally sufficicntly solidified to be fit for building-stone. Carvings, howerer, are very commonly made of it in the district. The ash and cinder-conglomerate exist but in one place-the Island of Larrence, in the Porthad Bay. Cliffs of this singular compound rise there to 150 feet. The author's impression is, that the souree was a submarine roleano to the sonth-west-the course of the prevailing wind aud current ; and that the ashes and yoleanic dust were receired in some sheltered bay, since raised with the coast. The extinct rolcanos are in the form of lakes and mountains. The lakes are depressious usually on slight cmiuenees. Terang, Elingamite, Purrumbete, Wangoon, and Lower Hill are fresh, while Keilambete and Bulleenmerri are salt. The shallow saline lakes of the plains were not former craters. The depths of these l.kes are from 50 to 300 feet. The Deril's Inkstand of Mount Gambier is 260 feet. The banks vary from a few feet to 300 fect in height abore the watei. The circunference varies from a hundred yards to seren miles. The thickness of the ash increases with the distance from the crater, but is always thickest on the eastern side. At Lower Hill, at a quarter of a mile from the lank, on the northern quarter, it is 50 feet deep, while at a mile off, on the eastern side, it is 150 feet. The roleanic hillis vary from a fer rards to aboet 2,000 feet abore the sea-lercl. The depth of the dry craters runs fiom 0 fer. to 300 feet. Gambier and Schanck are within the South Australian bordes The former has three fine lakes, the latter is a dry basin, known as the Deril'

Punchborl. Forndon is a cone of very light cinder. Sempa is a broken crater on the edge of the rises, while l'urrumbere is a heantiful sheet of water, a few mies distant, which ones as a erater, discharged rast gumbities of ash. The other prine pat voleanos of Wentern Vietoria are Bumingme Blowhard,

 of the activity of these romes and craters. There is a freshanss in most uf
 fions of the mations of semeral if them.

Qhaclara M wbMENTA ON TIE NORTH-WEAT COAST OF AMERICA.

Sir E. B: Icher said that carly ia September, 1437, his expodition ran down the erast of North America, bitwerm Ports Eitehes and Malgatace in order to
 which hume about the cosast were mum larger than those which her had soem in
 He berhereal that in Iey bay the lower hodies of the iere were suldied forshate, and that the contire substratum, as frequently fomed within the ireta t "irete,
 from the momitain to the bane was in irvegular brohern masers, which tmmbed in confinson. The motion was clearly contimoms. Is th the camsen whit! oprated in probucing the constant displacements of the erlacier, and the pros. thsion of the berges seaward, many theories had bern propesed. His impressom was that, whatever was the intersity of cold meler wheh remgelation hat taken phare, the aelmal tempratmer due to the jee was morely hat of $3: z$ degres, Fahmenheit, and that self-registering themometers, prepery huried in ic. of show, subject exen to the wey low tomprature of Ge deares, 5 below aero, on the external shim, only indieated the proper temperatme of frevener watur. In the wery high latitules of fi3 demeres fo if dearres North, the smon on the surface of the smow-chad elewations furnithed sufticient wator for nudermine the lower heds of snow-iere and bore a passuge to the se: How wer tirn the crust might be in pertain pations, of furms toment had hren at work beneath. Wis the conchsiontube lhat the temperature of the earth mas aid in herping up a domperature sulliciont! hieh te provent the water hidden from light from comgealines? The sulvance of wetation was another prow : the
 light eansed the immediate expamion and colomrine of the leaf. The eathes tronnerature, artine on the lower portions mest tw the sail, aided in farilitat ing
 to hower lewk. In all ieceformations there misht be motied, at the seasm which followed the proved of day frost or preceded the springe, a pernliar drymes, the result of eraporation of the smperflumes water, attembed bey denise
 anted by some of the tirst Aretic explarers as the breaking of the bolle of their watha mo bolt was ever traed to have heen so brohell. He imagined that the smil on which masars of remally-shifting ice reposed, mast ber, from

as aqueducts along the upper portions into whieh water would flow, must produce compact iee ; and its power in that very action was quite adequate, by compression, not only to remore ice, but even momntains of earth, provided the point l'appui be afforded. It was evident with respect to the lower portions supporting Mount St. lilias, which were subjeet to a summer-heat which ripened strawberries, and was even more oppressive than we experienced in England, and to rapid thaws of the inferior levels, that repeated fracture and avalanches would oceur, and that oue must calculate oin sudden and tremendous conenssive force, by the breaking away of whole ranges and precipitating themselves on the lower strata. His opinion was that the shoeks of the avalaneles communieated laterally had produeed sueh fractures as had been noticed in those peculiar pyramidieal forms near Mount St. Elias. These fractures opened, were filled by water, which probably froze at night or when the sun was absent, and expansion drove the exterior masses, which were termed bergs, into the sea.

DURA DEN.

By the Rev. Dr. Andersor, F.f.S.

The Rev. Dr. Anderson stated that last year the Committee of the Assoeiation made laborious researches in quest of the long-lost Paimphractus of Agassiz, nowhere seen nor heard of in any part of the above-named roeks for a period of twenty-five years. He had now to state that in their latter exeavations they lad come upon the hidden treasures, and he had the pleasure of laying them upon the table, in a condition of the most perfeet preserration. There was a double interest comneeted with this emrious ernstacean. First, of a rare discovery; and next, of a snecessful result in a matter of keen and important eontroversy. The specimens diseovered were five impressions of the Pamphractus Andersoni, two of whieh were perfeet in all their plates, whilst the others were more or less mutilated in some of their organisms. Besides this genus, the exeavations had revealed at least one other entirely new to science. The specinen of this new fossil, which he laid upon the table, was in a sufficiently good state of preservation for determining all the true characteristics of the genus in seales, fins, plates, and general contour. The eaudal and peetoral fins were enormonsly large, the body short and small, and the head comparatively very large.

SUBTERRANEAN MOVEMENTS.

By Prof. Vaughan, F.G.S.

Professor Vaughan, of Cineimati, stated that the definite relations recently diseovered between calorific and meehanical aetion seemed to have an important bearing on questions relating to the secular refrigeration of the earth and the high temperature of its internal regions, even at the present time. 'Ihe vast amount of heat supposed to hare escaped from our planet during past ages, might be reasonably expected to call into existence forees of much greater effieieney than those indicated by the upheaval of lands, or by the violenee of earthquakes and mechanieal eruptions. Our terrestrial fabrie had a strength too limited for the full development of such great calorific powers by the
mequal contractions of its different parts; and in a cooling globe compound gases could not be expected in prohnce any decided mechanical effect, at least without matcrially altering the composition of the atmosphere. But, apart from these camses, the transition of the iemeons rocks from annid to a solid stute would be attended with occasional paroxysmal movemfnt and change. leing dependent on lydrostatic conditions for stability, the different parts of the curth's crust must "extend into the greater reservoir of lava to a depth in some measure proportionate to the elevation above its surface. Continents must rest on solid foundations far deeper than those which supported the body of the ocean; and the violence which subterrancan forees manifested in several iclands mieht be ascribed in part to the weakness of the barriers which restrained them. Inequalities in the solid envelope of our globe were intieated with some certainty by local forces of gravity. The anomalous character of the vibrations of the pendulum, when applied in some places, justified the conclusion that the invisible site of the earth's crust contaned the greatest irregularities, and that our contincutal tracts of land rest on the bases of gigimt ic subterramean mountains, whose tops might be depressed even three or four hundret miles below the mean level of the solidified matter. The :iccumulations of solid matter on the internal mountains must ultimately be crushed by the strain which their augmented size oceasioned; a mighty analanche of rock would then tumble to the thinuer part of the earth's crust. Kegarding these masses as the cause of earthruakes, they might account for the instantancous manner in which shocks of earthquakes occurred, their extreme violence, and destructive character near the coasts of continents and on aljacent islands, while they were almost impereeptible in the interior of continents. It was probable that the ascending movements of silica, and perhaps of other isolated matter, might serse to bring the heay metallic deposits from the central to the supertieial regions of onr phanet; and the grencral oceurrenen of grold in auriferous fuartz-rock might thus admit of flausible explamation.

THE FOLMATION OF LAND.

By the Jher, C. IR. (iombox, M.A., F.R.S.

The Rer. C. R. Gordon, M.A., F'.R.S., proceeded to say that the solid parts of the folohe are in general compused of sand, grawel, argillaceous and calmarenus strata, or of the various compositions of these with other substances. Caleareons bodies belung to the sea, and are formed in it. There are nuly two ways by which porons or spongy bealies ean be romosolitated, cither by eonereIation or attrition. To procure solidity, it must be brought about by molucing 1tnidty, rither immediately by the actien of heat, or directly by the operation of a sulution. 'Thas, fire mad water may be ennsidered as the general agents in this uperation. The strata formed at the battom of the sea are to bee considered, therefore, as having beren ronsalidaded either hy aqueons solution and cryatallization, or ly the effect of heat and fusion. We have strata consolidated by caleareons spar. Wic have strata made solid by fluor, a substanee not soluble, su far as is known, by water. We have strata consolidated with sulphureous and lituminons substances, which do not correspond to the solution by water. We have strata consolidated with siliccons matter, in a state totally different from that meder whieh it has been observed, on eertain oecasions, to he depraited by water, some consolidated by felspar, a substance indissoluble in water, some also consulidated ly almest all the vaniuns metallice substances,
with their almost endless mixtures and sulphureous compositions,-that is to say, we find very different substances introduced into the interstiecs of strata, from those which had becn formed by subsidence at the bottom of the sea. On the other hand, if it is by means of heat and fusion that the loose and porous structure of strata shall be supposed to have been consolidated, then every difficulty which had oceurred in reasoning upon the power or ageney of water is at once remored. The question then comes, by what means these masses of loose materials collected at the bottom of the sea have been raised above its surface and transformed into solid land. Nothing can be imagined so proper for the eleration of land above the level of the ocean as an cxpansive power of sufficient force applied directly under these materials. The question is not how the power may be procured, but is it ever employed? It is this, doubtless, which has forced up from a considerable depth of the ocean the Himmalayas, the Andes, or the Alps. And sueh a power cannot be much less than that required to elcvate the highest land upon the globe. When fire bursts forth from the bottom of the sea, as was the ease in the new island near Santorini, and when the land is heaved up and down so as overturn cities in an iustant, and split asunder rocks and solid mountains, there is no one but must see in this a power which may be sufficient to accomplish every view of nature in crecting land as it is situated in the position most advantageous for such a purpose. In a stream of melted lava which runs down the sides of Mounts Etna or Hecla, we have a column of weighty matter raised an immense height above the level of the sea, and in the rocks of enormous size which were projected from their eraters several miles into the air, it must be acknowledged that there is a liquefying power and expansive force of subterranean or violent heat. But that the islands of Sicily or Iceland themselves had been raised from the bottom by the same process may also be readily admitted. If then it shall appear that matter whieh had onee been found at the bottom of the sea, and which in some respects is analogous to lava, is now forming dry land above its surface, it will be allowed that we have discovered the secret operations of nature concocting future land, as well as those by which the present labitable earth had been produced from the bottom of the abyss.

The other papers read were :-

"Notes on two Ichthyosauri," exhibited at the meeting. By C. Moore, F.G.S.
"On the rclation of the Eskdale Granite, at Black Comb, to the Schistose Rocks." By J. G. Narshall, F.G.S.
"On the Sandstones and their associated deposits of the Valley of the Eden and the Cumberland Plains." By Professor Harkness, F.G.S.
"On some Phenomena comnected with the Drift of the Severn, Avon, Wyc, and Usk." By the Rev. W. S. Symonds, F.G.S.
"On the Pleistocene Deposits of the Distriets about Liverpool." By G. W. Morton, F.G.S.
"Notice of some facts" in relation to the Postglacial Gravels of Oxford." By Professor Phillips, F.G.S.
"Palæontological Remarks upon the Silurian Roeks of Ireland." Ty W. IT. Baily, F.G.S.
"Comparison of Fossil Insects of England and Bararia." By Dr. Hagem.
"On the Cretaceous Group, in Norfolk." By C. B. Rose, F.G.S.

[^77]In the other sections, the following papers were of interest to geologists:-
"Du the action of Lime on Anmal Matter." Diy John Davy, M.I), F.R.S
"()n the Motion of Cilariers." ley W. Hopkins, F.G.s.
" (On the Spitzberern Current, and Active and Extinet Volemme in Sumth (iremand." By Colonel Shaffucr, U.S.
"Notes of Skicteles of l'arts of the Surface of the Meon." By Professor Phillins, F.G.S.
"Plysical considerations regarding the probable age of the Sun's Heat." By I'rofessor Thompson.
"Report on the 'Theory of the Exchanges of Heat." Be Balfour Stewart.

PIKOCEFDINGS OF GEOLOGICAL SOCIETIES.

Rifmorical, Sochits of Loninox.-November os.-Sir R. I. Murchison, V.P.G:S, in the Chair.

The following commmications were read :-

1. "Note on the Bonc-('avers of Lmaid-Viel, Mernult." Byy M. Mareel de Serres.

These bemecares, in Wineme limestome, on the Mazet retate, near Mont. prellier, diseovered alomi 1423 , und deseribed in 1539 by MN. Nareel de Serese, Wubrmil, and dean-Jtan, comprion at lage cate and some smaller fissures, containing erd rarth with prblibles, and all abmblance of bencs mod eoprolites, of hyana, lion, bear, wolf, fox, etter, hoar, beaver, rhimoreros, horese, deer, or, \&e., with birdy and reptiles. The anthur expressed his belief - one th that the association of pebbles with the lones in caves is a common phonemenen, and an evidence of the accumulation of the materials-gnawed
bones and coprolites ineluded-by the ruming water of violent inundations, the carerns being of Tertiary origin, the detritus being contemporary with the old allurium of the Rhone, and the fann indicated by the boncs haring been antecedent to the latter.
2. "On the Petroleum-springs in North Ameriea." By Doetor A. Gesu er F.G.S.

After some cbservations on the antiquity of the use of mineral oil in North America and clsewhere, and on the present conditiou of the oil and gasspins and the associated sulphur and brine springs in the United States, the author stated that 50,000 gallons of mineral oil arc daily raised for home use and for exportation. The oil region comprises parts of Lower and Upper Canada Ohio, Pennsrlvania, Kentucky, Virgiuia, Tennessee, Arkansas, Texas, New Mexico, and California. It reaches from the 65th to the 12Sth degree of long. W. of Greenwich, and there are outlying tracts besides. The oil is said to he derived from Silurian, Deronian, and Carboniferous rocks. In some cases the oil mar have originated during the slow aud gradual passage of wood intc coal, and in its final transformation into authracite and graphite-the hegdrogen and some earbon and oxygen being disengaged, probably forming hydrocarbone including the oils. In other cases, animal matter may hare been the source of liydrocarbons. Other native asphalts and petroleums were ieferred to by the anthor, who conchuded by observing that these products were most probably being continually produced by slow chemical changes in fossiliferous rocks.
3. "Notice of the Discovery of some additional Land Animals in the Coal-measures of the South Joggiins, Nora Scotia." By Dr. J.W.Dawson, F.G.S.
Two additional fossil stumps of trees hare been examined by the author from the same group of the Coal-measures as that which has already afforded Reptilian, Molluscan, and Myriapodal specimens. These trees stand on the sixineh coal in Group XV. One (Sigillaria Brornii) has yielded indications of six skeletons of Dendierpeton Acadianum (oue probably perfect), a jair of a new species, two skeletons of Hylonomus Lyellii, one of 'H. Tr'ynanaii, a number of specimens of Pupa cetusta and Tolobius Sigillarice, and some remnants of insects (in coprolites). In a lower bed (1217 feet beneath,-in Group VIII.), a Stigmarian under-clay, seven feet thick, the Pupu was foumd abundantly in a thickness of tro inches-with fragments of Reptilian boues. The coal-seams between the trees and this bed indicate that this Pupa must have existed during the growth and burial of at least twenty forests.
4. "On a Volcanic Phenomenon obserred at Manilla, Philippine Isles." By J. G. Veitch, Esq. In a letter to Dr. J. D. Hooker, F.G.S.

On the lst of May, 1561, the River Passig, at Manilla, from fifteen to eighteen feet deep, was disturbed by a violent ebullition from six to ten a.m., for a distance extending to a quarter of a mile. Its temperature here was 100 . deg. to 105 deg. Fahr. (elsewhere 80 deg.) A bauk of fetid mud was thrown up several feet above the water, and had a temperature of 60 deg. to 65 deg. The Chairman remarked that a bank of mud, 30 feet high, and more than a mile long, had lately licen thrown up in the southern portion of the Caspian. He also further stated that he had reeeived a letter from J. G. Medlicott, Esq., of the Indian Geological Surver, amouneing that a scientific expedition had beeuset on foot by the Government of Iudial for the cxploration of the great mountaius of Central Asia. The expedition is to consist of five men of science, and Mr. Medlicott is to loe the geologist. They will assemble early in the new year at Almorah, traverse the Himalaya and Karchan Chains, and, proceeding into Tartary, they will explore the Great Thian-Chan, then passing eastwards, they are to return to Hindostan by the Ganges or the Brahmaputra River. The explorers are auxions to receire any suggestions from the Members of the Scientific Societies of London,

Nuremher 20.-1. "On the Burey Basin, Devonshirc." Dy J. Il. K"ey, lisy, commminated hy Sir C. Iycll, f. (i.s.
'The anthor first described the physical features of the Bovey Basin, and then the strata, as proved by borings and diggings for clay and lignite. Ihaving pointed unt the evidences that exist of the basin having once been a lake in which the seremal strata of clay, sand, lignise, gravel, fe., wee deposited, and having considered the probable conditions of such a lake having been gradually Illled up by fluwatile deposits brought down from ueighbouring grantic hills, the author remarked :-1st. That the Borey deposits are composed of materials almost identical with the component parts of granite. 2. 'The strata rum, for the most part, parallel with the outline of the mareinal hills, and dip from the sides torards the centre, often thimning away in that diection. 3. The finer material is deposited torrards the sides, and the coarser towards the centre. 4. Where the basin is contracted the finer beds often disappear ; but thieken where the basin widens. 5. That the upper beds of the nothern part are coarser than those of the middle and lower portions. 6. On the eastern side the fine clay beds are more developed than on the western side. 7 . The varions heds run in the direction of, and seem to point to, the Kiver Bovey ns the souree from whence they were derived; but the old outlet of the lake was towards Torbar, and not along the Teign as it is at present. Some observatinus on the peculiar absence of amimal remains in these deposits, often rieh with vecetable remains, concluded the paper, which was illustrated by several oricinal plans, sections, and sketehes.
2. "On two Voleanic Cones at the Base of Eina." By Signor G. (i, (iemmellaro. Commmacated by Sir C. Iserlt, F.(i.s.

These two rones oceur at Paterió anl Motta (Sta. Anastasia); and the rxisting remains of their esaters and melei were described in detail. The anthor consludes that these two were contemporancous doleritic voleanic ennes, that were formed in the Post-pliosene period, previons to the deposition of calearcous tuff of the vicinity of L'aterno: also that they were cones of emption, and not of devation; for the nrighbouring sfrata are not disfintred: and thas they were independent eruptions, and not parasitieal cones of Eitua.
3. "On some Fossil Brachiopoda of the Carhiniferous Rocks of the P'mjib) and Kashmir, enlleeted ly A. Floming, M.D., \&e., and W. Purdou, Esq., F, (i,S." Bre T. Davidsnn, Pisj., F.R.S., Fi.G.S.

Dr. Fleming's geological researches on the Salt-range and elsewhere in the P'mijit, in 1512.52 , are recorded in the Inumal of the socecty, for 1853, in the Jomm. Bengal Asiat. Soc. 1103, and in his Report on the Salt-range, 185%. The speries of Carboniferons Brachiopoda collerted by Dr. Fleming and describel and flgured by Mr. Mavidson, are Trebleratula (rel Waldhrimia) Floningii, Dav., T. problematica, Dav., T. sulicesicularis, Dav., lielzia radialis, bar. graulicouta, Dav. Alhyris hoyssii, L'Er., A. (val Merista) subtilita, Mall, var. gramdis, Waw., Spirifera siriela, Martin, Spiriferima octoplicata, Sow., (nethie resmpinata, Martin, sitroporhyuchus cirnistrim, Mhil., var. rohwstus, Hall, St, percinifi rmis, Dav., I'rorluctus striatue, Fisch., I'. Inngispinus, Sow., I' conforlus, sow.

Mr. P'urdon's collection comprises, hesides several of the foregoing-Perebicatuta Ihmatayensis, Dav., Śpirifcra Monsukailensis, Dav., Sps. lincufa, Martin, var, ('amare horia Purdrmii, Dar., Produclus J'urilonii, 1)av. P. Mumboldtii, D'Orh., Auloaleges Inalhousii, Dav., and Strophethosia Morrisiana (\%) King, var.

Gentoneists' easercurtox.-The first meeting of this Association for the winter sesuion was held on Monday, Nowember t, at Cavendish Square, the Hev. Thomas Wileshire, M.A., Fi.(i.S., Presirlent, in the Chair, and was very nunares ly mand.d. Thirtecu aew members were elected.

Professor Morris delivered a lecture "On Coal; its Geological and Geographical position." Referring to the importance of the subject, the lecturer remarked that he need only allude to the facts that the ammal production of coal had now reached the enormons quantity of $80,000,000$ tons, in addition to which it was estimated that there were $4,000,000$ tons of small, which remained useless upon the pit's bank, and that the working of this mineral gave employment to half a million of our male population. This coal was produced from 2,509 collieries in England and Wales, 427 in Scotland, and 73 in Ireland, so that the large area over which colliery operations extended conld be in some measure judged of. His subject being the geological and geographical position of coal, he might most conveniently treat of it under two principal heads-first, geologically, and then its geographical distributlon.

Assuming that the larger proportion of his audience were acquainted with the geological sequence, he would simply remind them of the division of stratified rocks into Palæozoic, Mezozoic, and Cainozoic, or Primary, Sccondary, aud Tertiary. Each of these were again subdivided, but it would be unnecessary at present to mention the whole of these sub-divisions. He would for the present direct their attention to the Palæozoic series. In this sories was first the Silurian, above which the Devonian, next the Carboniferous, and then the Permian rocks. Professor Morris then proceeded to illustrate by models the mode by which the varions strata were deposited, and explained that, owing to the strata not lying horizontclly, and also to the circumstance that some of the series were usually wanting, strata which would otherwise be beyond the reach of human industry, were placed at our disposal. The carboniferons rocks were subdivided into the carboniferons limestone, the millstone grit, and the coal measures proper; but even the coal measures proper did not consist of one solid and undivided bed of coal. The upper layer was usually an imperfect shale, then came a more bituminous shale, and then the coal proper, which was usually also separated by strata of shale of rarying thickness. In all the coal formations he might remark that there was positive evidence of there having been vegctable life, and that in the whole of the carbomferons rocks they frequently met with spirifers, goniatites, orthoceratites, nautili, and other marine shells.

Of the vegetable kingdom they met with various descriptions of plants, the size in some instances reaching that which almost entitled them to be called timber trees; the calamite, sphenopteris, sigillaria, pecopteris, and lepidodendron, being, however, the principal, and of the animal kingdom, perhaps there was no representative more interesting than the species of nuio. With regard, however, to the substance which they all knew as coal, he might mention that its existence was not strictly confined to the carboniferous series, or or to the palmozoic formation, but that it was found also in the secondary and tertiary formations, in support of which he might refer to the coal fields of Yorkshire, which were of the oolitic formation, and to certain coal fields in India, which undoubtedly belonged to the eocene or miocene age.

Turning to the consideration of the geographical distribution of coal, the Professor pointed out the principal fields from which the coal supply of the world is derived, beginning with the Scoteh coal field, and proceeding throngh the Durham, Lancashire, and Yorkshire ficlds, as well as the minor deposits between them. He then described the Forest of Dean, Bristol and South Wales ficlds, referring incidentally to the fact that the coal measures of the latter district is estimated to attain the thickness of 12,000 feet, so that an enormous quantity of the precions fuel mmst be still at our disposal, creu making the most ample allowance for waste, and diminution from other canses. He would here say a few words which might render some slight assistance to those attempting to discover the precise mode in which the coal was deposited,

It wat fonnd from the careful inspection of the rarions coal mensures, that in Fingland the western portions appear to present mechanical inlications, whilst the ceastern protioms semed more to indieate chemical aetime. In the New Wond precisely the mextes was the ease, the chemieal aclion being evident in the wient, and ine melhanieal in the cast. P'assine to the Buropean contianent,
 in Pramer, to the fields of Spain and l'ortugal ; and then returning cast ward explained the formation of the Prussian and Rohemime coal fields, aml deacribed the rich depesits of bramukuhle which extends across the German cuntilim.

Alier a brief reference to the coal fichth of Africa, discovered by Dr. Liviug: stome, he passed into Ahia, and described the deposits of coal in hadia, mind then proceded thromgh Bornen, hetham, \&e., sonthward, concluding his remarks on the Oht World hy deseribing the conls of New South Wales, Tasmania, and New \%ealand. 'The surver of the New Whond was commenced by at referener of the coal fiedts and Alleerlite depmesits of the British possessions in North America. Then the great earal lieds of the t'nited states were deesriberl, and the subject completed hy a brief explamation of the mature and cxtent of the deposits about Chili and Valparaiso.

On the conclusion of the lecture there was an interesting discussion, in which Messers. Richard, 'T. Rupert Jones, Mackir, Lawson, and Prof. Themant, took part, and Prof. Morris wiphical to a lange mumber of gursfions, but declined, in answer to the interregatories of Mesers. Lawsen and Markie to atate any opimion on the nature of uriginal formation of those highly

The Prosident amomerd that duriug the assion exearsions would be mate to Thubridge Wr-lhs or Hastinge, Harwiche, ('mulnidge, or Lewes.
 meetine of thin :onedy, after the election of otlieers, a paper was read by Mr. Barry Nereley " (1 m the Felu-clay Formation."

Bitendine under the peat of the fend distriet, and far beyond, is the great Why formation. It inclutes the Wheord and Kinneridere elays, and ann interwhing elay (rephaseng the ('oral rate) which impereeptibly graduates npwards and downards into thear deporits. It is for this series of strata, ranging from Whe Girat Colite to the Portlianlian beds, that the term Fen-clay or Fen-formation is proposed. 'The fact of such a suctession in some degrece interferes with (aisting tieth of the dis ision of the lower secemary strata into Leper, Midele, rand Lower Uolites; in that hemeforth it will probally he foment more con whient to alandon ilasse termsa and to speak of the scoondary formations
 and Pootland-leed In this district the Fenclay cxtends from the line of I'mertorongh to Pedforil, neross casterly to the line of Elly and Lym, within wheh limet it has leen chictly studied, hoongh kiown to have an extensive dechepment further sombla

The varimes sul-datisime were worked ont in the comitry aromed Elsworth, near st. So. The villoer in h,wilt on a linestme, to which it gives a name, The 1.1-worilh fench, which consists of three sub-livisions, an upper and lower
 ormth, and raintains its thichness (fonrtern fiect) melanged for the three wilne oner which it combld tre traced, though at that distance the middle clay is ripliteed by satabtome.
l'aning in the woth, mucther rock is met with, at St. Ives, and his was whan to lie 1:3 fat whow the Hownts liock, coming out from muder it, Lefig homechit ip, an suticimel axis, so that further to the north, at Blun-

cast, and appears to be found again at High Papworth, west of Elsworth. As the St. Ives rock dips to the east, so will the Elsworth rock also, and therefore the clay to the east and south will be superior to it, while that to the west is inferior. Passing then west to St. Neots, another rock oceurs, and this would seem to be very low down in the series, and not far removed from the zone of the Kelloway rock. The St. Neots rock consists of thin layers of limestone, which are altemate with thiu beds of clay.

Among the fossils in the Oxford Clay, at St. Neots, are Anmonites Dumemaii, A. spinos!s, I. athethus, I. coronatus, \&c. The commoner forms at St. Ires are Anmondes Murier, A. curlutur, 1. Eingenii, A. Goliathus, \&c., \&e. Of the Ammonites in the clay abore the St. Ires rock, no good list is known, but among them are A. allormais,s, and A. babeanes. Both at Elsworth and Bluntisham, abore the roek, the Giryphere dilatute is found abundantly, and occasionally with it Ostirea delloided; but to the south the latter fossil is more abundant, so that at ''etworth the specimens occur in equal profusion, and in combinat ion with Anmonites achilles, Belemaites recentrichs, lima peetiniformis, Serputat letiagome, de., \&e. At Tetrorth there is a thin band of rock, as there is also at Gamlingar; at Boxworth, nearly, if not in the same position, there is a rook of the same thickness; and to the east, beyond this the clay seems to graduate imperceptibly up to the Kimmeridge clay of Cottenham.
'Ihere is thus a great thickness of strata between the Oxford aud Kimmeridge elays, in which the fossils of both those deposits are intermixed, and which represents the Coral-mg. That such a clay did exist might have been inferred from the presence of the Comarag at Upware, and its limited extension beyoud. The Upware limestone was a coral-reef out in an old sea, and it must have nceessarily happened that beyond the narrow limits of the reef a deposit of a different kind would have been forming on the sea-bottom, far more widely spread than the limestonc. This formation is named the Tetworth clay, \%

A difficult question then arose as to the limits of the clay, for if it were "replaced by Coral-rag, it would result that the Elsworth rock would be immediately beneath the Comal-rig. on the one hand, and abore the Oxford clay on the other, and so would appear to be rather a member of the former series than of the latter. However, the presence of such forms as Belemmites tomatilis, B. haslalus, Ammonites verlebralis, A. biplex, A. peiarmalus, A. IIcnvici, í. canaliculatu:s, A. goliathns, \&e., were held as conchsive cridence that it ought rather to be regarded as the upermost zone of Oxford clay. The upper boundary of the Tetworth clay cannot be given with any certainty. And trom the want of sections it has not been found possible to subdivide the strata abore, as has been done below.

Such is the Fen-clay. The rocks of its lower part do not appear to oceur in the sonth of England, lhongh there are divisions of the clay corresponding to those so strongly marked by their occurrence here. 'Ihe Tetworth clay has long been known to have an extensire sonthern develonment; a portion of it appears to have been majped by the Geological survey as Oxford clay, just as in one district Mr. Lueas Barett mapped it with the Kimmeridge clay.

The author concluded by expressing his indebtedness, for much kind assistance, to the Ker. S. Banks, of Cottenham, the Rev. H. Dolson, of Elsworth, to Mr. J. Carter, of Cambridge, and to Mr. J. J. Evans, of St. Neois.

Malvern Naturalists' Field Club. - 'The last meeting of this distinguished clulb of observers of nature in the fields of research, was held at Uiptan-on-Severn.

The chief feature in the operations of the day was the examination of the

[^78]serutal dhit beds of the Severn Valley, wheh, from the elevation of the marl bouk of Kyall Hill, were explained in a most lucil mamer, by Mr. Symonds, and their ilibinguishing contents mentioned. The first described the forInation of the original drifts upon the bed of the primeval sea, and then passed in revien the suceessive gravelly I als, with their eontents, the hollowing out if the valley, the estuarine and lake periots. down to the severn of the present dhy. Ine also printed ont how the drift beds at Kyall Hill were identified with those on the westem licights, though their continity lad long ago been cut (fli. In furtherance of the cxamintion, the walk was contimed to the Barley Honse on the side of the Severn, where the river was erossed, and an intermediate drift deposit viewed. The route was then eontimed to the aneient Manor 1 lonse of Holdfast, where Mr, Henry Stome crhibited varions remarkable boues and teeth from the eaverns of Somersetslitre. The President saind hic had received an invitation for the club) 10 go to Warwiek in February next, amb he thought he might properly give the tismal ammal address there, when both chulss were together, but it was uhtimately deternined that Malvern houk be selected as a more aceessible place than Warwiek to most members. 1)r. (irindrod offered the use of Townsemd House for the assemblage of the (lub), where he had accommodation for a large andience. The subject of the witt rear's meetings being introdueed, the Rev. J. P. Ilill proposed the May mecting to be at Ledbury, exanining the commery thence to Bromsbetrow. This invitation was aceepted amidst general apptanse.

A erant was male to republish the erudite paper of the l'resident, on the (ienlogy of the Worcester and Hereford Raiwny, from the Edinburgh New Phasophical Journal, that its contents might be more calensively cirenlated.

 in the chair, when the usual reports were read :-
sine the last meeting the keys to the eases in wheh the collection is kept, bue beend deliveard to the Curators jointly with the special Curators of the Natural Itistory Society. The collection is therefore acmin a proper enstorly, and to this extent the Society is remstated in its rights.

The whole collection has been eleaned and put in order, in which labourgreat assistance has been received from Mr. dames P'arker.

The Slusenm is mot so rich in local speremens as it ongegt to be. Is a gemetal cellection it is moloubtedly a good one; but with the ansistance of the enembers, it can be mate one of the tirst mollections of eartomiferons forsils in the comirs. Ittention wes particularly divected to the P'eel Delph, and other It ealeries where the F'ed buikling stone is guaried, for the purpuse of enllectTre the fussil plants with which this rock abounds. They are not eempressed Bul laterned as is the case in most sandstome roehs, and as specimens, are not 1.- Hed hy those of any other coal-fiedt.

The collection is drsitute of Laneashire silurian fussils, amb wery poor in Timmian, Tritasie and Pleistoreme specimems.

Tha report eypressad the hope that the ('omeril for the ensuing year. and We thembers will obtain the desultombenentimed, anel thas make the collecteor as remplete and instructive as so impertant and probitons a city of Man-- logiter requires.
-iope the last ammal bet ting the suciely has romtimed, as for a few years (12), to inereser in mumbers, in leas than iwent y-seven new members having

Whring the past sision the following pupers were read before the Society : -

"On J.lly-pat, a hind of I'cat froment at Chischtown, near Southpert." lis b. W. Vimury, Eiq.
3. "On the Geologienl Maps of Lancashirc." By Edward Hull, Esq.
4. "On the canse of the Explosion at the Hetton Colliery." By Joseph Dickenson, Esq.
5. "On a Mineral Spring in Germany which is influenced by the pressure of the Air."
6. "On the Geology of Castleton." By John Tarlor, Esq., Jun.
7. "Notice of the Life of the late Mr." Elias Hall, the Gcologist." By E. W. Bimey, Eisq.
S. "On the Drift Deposits found about Hlandudno." By E. W". Binney, Esq.
9. "On Sbyillaria and its Roots.", By E. W. Binney, Esq.

The communications and discussions on the safety-lamp; on sudden ontbursts of fire-damp; on rentilation in mines; and on other subjects of a kindred nature, hare, there is reason to believe, done good by awakening inquire, and stimulating practical men to the exercise of habits of rigilant and accurate observation.

No excursions were undertaken in the course of the past year. In some of the previous years there were occasionally pleasant and instructive rambles, by parties of the members, into localities presenting Geologieal fcatures of an attractive kind; and the Council thonght it worthy of consideration whether a system of periodical excursions should not be arranged and put in practice, as oue of the means for keeping up a lively interest in the Societr, and for promoting the objects for which it was instituted.

Another means, not yct adopted, has been suggested as likely to be productive of good in the Society-the holding of evening meetings at the Museum, for the purpose of conversation, and for hearing short lectures explanatory of different groups of fossils in the collection.

The Council urged the desirableness of considering the suggestion about making the Society more of a mining institute than a Geologieal Societs-the improvement of mining Jeing one of the objects of the Society.

Joseph Dickinson, E.G.S., was elected President.
The rontine business haring been gone through-
Mr. Edward Lacey exhibited two specimeus of lead ore (galena) from a rein which cuts, in nearly a vertical direction, through a coal at Axe Edge, Derbrshire. The coal is sixty yards abore the limestone, and, where in contaet with the lead, it is not charred nor altered in any way-clearly showing that the lead was not introduced in a heated state. The rein of galena is about three inches in thickness, and is contained in a fracture of the strata, or fault, which passes through the rocks above and below the seam of coal. It has been follorred about fifteen yards above the coal, without presenting any indication of swelling out to a workable thickness; but at present it has not been examined below the level of the coal on account of the accumulation of water in that direction.

Mr. Binney stated that he had described a similer rein found in Mr. Gisborne's colliery, at Horwhich, near Whaley Bridge. The strata there and near Axe Edge were in the same geological position-namely, the Rothdale serics of coals. The bed of coal where the lead was found might be only sisty yards in horizontal distance from the limestone, but in rertieal distance it would be near two thousand feet. The Whaley Bridge rein is described in lis paper in the "Mcmoirs of the Literary and Plilosophic Society of Mrmchester."

NOTES AND QUERIES.

 Ihe (ienlogises' Association, in yom last Xowmber number, you hate notied
 wot think you have quite eanght low meaning he intended to convecy.
'The Whand of Portland eonsists of a base of Kimmeridge clay, covered by hy strata of Portand samd and P'ortland oolite, amb caprad in some parts of the Whand by a few feet of calcarcons slate belonging to the lower Purbeek. lisumes ocerir in the onlite, camsed apparently by the slowinking of the stome in the act of comolidation. There is an excellent woodent representing on. of thone fissures in Mr. Damon's" (ieology of Wermouth and the lsle of I'omband," pame 73 . It will there be seen that the tissure affects all the heds lemeath the dirt bed, as fir as the sand. Now, the facts that the roots of the trees "hich erew in the dirt hed penetrated the stone beneath, and that the ealeareons
 llat the slate was deposited before the stone was comsolidnted. The subseguont shrimking of the stome, which is pale, erystalline, ind rimes lieneath the
 upretals into the ealeqrenos slate. Not that the state has mot likewise ronpracted in hatrdenine, but it contraction has ramsed a maltitude of smatl inbasiees an short intervals, whilat the insterstiers hetwern the hlorks of solind some have onemred at ereater distances from each other, and, therefore, tuken cincly, are of erteater widhlo and have men erresponding fissures aboue them on the slate. Now, what Mr. Cimy momes with respeet tw the haman bomes, whirlh hate heren oecessomatly foumd in the fismes, is this-vik, lhat they hase ouly beren found in those mates of the D Sland which are eapped by the ealearania slate, and uot where the stone is inmediately
 subjacent in the reme table suil.
from what you have quoted from his paper, I womld emelnde that, where this is the ease, the fissures are not varant, is in the other parts of the Ishond, lat filled with rubble from abowe, and, therefore, pats of sheletons interred ahove them would not fall down into then.

Vr. Wamon has expressed the same npiuiun as Mr. (iray-that the human homes in these tiosures have follha fromeraves in the soil above. He says liey "are interred remains, and found a forw fert homeath the surface in the rubble bell (that is the calcaresms shate), Thomeh a stray bene or two may fimb its wav down a fossure where the hemes of these anmals may have been depiosital." (p. 13(1).

Uf emase this does momere at shemost than show that mo fosil remains of man have hitheron heen fomed in Porthand, hat in no respect ableets the serestan-whether or not they have hecen fund decuhere ?

There are some emions grestions romered with the ocenrence of hamnow. 1 of faners in thatl i land like I'ontland and the lile of Caldy-
at which latter place they ocem in carboniferons limestonc. It scems impos. sible that the animals to which they belonged (the Elephas primigeuins occurs at Caldy) could have lived on such small islands. On the other hand, there is evidence that the general contow of this country is only slightly altered since the period in which they lived. There appears to be two probable solutions to this difficulty. Either the islands were comected with the mainland by the general surface being higher than at present, and the animals were cnabled to roam over what are now small isolated spots, or clse the bones are those of careases floated by the sea, or drifted, along with other deposits, into the fissures, at a time when the land was lover than at present. It is, no doubt, a fact that the land was higher when the great mammals lived-witness the forests which harboured them, now stretching bencath our shallow seas; -and, on the other hand, it is unguestionable that it was also lower not long after their extinetion, if, indeed, their extinetion was not due to that very canse, for we find their bones buried in the drift of such a period of submergence.

It seems to me that the latter has been the true cause of their deposit in fissures, because many such bone-beariug fissures do not partake of the character of eaverns. Those at Portland that I have seen are too narrow to have served as deus. The bones in them are not guawed as at Kirkdale and other larger eaverns. Nevertheless, bones of boar, ox, deer, horse, wolf', sheej, and other numerons smaller animals, most of whici do not frequent caverns, oceur at Portland." But still there is a dificulty as to how the bones got into the fissures at Portland, becanse they are not, and never were, open from above. Is it possible that at the time of the sinking of the land, their ends were exposed in the perpendicular limestone cliths, now far raised abore ligh water mark, but then subject to the dashing of the waves:" Carcases floating on the water would almost inevitably be many of them washed into such fissures, and earried far beueath the undisturbed roofing of slate where they were found. It would be well worth while for those geologists who live upon the spot, to investigate he passibility of this solution.-Yours, \&e., Osmond Fismer, F.G.S.

Devonlan Age.-Descriptions of Plites V., VI., Vil., Vili., and X.-The subjects of these plates which illustrate Mr. Pengelly's article on "The Devonian Age of the World," are as follows :-

Plate V. Spluerospongie tesselatus, showing internal structure from the Limestone of Woolborough, near Newton Abbott, South Devon.

Plate VI. Ichthyodorulite from the Chloritic Slate of Love, Cornwall.
Plate VII.-Fig. 1. Trimerocephalus lacis (perfect) from Voleanic Asl, at Kinowell, near Newton Bushell, South Devon.

Fig. 2. Tail and Head, with Eyes of Bronters Aubellifer from the limestone at Woolborough, near Nerrton Abbott, South Devon. This specimen is figured in Decade X. of the Geological Surrey.

Plate VIII. Trimerocephahs lavis, from Voleanic Ash, Knowle, Newton Bushell, South Devon. This species is figured in Decade XIX. of the Geological Survey. The figures represent the two halves of the same slab showing in Fig 1 the body in relief with the impression of the head, in Fig. 2 the head in relief with the inpression of the body. 'The purpose is to exhibit the reversal of parts under which simgular conditions these fossils are almost invariably found.

Plate X. (Frontispicee).-Fig. 1. Ortloceras, apparently not distorted with siphunculus forming a discontinuons line. From the limestone of Teignmoutl.

Fig. 2. Orthoceras, probably distorted, showing a twisted outliuc, oblique, septri and siphansulus forming forming a discontinnous line. From the limestone, at Oddicombe, near Torquay.

Andrtsusil Notl：un the Fizology of Brarfutz．－Diamilz is buili chiefly on a soft sam，passing somet hacs into a clay apparenty of fresh wato origin．These bods are sery loosely composed and appear to have been much distured by subsidence aud slight landslips，they met meonformathy on a samed－ stone－rock abounding in the mumblitic forsils，atso in echini mol shells．Going suuth from Biarrita，that is towards the Danaish side，you find the smadstone－ rock passing into a blue clay．The sand rock overlies the clay；at their jume－ tion there is much distmonace，but it is clear that the blae clay moderlies the samdstone．This is well seen between Vicus Port and the Bastue sands． From the point where the blue elay elifl begins it is very regular in its strue－ ture．It continues for at least a mile，dipping miform！flroughout that distance to the north－west at an angle of is degs．；the lines of stratification are well defined by bands of stone（a sort of clay stone）lighter in colour and harder in texture than the mass of the clifl，the clay of which is soft and much worn into furrows by the weather，and by the litile streams which tlow down it．Here and there the clifl is capped with beds of sand lying horizon－ tally on regular strata of yellow，white，amd pink colour，much resembling hhe tertiary sands of Alum Bay in the Isle of Wight．

At the end of these elay clitt＇s which gradually sink down to the shore，yon find first recent samd－hills，and a little further beds of sand like those wheheap the chif，lying horizontally．Where trist they appear low down thas on the shore，they are from fifteen to twenty feet high．The uppermest beds are of yellow and brownish sand mised with pebbles；beneath these is a band of orange－culoured clay about three inelies thick，very clearly defined，and imme－ diately below it a dirk clay passing downwards intu dark hrown，mad sometimes almost black begetable matter．This，when dry，splits into thin layers like card－board，it is full of reots and of stems of fir trees；I also fomm impressions of seeds ind tir concs，besides masses of leaves of water plants．This bed varies from a few inches to several feet in thickness．Further on a dark iron－ grey sand appeared bencath this bed，but this was only at ome pomt．fiover still omith the cliff rises again（after an interval of about hatf a mile）and attans an average lecight of abont fonty feet．Here it is composed of the lom－ izontal sands，omly with the band of orange clay and the fresh water regetable bed beneath as the base of the cliff．This contmens for mbout a quarter of a mile，and then the blue elay of the elifl near Biarritz reappars mader the horiomital sands，dipping as before at a slarp magle，but not so miformly．At one point its berls are thrown up quite edgen ays，and the mumbitie sandstone－ rock appears intruting beneath it，through the seashore sand．The day rests aganst the sandstone as if the latter had been foreed upagainst it．Here there is abomdant widence of great distmbaner．

Not many yurds beyond where the samdstone first appears，it appears again so different in texture，that it enuld hardly be recognised as the same rock，were it mot that it is rich in momblite like the softer rock．In the secomb instance the soft，vedlowish sandstome has been changed into at hard，white，and shining rock，and where the clay rests against it there is a good deal of erystalization， and the clay has been changed into a rich，pinhy brown．All the clay here is much more dispused to be shaty thom it is near liarrit\％，and is harder in con－ serpurnce．

Nearer the water at this point，especially at low tide，are several beds quite perpendicular，of which the elgesenty oberude；they appear of a hard and theatufully colourcd rock，quite without trace of fossils．Near it 1 ols－ served some inayses of a sery dark green amorphous rock；this is the roek called by Mrons．（iuidres（page if of his little ñork）Ophite．－Yours，\＆e．， A．1）．icwortif．

Embata in Sir R．I．Murchisox＇s Addhess to the Geulugical slec－

BONE SPEAR-HEAD (?)
If. the Collecition of M ${ }^{\text {r }}$ IVortimer
Mattorn, Yorkiknere

TIos.- Page 44, line 15 from top, for "merely" read "mainly;" line 25 from top for "Barkley, it" read "Barkly, and."

Errata in "Fossils of Norti Bucks."-Page 483, for "gryphea" rostrata read "glyphice" rostrata; page 4S6, for "sphareodus" read "sphecrodus (?);" page 4S5., 2nd linc, for "Gryhurst" read "Guyhurst;" page 4S7, for "Cardium dissimile" read "C. cognctmm;" and, the same page, for "Pecten arcnatus" read "P. uicuatus."

Boxe Speat-iedad.-Of the bone spear-head of which we lave giren two views in Plates 13 \& 11, we hare less to say than we conld wish. Its history is very short, and not so satisfactory as onc could wish it to have been, although the state and appearauce of the fossil itsclf leaves no doubt of its stratigraphical age.

Mr. Robert Mortimer, of Timber, by whom the specimen tras sent to us, thus writes of it:-"I can only state at present that the specimen was picked up by my brother, Mr. J. R. Mortimer, about threc scars ago, along with a lot of shark's teeth, from a large leap of coprolite belonging to Mcssrs. Rhodes, Smith, and Co., of Selbr, manure manufacturers. The coprolite was from Essex, but I camot give the exact locality, nor any section showing the bed it came from."

This is all that is knomu about it, and it would be well that gcologists in the vicinity of any of the Essex, Suffolk, or Norfolk coprolite pits should make close search for other examples.-[Ed. Geologist.]

REVIEWS.

Noith British Review for 1861.

We have, ou former oceasions, more than once referred to Sir Roderick Murchison's late successful elimination of the key-stone to Scottish Geology. For years upon years the mighty masses of gnciss, sandstones, limestones, schists, and slates were attacked persistently aud elaborately by Macculloch, and, Nicol, Jamieson, and other first-class minds without arail. In his carly manhood Sir Roderick, accompanied by another of our best workers in Palcozoic Geology, walked over and sketched the massive strata of his mative Highlauds, which again, after his long-laboured and most persevering exertions in accomplishing the establishment of his Silurian formation, after his forty years of active service in the cause of that one great and interesting group which he has raised to a pre-eminence of elaboration unattained by any other section of the great Past, his mind has returued to his native land, and with the experience of an active life to guide his still persevering cnergies, he has suatched its crowning glory from the spot which of all others must be most dear to his heart. Of the labours of Mucculloch little is known to ordinary British geologists, except by a ferv quotations and woodents in the popular works of Lyell and others. But if Muccolloch, Nicol, and others failed it was because they were mineralogists and not gcologists. It would not be sufficient for a man to distinguish readily the various qualities of papers of which the books of a library were composed, if he were iguorant of the valuc and meaning of the letters which were printed on their leaves. So the former Scottish gcologists, althongh prying with the utmost minutenessin the study of the mineral characters and couditions of the Scottish strata, missed the true history of their formation in not learning the value and meaning-indeed even the existence-
of those remogical letter:, - the foseil remains of extinct anmats, in wheh that history wa, imprinted.

Noicl information is necessarily scattered and diffused ; one portion is read on d livered to one leamed society, imother to another on different occasions. some iparts are printed in. some of the public journals, some spoken on public or private oceasions, and it is usmally only after the lapise of at least mome few years that a new book or a new cettion of an old one gires to the world the prortrature of the insestigations in their totality.

The article on "liceent Discoveries in scottish Geology" in the August number of our execllent contemporary, the Joith Bitith Reciere, gives an admirable epitome, by a writer well versed in in the must perfect knowledge of lis subject, "f the exitere semies of geolegieal adsances mate from the date of the publication of Macculloch's "Ficologecal Map of Scotland" in 1î32, to Murchisun's first "Sketch Map" of IAfil, and his valuable commmications to the Lombun (icological society in Ibljl. Unr space will not permit us to give an epitome of this valuable artiele or we should gladly do so, as it is one of suels velue that everyone interested in scottish Geology must become acquainted with it if he would understand as lie onglit to to the value of the recen: Jabors of Sir Roderich Murchisun and of Mr. Geckie, Professors Ramsay and Harkness, and other able grelogists who hare so well and properly supported his nowd and important vews.

Wi. hase just inspectel some elemontary collection, of mine rats, forals, athl rochs, which are issued at a tery luw priec ; these are the best we have ecen Iir neatuess of arragement, while the specmens are very chatacteristic of the -ubjects itecy illustrate. Mr. James (iregury, who has prepared these collections. and who has a number of others of larger size specimens, is well versed in mineralogy, so that the names and localities can be tepended on for correctuess. The ruchs especially have a very neat appearanee, and we never have seen a a more complete liritish series. We understand they hare been collected persomally by Mr. Giregory in cach locality.

One adrantare of these collections is that they can loe obtaimed without conb. incts, and this we consider of great importauce, as students can thus form in melens of a collection at a small cost and not be burthened with a small useless article, which they camot cularge nor probably dispose of.

110 would atso cull attention to the series of Pritush fossils, whel may be had in chall sets, in the same way, of from fisc to ten or one hundred specimens, rach with name, fermation, stratit, and locality attached; these series are re-
 Wi. have cempects from, the Jet C'rare, Hempeted Beet, Ljper Healon, Lower Itealon, Bartos, I pper Chalk, I'ortland, and Y'ermian strata, and we believe Mr. (iregory is preparing others from the other British strata. Some of the collertions are so light as to be capable of tranminission by post for a few pere aner the cost by rant, so that collectors in the comitry, throught these series have a cheap and wny methot of obtaining deliciencies in their collections, fand recmaizing species of fonsils ly actual'examples. Mr. (iregory's masenm is werly arranged, and contains a large and select collection of minerals and fostils casily aceessible for the selection of single specimens.
$F_{1 』} 1$.

FOOLELLARIA ？INGULAIA．－S．F．Woodward．
N．sp．
Gault，Folkestone．

PIEROCERA REIUSA．－J．SowerbJ． Gault，Folkestone，
From Specimens in the Naticnal Collection，British Ivuseum．

INDEX.

A.

Abbeville, Drift of, Prestwich on, 317. Acworth, Mrs., on Geology of Biarritz, 473.

Adhemar's Theory, 112.
of 36 ——, Early English Tiew of, 36.
Agates, Peculiar Forms of, Professor Blum on, 504.
Aluminous Mineral from Upper Chalk, H. and G. G. Gladstone on, 535.

America, North, Pleistocene strata of, Dr. Hector on, 461.
Amiens, Gcology of, Prestwich on, 316.
Amphicyon intermedius in Austria, 499.
'Anahuae,' by E. B. Taylor, reviewed, 273.

Anderson, Dr., on New Locality for Mollusca in Old Red Sandstone, 385.
Animal Life, Influence of Peroside of Iron on, 77.
Annual Meeting of Geologists, Dr. Beran on, 375.
Antholites, Salter on, 131.
Anthracosia, Salter on, 179.
Anthracomya, Salter on, 179.
Anthrapalæimon Grossartii, J. W. Salter on, 298.
Arabia, Geology of, Note on, 310.
Archæological and Ethnological Societies, Joint Meeting of, 153.
Arctic Regions, Geology of, Dr. Walker on, 157.
Arrow-heads, Stone, in Battersea Fields, Mr. Blagg on, 155.
Athlone, Geology of, G. R. Vine on, 169, 221.

Australia, Western, Geology of, F. T. Gregory on, 296.
Australian Cliff, Geology of, 156.
Avicula contorta Zone, C. Moore on, 296.

Azoic Rocks, Fossils in, J. W. Salter on, 347.

B.

Beaksbourne, T'ertiary strata at, 111.
Bedford, Flint Implements found at, J. Wyatt on, 243.
rol. IV.

Berwickshire and Tyneside Field Club, Meeting of, 506.
Bevan, Dr., on Annual Meeting of Geologists, 375.
Biarritz, Geology of, by Mrs. Aeworth, 473, 558.
Biuner, E. W., on Geology of Manchester, 443.
Blacknore, Dr., on Spermophilus, 159.
Blake, C. C., on Human Remains in strata with Extinct Animals, 395.
-- - on Macrauchenia, 354.
-_, on Mastodon in South America, 469.
Bolivia and Southern Peru, Geology of, by D. Forbes, 31.
$\xrightarrow{\text { Salt }}$, Palkeozoic Fossils from, J. W. Salter on, 34.
Bone Cares, in the Mountain of Ker, M. Fontan ou, 295.

- Cave, Second, at Brixham, W. Pengelly on, 456.

Cares, Luniel Tiel, M. de Genes on, 548.
-- Caverns of Craven, J. H. Burrow on, 539.
Bone Spear-head, 559.
Bones, Fossil, Age of, determined by composition, Delesse on, 253.
Bovey Basim, J. H. Ker on, 550.
Boucher de Perthes, on Flint Implements, 290.
Doulders, Granite, in West Rosewarne Mine, M. C. Salmon on, 297.
Drachiopoda, Dritish Carboniferous, Davidison on, 41.
———, Tatalogue of, 44. ing, Daridson on, 76 .
-_, of Carboniferous Rocks of Punjâb, Davidsou on, $\tilde{5} 50$.
on, 96, 190. New Species of, C. Moore
British Association, Meeting, 427, 508, 532.
$427 . \quad$ President's Address, Address, 428. Sir I. Murchison's —————Papers read at, 517 .

3 R

Brixhmm Cavern, WV, Pengell!'s Remarks on, 153.
Broslie, Rev. 1'. 13., on Distribution of Corals in the Lins, 1 IS.
]brown trond of Zoveneedo, M. Foetterlic on, 111.
Duckinghmshire, North, Fossils of, 1 . II. Mamentister on, 1s1, 505!

Buenos Ayms, Shdeton foumd at, 11s, $161,217,262$.
Bumbury, Sir C., on Fossil I'lauts from Nagıur, 208.
Burnler C'oal-Fidd, W. Whittaker un, jus.
C.

Cindiz, Geolugy of, Note on, 221.
Calamitea, Salter on, 129 .
Cambridge Phitomphical societ?, 5.52.
Chaterbury, Singular Ulpjects in Siml near, 310.
-, Antiquitien in Bog Earth at, 38.
Copillars inliltration in Rock strata, Daubre on, 19%.
Carhoniferons Limestone of Almondsbury, Mr. Richardsen on, 5 3iti.
——Rochs of Britain, I sometric Lines and ! atribution of Cinlearoma and sedimentary strata in, E. Hull (m, 151.
Carnirora in An-trian Tertiarice, 19f.
Carpolite from coal formation of Cape

Chrerna, Now, in Yorkulire, 11. C. Salmon (int, 31?
Cophala-pus minl I'teraqua, Dialribution of, (: B. E. Roberts on, 112, 15:9.
Cephulnapides of Forfarshire, D. P'owrie on, 137.
Cephanla-pie, R. Lighthorly nn, 1 tu.

- from Ludlow, Mr. Muraton's specimen from, 1 t1.
- - - Postacript to Mr. Powrie's Letter on, 1 14.
Cirnia th limeroceros, 18,6 .
Chalk, Fimal I ruits from the, 313.
--, Red mut White of Yortahime 33. --, remotrut tal hed in topo if, W. Whataher om, : 2 亿.
-roch, W. Whitaker on, 1 19.
 alliwar (ill, 112, lin).

16.

Clahl, Mmeral foeala frome, 2:

Climpue, l'e-al Ful nt, -01.

Clarke, Res. Wr. 13., on Geologieal Age of comblearing Ruchs of New South Wales, 2019.
Clevedon, Geoligy of, 292.
C'leveland, deologi of, C. I'ratt on, 81 , Itio.
'The Cleveland Ironstone,' by J. Bewich, Review of, 119.
Clew land, Geologey of, Note om, 160.
Chytio Lenel ii, l'rofessor Reuss on, 392.
Conal, Prolessone J. Murris on, 551.
-, 1 Lecture on, hy J. W. Sulter, 6, $59,100,121,177,23!)$.
Cond-haring Rochs of Sonth Winles, (ienlogival Ime of, 2019.
C'ombroohelate, Cheoloey of, G. II. Morton on, 565.
'Coal-fichls of Grent 13ritanin,' by E. Hull, revien of, $78,519$.

Sceond
Elition, miewed, 519.
———, of China and Iapan, 519.
——, Wrme Form, 1थ1, Jtis.
Cohe, Native, in Moraria, 517.
Combination of fermerical soce ceties, sugLestions on the ntility of, $329,375$.
Combutible Materiaks, Chemical (Tarractere olf, 197.
Corals of Tin*, Brodie on, $72,118$.
(orticula (Cyreme) thmmalis, gioho. pically manderesl, by I. (i. Jetfres.4, 2!G。
Cone sponlence, 21\%, 25s, $35 \%, 375$, 11.5, $190,525$.

Copulmah, Fossils of 451.
Cotteswohl Club, Walf a day with, 3i7.
Courbon, \$1., om Ciexhegy of Coasts of lud sua; 252.
Стаміл camala, :97.

- - summersii, !s.

P'meortii, !s.
Cration in haw, (: C. Whke on, 52\%.
Cretacesma lheprexits of Bohemia, M. Lipwh ant, 2l3.
Cruchor, C: 11 ., on Fonsil Fern, 77.
Crumbern, Hagher. from Writish Coal Monaturn, I. W\%. Salter on, 2!3s.
(rumatan Kemsinisul Portmador, 117.
Cratallography, kew. W. Mitchell on, 31.

Corman Amminalis, in sand and gravel at Kelae! Hill, 1'restwich on, 294.
I).

1hadexylom, Salter om, 129).
Wurwiman lheory, Ia. Hultum on, 132. $111 i$.

Darwinism, Difficulties of, Dr. Hutton on, 288:
Davidson, T., on British Carboniferous Brachiopoda, 42.
———, Terms used in describing Brachiopoda, 76.
Daubree, M., on Capillary Infiltration of Water, 195.
Dawson, Dr., on a Carpolite from Cape Breton, 297.
-_, on erect Sigillaria in South Joggins, 297.
Deepest Water, Lines of, round British Isles, Rer. R. Ererest on, 364 .
Deer, Destruction of by Cold, 398.
Deer's Horns in Brixham Carern, Pengelly on, 289.
Deer's Horn at Clacton, with Incisions, Rev. O. Fisher on, 352.
Delesse, Mr., on Mincral Teins of Freiberg, 387.
-- - on Pseudomorphs, 14.
Deluge of Noah, Geological Eridences of, W. Pengelir on, 306, 356.
Detphinopsis Freyeri, 14.
Density and Hardness of Metalloids, and Metals, M. de Senes on, 251.
Deromian Age, W. Pengelly on, 332. Mr. Pengelly's Article on, 557 .
Dianite, 312.
Discina Dundriensis, 98.

- orbicularis, 99. Townshendii, 99.
- Humphrersiana, 99.

Diamonds, Rocks in thich found, 163.
Dodo, Bones of, 112.
Dowker, G., on Tertiary Strata in Kent, 109.

Drake, F., on Human Remains in Yale of Belvoir, 246, 349.
Drew, F., on Hastings Sand, 206.
Dowker, G., on Tertiaries of Stourmouth, 213.

Drift at Donald's Hill, G. T. Du Nover on, 116.
_Elongated Ridges of, in Berwickshire, etc., Mr. Milne Holme on, 540 .

- in Southern Hemisphere, J. Curry on, 40.
'Dublin Quarterly Journal of Science,' reviewed, $1 ; 6$.
Duckworth, H., on Excursion to Holywell, 505.
Peirin, 156.
Dultrich, Tertiaries of, C. Rickman on, 325°

Du Norer, G. V., on Drift at Donald's Hill, 116.
Dura Den, Rer. Dr. J. Anderson on, 545.

E.

Earthquakes and Mcteorological Phenomena, 3I. Schmidt on, 145.
-- Lunar Relations of, 194.
Earthquake at Mendoza, C. Murray on, 366, 391.

Wares, Telocity of, R. Mallet on, 54 ?
Echinodermata, Oolitic, of Oxford, J. F. Whiteares, 174.
Elementars Geological Collections, Mr. Gregory's, reviewed, 560.
Elevations and Depressions of the Earth m North America, Dr. Gesner on, 210.

Elsworth Rock, etc., in Oxford Clay, H. Seeley on, 460 .

Encroachments of the Sea at Torbay, W. Pengelly on, 417.

Euomphalus carinatus, in Wenlock Rock, 517.
Evans, J., on Flint Implements, 31 万.
-_, C. E., on Insect Remains at Peckham, 39.
Eridences of Deluge, Query respecting, 309.

Expedition to Central Asia, 549.
Extracts from Magazines, 263.

F.

Fairbairm, Dr., Notice of Address to British Association, 427.
Fault, Srmon, on the Coalbrookdale Coal-field, W. T. Scott on, 294.
Faults of the Lancashire Coal-field, H. Green on, 538.
Fen-Clay Fornation, H. Seeley on, 552.
Fern, Fósil, C. IV. Crocker on, 77.
Fisher, Rev. O , on Fossil Deer's Horn, with cuts, 352.
Flint Arrow-heads from Reading, 24.
Fint Arrow-heads from Canada, 26. from Pern, 26. Forgeries, 26.
Flake kinife from Abberille, 24.
Inplements, Mackie on, 19, 215.
————, Discussion of A rchæ-
ological and Ethmological Societies on, 153.
coreries of, Trestrich on, 295 .
_-___ Boncher de Perthes and Rober: on, 290.

Flint Implements, Pre-twich and Evans (11), :3\%.
 ric*, 20, 21 .

Whitstathe, 290.
, lork-hime, $21 ?$.
Cual-slapell from Val-
ley of Somme, 3 3 z 3.
Fontan, M., on Bone Caves of Ker, 295.
Forber, D., on Geolege of Bulivia and Pirn, 31.
——, Elw., Memuir of, reriewel, 399.
Foreign Cirroponelence, 11:, 194, 251, 25! 120, 194.
Formed Marlle, Fensuila of, 155.
Formatom of Land, Rev. C. R. Gurden ($11,516$.
Fourselite, 19.
Fracture of Flint, 27, 21 1.
———of Ob-idian, 28.
Fromy, E., on Chemieal tharacters of (Gimbutible Minerals, $1: 17$.
Fritzeh, Dr., on Foosila m Bottom Rocks of Boliemia, 3 な.
Fruite from the ('lulk, note on, 313.
Fiulvorite from Red Crac, II. Duckworth un, 35.

1

 tiandry, II. I'alemitulationl Resarchira in (irn.o.s. 201, 24!
thate of Aher 11 ,hl liorm, 514 .
 2.
-., Procedinge of. rexiowed, $\therefore 1 \%$.
 $361,977,505,514$.

Sconty if Lemulum, 31, i2,

4 r Matime 151.

- - surue!, 139.

Gesner, Dr., on Elevation and Depression of North Amerien, 210 .
Glucial Plenomemat Want dale, Cumherland, G. W. Hull on, 178.

- Morements, N. W. Ameriea, sir E:. Beleher on, है।.
Glaciers in Wales, l'rofessor Rumsay on, 530.
'Glaciors of Great Britain,' by Edw. Hall, reviewed, 2fis.
Glasgow Geologital suciety, 155, 25th, 301, 507.
Glans, A., un Silurimn Strata at Cardifl, 169.

Glonsecolite, simpurel, Analtssis of, 25%.
Gohd, Oevurrence of, in Merionethshire, T. .1. Readwin on, 511.

Girmite, Objections to Igneous Origin of, by, Dr. Bialleblototsy, 50 t .

- if Dumenul, R. H. Scott, on, 537.

Gravel Boulders of the l'anjub, Dr. Smitle om, 119.
Great Oolite, Fossils of, 4.515 .
Greece, M. Gundry's herearches in, 201, 259.

Gregory, F. T., on Wiatern Australia, 296.

Grindley, F ., on the Darwiminn Theory, $217,116$.
Guanacos, Stone Implements used in billing, Admiral Fitzruy on, 155.

II.

Maidiuger, W., on Metoorites, 120 .
Handhook of South Winles, reviow of, 10.

- of Nurth Wales, review of, 403.

Harhness, Prof. R., on the Rocks of Sentiah 1hyhanls, mal their eynivalents in N. of treland, 15ㄹ.
Hastinge Sande, F. 1)rew on, 207.
Hanghancl, Forsil Truen mt, 3 Si.
Hector, Mr., on fiectugy of the Ballisen

-_- om I'leintocene Deposits of Nurth Ameriea, 161.
H. eesser and i lare\% on Jinmond Rock, 163.

Harlatry sitata, Sioliczier on Fonssl Molliwen from, 111.
High aml Low Life, ly (E. E. Roberts, 1.

1Lh:hancla, Comeillance of Stratifiration nud Finlistion in the Cryatallime Rochy of, Murchioon anl Geikie on, 151.
_... North.West, I'rof. Aiseol (111, 31, 115.

Highlands, on the Rocks of, Sonth of Caledonian Canal, Prof. Harkness on, 152.
T. F.-, of Scotland, South-West, T. F. Jamieson on, $72,146$.
, West and Central, Murchison and Geikie on, 150.
Hislop, Rer. S., on Age of Sandstoue and Coal-beds of Nagpur, 208.
Hjelmite, 312.
Hoernesite, 312.
Holrwell, Geology of, H. Duckworth on, 505.

Horner, L., on Mosaic Chronology, 306.
Horus, some bits of, from Folkestone, 465.

Horton, W. S., on Oolite of Yorkshire, 35.

Hoxne, Geology of, Prestwich on, 321 .
Fing Flint Implement Ded, Rev. If. King on, 153.
Huddersfield, Geology, note on, by E. Tindall, 367.
Hull, E., on Glacial Phenomena of Westdale, 478. tributi, on Isometric Lines and distribution of Calcareous and Sedimentary Strata of the Carboniferons Rocks, 454.
Human Remains, in Strata contemporaneons with Extinct Animals, C. C. Blake on, 39 .
———, at Guadaloupe, 395.
395.
at Lake Lagsa Santa,
———, at Liége, 395.
, at Mobile, 395.
, at Natchez, 395.
,, at Neanderthal, 396.
Drake on, 246, 349 .
-, in Valley of the Trent, note on, 415.
Tremains, in the Valley of the
Trent, J. Plant on, 495.
Hutton, Lt., on the Darwinian Theory, $132,183,222,287$.
Huxley, Prof. on Fossils from Bolivia, 31.
--, on Macranchenia, 33.
————on Pteraspis Dunensis, 149.
from N. W. Bengal, 209 , on some Remains
Hyen N.
Hyæna Hipparionum, in Anstria, 498.

I.

Iceland, Projected Exploration of, 225.
Increase of Land on the Coromandel Coast, Sir C. Lyell on, 366.

Insect Remains at Peckham, C.E. Erans on, 39.
Iron Ores of Norwar, Prof. Kjerulf on, 504.

Isle of Sheppey, Rev. R. Bingham on, 152.

J.

Jamicson, T. F., on S. WV. Highlands, 72, 146.
Jeffreys, J. George, on Crrena fluminalis Geologically considered, 296.

K.

Kelsey Hill, Cyrena fluminalis at, Prestwich on, 294.
Kimmeridge Clay, Fossils of, 482.
Kirkbe, J. W., on Permian Rocks of S. Yorkshire, 207.

Knockshigomna, Geology of, A. D. Wyme on, 445.

L.

Land-Animals in Coal Measures of South Joggins, Dr. Dawson on, 549.
Lead, Red Chromate of, from Philippine Islands, W. Wood on, 143.
Lepidodendron, Salter on, 126.
Leymeric, M., on Tertiaries in Bigorre, 205.

Lias, Distribution of Corals in, Rer. P. B. Brodie on, 148 .
-, Fossils of, 489.
-175, Lower, Subdirisions of, note on, 175.
-, Lower Zones of, C. Moore on, 296.

Lightbody, R., on Mr. Roberts' Paper on Cephalaspis, 140.
Lingula Fossils, new, 212.
Lipold, M., on Cretaccous Deposits of Central Bohemia, 293.

- M. V., on Silurian Colonies of Bohemia, 142.
Lixerpool Geologieal Society, 156, 210, 311, 505.

Ludlow Pone Bed and its Crustaccan Remains, J. Harley on, 365.
Lunar Seas, what has become of the? Speculations on, by S. J. Mackie, 109.
——— W. Pengelly on, 490.
-- J. Powrie on, 492.

M.

Macalister, J. H., on Fossils of North Bucks, 481.

Macalister，J．Jl．，en Geology of Chamel 1－lands，112．
－＿————，on Geology of Men－ pirt lamell，$\because 11$ ．
Marharodus cultrilens in Anstrin，I！s．
Wwher，太．I．，on Ibumn Manalacture of Fint Implemento， 19.
————，「＇ractical İtility of＇a （＇mbination of Geolugical Societies， $3 \div 9$ ． ral，369．
，on some bits of llums from Follhestome， $16 i 5$.
－＿，in the nise of amme of the Feril Flint Implementa，$\because 25$.
Macrandenia Duliviensis，Prol．Huxley （111． 33.
Macranchenia in Bulivia，（＇．C．Make on， 351.
Malvem Tield Club，157，304，553．
——and Ledhans Tamels，Res．W． S．Ermonds on，$\overline{i 2}, 11 \mathrm{~s}$ ．
Mammahan liemaims near leme Bay， $3!11$.
Mun，Creation of．Pibliesal date off， 376 ．
Innchester Gowhrical Ainciet？，211， 5051 ．
－－Geolory of，E．W．Bumes wn，113．
Marell de sertea，M，on means of Re－ （a）minge the shoures of Ancient Sens， 215.
，on Jomity and Harlmess of Metalluids mal Metale， 251.

Manchanl，Commt，Forcign Curreamm－ dence br， $8: 4$ ．
Maraton，Cicphataypin from ladlan， $1+1$ ．
\cdots in Ohd Red loossils from Whithathe， 115.
－－A om Gmry Valley， 71.
Ma－tolon，Distribution of，in South America，C．C．Blake on，－1tit）．
Moeting of sinvam ot Sieser，Notive of， by H．C．surhy，sill．
Meimhytrite， 3 iz．
Mandias．Farthquake at，36f，361．
Dime，C．，in Fommelhte， $1: 1 \%$ ．
Metallar Veme of Freilerge，Minerala of， 1）lewere on，347．
Metmatites，IFnidmman om，12月）．
Mhewrit．with Sqparian Structure， Fisbibuted by Jlawheror，sw．
＇Maral Vemu，＇by 1．Binde，roviewed， 163.

Mmorala，\ctr，noteom，by Mr．Eiremory， 312.

Miswminum，M．Fiodis account of，21\％， 262

Matchell，Fer．W．，ou C＇ry：tallography， 31.
－，Rer．Hugh，on Ola Red Sand－ stome of Forfar， 117.
Monhy，（ireat Fusil，Callithrix pri－ mavis，39\％．
Moravi：，Tertiary and Diluvial Deposits of，31．Woll （n），293．
Moore，U．，on Now Brachiopoda，96．
－－Develipment of the Loop in Toredatella，itti．
－＿，in Brachiopoda， 190.
———，Tent of Brachioppocla， 192.
－－，ons Zomes of Lower Lias，2906．
Monton，（i．II．，on Excmesion to Coml－ broobitale， 505.
35. ，on Cerolugy of Shelve，
nt Liverpoul， 21 ．
Musaic Chromolury，mote om， $30 f$ ．
Muss，Movel，in Falhirk，note on，382．
Murement of（iromal，11\％．
Mumbeles，Section at，l＇restwich on，6s， $11:$.
Murehimin．sir li．I．，Addreson at British A＝an ciation，1こと，55s．
and A．（icikie，on

the Conincidence betwens it matitientions and Folimion inthe C＇rystalline Rochs of the 11 ighlamels， 151 ．

N．

Nagpur，Plants from，2098．
Nimmlerthal，Human Skull from，39\％．
Nibom，Col．，on Subuarine Zonns of Diaribution， 161.
Nixport I＇ughell，Genlogy of，2l1，26：3．
New Red simistome of Niourtom， 31 ．
Nicol，I＇rof．J．，un N．W．Highlamels， 15%.
－North Driti－h Ru－view，＇revinwed，5．59．

Notcs and Querua，3t，72，109，159， $212,254,306,3664,383,517,5.56$.

O．

Ohmirlum．Tavelina， 24.
－（1）－Knires，2i．．．
－Ohd Bonem，by Rev，WV．J．Symorols， reviewed， 176 i．
Old Real Cormatone，1）r．Anderson on， 3f．s．
Wit－Sindyane of Firfar，Rer．IU． Nitelatl on，is，117．

Old Red Sandstone of Forfar, J. Powrie on, $365,377$.
of Kincardineshire, J. Powrie on, 383. _—— of Whitbatch, Fossils of, A. Marston on, 118.

Scottish, New Locality of Mollusca in, Dr. Anderson on, 35 อ.
Oligist, Crenate of Ammonia in, 264.
Onny Valley, Geology of, A. Marston on, 74.
Oolite, Inferior, Rer. S. H. Cooke on, 506.

- of Yorkshire, Wilts, Worcester compared, by W. S. Horton, 35.
Opercula from the Paludina-bed atPeckham, 265.
Orangs, Fossil, 72.
Oren, Prof., on Plesiosaurus from New Zealand, 44.

P.

Pamphractus Andersoni, 545.
Parallel Roads of Lochabar, Prof. H. D. Rogers on, 298.
'Past and Present Life on the Globe,' reviewed, 404.
Pebbles, Flint, at Charlton, 73
Peirin, Isle of, H. Duckworth on, 156.
Pengelly, W., on Second New Bone Care at Brixham, 456.
-_ on the Deronian Age, 332. - on Encroachments of the Sea at Torbay, 417.
—_ on Eridence of Deluge of Noah, 35 .

- , on Lunar Seas, 490.

Perrer, A., on Lunar Relations of Earthquakes, 194.
Permian Rocks of Forkshire, J. W. Kirbly on, 207.
Petroleum Springs in N. America, Dr. Gesner on, 549.
Philippine Islands, Minerals from, 143.
Pinitoid, 312.
Pisanite, 312.
Plant-bed in Severn Talley Railway, 518.
Plauts, Nutrition of, Dr. Zöllner on, 505 ,
Plant, J., on Human Remains in the Valley of the Trent, 495.
Plesiosaurus from New Zealand, Prof. Owen on, 444.
Pleistocene Deposits of North America, Dr. Hector on, 461.
at Liverpool, 210.
Pleistocene Fossils at Salisbury, Dr. Blackmore on, 159.

Portland, Isle of, Geology of, Mr. Gray on, 518 .

- Strata, Fissures in, Rev. O. Fisher on, 556.
- Rock, Fossils of, 482.

Portugal, Secondary Rocks of, 144.
Powrie, J., on Cephalaspides of Forfarshire, 137.

- Postscript on Cephalaspis, 176.
__. on Geology of Stonehaven, 383.
-_ on Lunar Scas, 492.
Pratt, Charles, on Geology of Cleveland, 81.
Prestwich and Evans, on Flint Implements, 315 , 356.
- J., on Cyrena fluminalis and Marine Shells in Gravel of Kelsey Hill, 294.
- on Flint Implements, 315. ley, 68. on Cliff-section at MundesNew Discoveries of Flint Implements, 295.
'Primeral Man,' by Rer. Dr. Anderson, retiewed, 280.
'Primordial Fauna and the Taconic System,' be Jules Marcou, Reriew of, 79 .
'Proceedings of Geological Association,' reviewed, 267, 517.
Proceedings of Geological Societies, 31, $71,145,206,256,294,364,377,505$, 5 4.
Pseudomorphs, Artificial Production of, by H. C. Sorby, 501.

Researches on, by M. Delcsse, 14.
Pteraspis Dunensis, Prof. Husley on, 149.

- Geo. E. Roberts on, 102.

Remains at Cradley, E. R. Lankester on, 366, 416.
-_Mallæus on, 375, 495.
Pterygotean Ova, 72.
Pupa Tetusca, Salter on, 178.

R.

Radiation of Heat, Dr. Tyndall on, 71 .
Raia, New Species of, from Moute Bol. ea, 40.
Radoboy and Trieste, New Fossils from, 144.

Readwin, T. A., on Gold in Merioneth. shire, 511.
Reconstructed Bed on the Chalk near Reading, W. Whitaker on, 297.
Red Chalk, note on, 39 .

＇Remarks on lhat Implements，and their Charial Theorg＇hy Admiral Wanchope，reviewer，2i？
Reptiknon Remme from N．W．Brazil， Prol．Huxley on，204．
Remas，lrof．，on Clatia Leachii， 392 ．
Reriews， 11, －A，119，176， $264,313,399$ ， $463,517,859$ ．
Rhẹnchonellas spinoza，99．
－－（ \because ）coronatn， 191.
Rise of Ground at lalk， 11 ．
Robert，M．，on Flint Implements， 291.
＿＿＿om Sub－tances worked by Primitive Inhabitants al Gaul，202．
Roberts，（icorge li．，High and Law lifc，$].$
－An Allumars Theny，3：－ ant l＇teraspis in Eagland，102．

Cephalaspis and Plera－y is， 150.
－on II yre Fourest Conl－fichl， 421， 168.
Rugers，Prof．II．I．，on l＇arallel Ruads

Roman Antipuitios under lour Farth at Canterburs． 38.
Ruyal Institution，71，298．
Rubinlev，1）r．，om Metallifurous Sadelles， 24 ．

$$
\therefore
$$

Saddles，Metalliferous，Dr．Rubidge om^{2} ， $\because 2$.
sainter，I．D．，on the Falt spring in the 1）ukinlield Coul Minc，3：39．
Salmon，II．（＇．，om（irambe loulders in

－＿in Metallic Vine of Frie－ borg， $3 \varsigma 7$.
borg，ont．on Pandumorphes， 11.
sale Spring in a Conl Mine，d．D．Situ－ ter on，3：14．
Salter，J．W．，Lewtures om Coal，6，59， 1ल1，121，12．7，1नT，23？
－an onosels from Buhvia，31， 34. －－ons some of the higher Crus－ Incen from Rritialt（inal Mince， 9 994． Antice of Finasils in＇Azuic＇

Rooks of Buhwima． $31 \overline{2}$.

－＿on Ners Firault from Skich daw Slatio， 71.
Gand lipean limy－Thurrock，Li．．tomes on，2：s．
Sicu1，M1．W．T．，an Symm laulh，in Cimbllmok－inle Coalfilid，291．
＇Suasms with the Sea Itorses，＇reviewed， 313.

Secter，If．，on Fisworth and Blamtis－ hain Beds， 1400.
Shelve，Geolugy of，G．I1．Alorton on， 35 ．
shores of Ameiont Seas，means of recog． nizing，20̄．
Sigillarin，Salter on，121．
－．．．New loonts in structure of， J．WV．Salter חn， 532 ．
－Erect in South Joggins，Dr． Dawson cm， 2917 ．
Silurian Colonies of Bohomia，M．Li－ patel on， $1 \cdot 12$.
Prictra near Carditr，Ň．（Glass on， 168.
skidtinw Slates，Finssile from，J．WV．Sul－ tor om， 7 t．
Smithe，D．．．on the Gravel Boubders of the l＇unjub， 1 19．
Surby，11．C．，on Meeting of Savanu at speyer， 501.
Spermuphilus supereilions，note on， $15!$
Spirifera minima， 190.
Spirit of Gered Dowha，315，3501．
Spulges，Forsil（Comphtwhinm），from （hanlk near Brom－wick，50：3．
St．Acheul，Drift of，l＇ri－twich om，：20．
Starfish at great thepthe in the sea， 3. －in deep Ocem，Query on， 175.
Sted，Tarmaki，Note on， $11 ; 2$.
Sterrognathens nolitiens，from Stomefeld Slate，K，Ray ni， 310.
Stirlingshive，fienlogy of， $3(1)$ ．
Stom Cidt in British Musenm， 22.
Stome Latchat from Niew Caletomin， 23.
Stom haven，（Kimeardin shime）Cicolngy of， 30% ．

J．Powria on，
$35: 3$.
Stone fmplements（oval），from Amiens and Hoxne，2：3．
from Guernsey， 21.
Wiapon in a Fusal lwer＇s skull， Arhal．Wanchope on，3si．
Stourmouth，Tertiar！Bechast， 213.
Stens，6．11．，ou Fiealogy of Emmlay Rッチン，2：38．
Sult，itamean dowements，by Profersor Vanghan，：\％．
Sucas，Prof．，on Cornivorn of Austrian Tirtiars， 1 ！ 16.
sunday kiser，sonth Africa， 238.
surser，Geologieal，nad Schocil of Mines， $13!$.
Symonde，R．v．W．N．，and A．Lambert， on Mavern aud Ledbury Tunnels， 114.

T.

Tasmania, Geological Suurey of, by C. Gould, 536.
Temperature of Earth's Crust at Dukinfield, Obserrations by D. Fairbairn, 540.
-_, Internal Experiments on, 427.
-, Variation of, in Geological periods, 264.
Terebratula carinata, 99.

- ——minuta, 190.

Tertiary Strata in Kent, G. Dowker on, 109, 212.
Tertiaries of Bigorre, 205.
Thecideum ornatum, 96.
——— prgmæum, 96.
Thecodontosaurns, M. Gervais on, 251.
Thickness of the Earth's Crust, Mr. Hopkins' Experiments on, 428.
Torbanc Hill Mineral, Mackie on, 369. Torbay, Encroachments of the Sea at, 417.

Trces Submerged near Herne Bay, 391.
Trees, Fossil, at Hanghland, 387.
Trilobites, New, Note on, by Mr. Gregory, 311.
266.

Tyndall, Dr., on Radiant Heat, 71.
Tyneside Field Club, 506.

U.

Uranopliane, 312.

V.

Victoria, Western, Extinct Tolcanos of, Mr. J. Borwick on, 543.
Vienna, Geological Institute of, 536.
Vine, G. R., on Geology of Athlone, 169, 221.
Tolcanic Cones, Two, at Base of Etna, Signor Gemmellaro on, 550.

Departments of France, Gcological Discoveries in, 252.

- Phenomena at Manilla, Dr. Hooker on, 549.
Tolcano, Outburst of, on African Coast of Red Sea, Capt. Playfair on, 365.

W.

Wales, North, Handbook of, reviewed, 403.

- South, Handbook of, reviewed, 40.

Walker, D., on Geology of Arctic Regions, 157.
Wallich, Dr., Discovery of Deep Sca Starfish, 5.
Water, Excess of, in the region of the Earth about New Zealand, J. Yatcs on, 453.
Wauchope, Adml., on Stone Hatchet in Skull of Trish Elk, 381.
WealdenStrata, Gomiopholis and Trichosaurus in, 263.
Western Australia, Geology of, F. T. Gregory on, 296.
Whiteaves, J. F, on Oolitic Echinodermata, 174, 176.
Whitaker, W., on Chalk Rock, 149.

- on a Reconstructed Bed of Chalk, 297.
- and Wilkinson, on Burnley Coalfield, 508.
Wolf, M., on Tertiary and Diluvial Deposits of Central and Easteru Moravia, 293.
Wood, E., Lecture at Richmond, 256.
- W. W., on Minerals from the Philippines, 143.
Woodward, Hemry, on Insects from Peckham, 40.
Woolhope Field Club, 304.
Worcestershire Field Club, 305.
Wratt, J., on Flint Implements at Bedford, 242.
Wynne, A. B., on Gcology of Knockshigowna, 445.
Wyre Forest Coalfield, G. R. Roberts on, 421, 468.

Y.

Yates, J., on Excess of Water round New Zealand, 453.
Yorkshire, Geology of, Note on, 311.

Z.

Zealand, New, Steel, 163.
Zones of Distribution, Submarine, R.J. Nelson on, 161.

LIST OF WOODCUTS.

$A G R$
$A G R$
Irleal Soution of a Cial Pasin 9
Idenl suthom, show ing (iranite andKillas with Jetalliferons Vemes
Flant Implement, fiom Grays Inn9
Lame (1.I). 1750) 19
-lint Tmplat Flint Tmplement-, from Joxne (Frure 17:17) 20
Stome Implements, fom Guernsey 21
Stonn Colt sit in stag's llom, in British Muarmm 22Stome Hatchet, from New CaliforminSmall Flim lustrument, fromImicus23
23Flint davelin, from Hornsey23
Long Flit lmusment, in Colleretimb ifsurity of Antiquman21
21.Flint Saw
Flant Flake Kinife, from Iblerillo 2121Brokem Fragmento of Flint FakoKıivesIlol.
Flint Flake Knife, from Ahbeville
Flint Arow-Hcads, from Redhill

Arm-Ilemel of smoky (?nariz,from I'eris.
Forsuris of Fint Jmplominta
tomemeric Lint of lradure inFllits
F'romesa of Clippping Flakis(1) whun Junlinx, fron New Coln.स)
Inчन 13"mana, from I', wham $3: 9$
Jhegram of Coml Mme shafta
Sertion of 1 'oal Bawn
Plon of Cobl Vime Woirhing
Plan of Worbed out Cial Nome

Daw tirnutacrmof, from the chuldaw
Shates小गい71
Grapt theratron1) wriphte toma of Spirifir.

Wrider of ixirata at (7xerfland
2724241:2tis
9 I'ortion of' Frond of Alethopteris lonchition
pant 100Alethopteriv Serlii
Dingran of Ramge of Cephulaspis,in Winerstershire105
Cephala-pis Jlead-shiche, orme mented exterion layer 105
Pteranpis Head-shichel, as usumbly found 105
Sections on the London and Dorer Raihns, mear Coutcrbury 110
Brakeshourne Couting (Kent) 110
Quarry Scetion at Domuld's Hill 11 t
Tpexat of (iromend 118
Conled-inf livonds of Pempterio 121
Ephemphers sclubthemimi, from St mathourg 122
Oammeda Renalis, with terminal fructifications 123
Adiantite 1 Ithernions, with lateral - bikes of frathlionton. 123
Sigillaria, int monal can of tom 121
Sigillarin, with roos= (:timaria) 121
Sigillaria chgans, put worn of hark 121
Sigillarian Mrambio, patterno of hark 125
1apidedindrom, 1mattro of back I26
Lapidolemitom, timb, henves, mat- hin, ete., in:d sulpmesed rent H:ahmin 127
Soction of Tree Form, flow ing lange bumelles of vemels 128
Gortion of tross seetion, magnilied 128
Sicetion of Calamble, flomine amallor bumillow of visada sur- rommbeg the poth. 129
1)akixylom, with its pith, henses, manl serels 129
Cycadmens plant (I'toraphyillum),trom Vhai Mommame131
Ciminaliona, m. Mr. I'owrio's Col. lowtorn 137
('aphashanis, in Mr. Xnnaton's Cor lection 111
Wnmanm Limatome (Qurry, Kel Tuom 171
 s(in) Pount 172
Momtnin limentome ()unrey, lat. lo.gkyron 173
PAGE
Pupa retusta 178
Anthracosia acuta 179
Anthuracosia oralis 179
Mya truncata, with its rough tube 179
Anthracomya senex, with tube and foot restored 179
Ariculopecten papyraceus 150
Goniatites Listeri 180
Productus semireticulatus 180
Spirorbis carbonarius 181
Section of Well at Stomrmouth 213
Section of Clay Pit, Nerport Pag- nell 214
Section of Stone Pit, Gayhurst 215
Section on the Koega River 239
Koega Kopjis, from the Sonth 240
St. Croix Islands, Sunday's River* 241
Section of Pleistocene Deposits at Biddenham 243
Scetion across the Ouse, at Bed- ford 244
Sandpipes at Grars Thurrock 2 อั
Section above the Sand-pipes, show- ing the strata through which the water percolates 259
General triangular form of Gravel- pipes, at Grays Thurrock. 260
Surface of Chalk, showing slight depressions and incipient Sand- рірез 260
Iforizontal Section of a Sand-pipe 261
Tertical Section of a Sand-pipe in formation 261
Vertical Section, in more adranced state 261
Opercula, from Paludina bed, Peck- ham 265
Mexican flame-shaped Arrow-Hcad 275
Mexican Arrow-Head, of opaque Obsidian 275
Mexican Obsidian Knife or Razor 275
Leaf-shaped Knife or Javelin-head 275
Mexican Chalcedony Spear-Head. 275
Fluted Prism of Obsidian 276
Aztec Kinives or Razors 276
Mexican Arrow-Heads of Obsidian 277
Aztec Kinife of Chalcedony 278
Section at Springbok Tontein 282
Section at Concordia 282
Section at Koperberg 283
Plan of the Metalliferous District of Nababeel 284
Map of Amiens District 316
Section across the Talley of the Somme, at Abberille 317
Section across the Valley of the Somme, at Amiens 317
Section at JCenchecourt, Abberille
pageSection at Moulin Quignon, Abbe-
rille. 319
Section at St. Achenl, Cagny Road 320
Section on the Cagny Road. 320
Section near the Monastery St. Acheul 321
Section on the High Road, St. Achend 323
Section of Brick Pit at Hoxue 325
Section across the Wavency, at Home 325
Map of the Horne clistrict 326
Section in South-west Corner of Horne brickfield (1859) 327
Dr. Fritsch's Sketch of Bohemian Arenicolite 348
Plan of the District at Muskham, Newark 351
Section at Muskham, showing posi- tion of Human Remains 351
Celt from Neufchatel, in British Museum 353
Celt from the Valles of the Somme, in British Museiun 353
Large Flint Flake Kinfe from Men- checourt 361
Oral-shaped Flint Implement, fromthe Valler of the Somme.353
Section of No. 4 Pit, Torbanc Hill 372
Section of Torbane Hill, Mineral in No. 9 Pit 372
Stone Hatchet found in Skull of Irish Elk $3 S 2$
Section of Celt, showing the slope of large end 382
Section of Old Red Formation at Kincardine 383
Ideal Composition of the Clytia Leachii (Fig. 2) 394
The same, seen sidewars (Fig. 1) 394
Diagram, showing Influence of the Earth's Attraction on the Water and Atmosphere of the Moon 410
Plantamore's Drawings of the Solar Eclipse of 1860 410
Knockshigowna Hill, from the West 445
Diagrammatic Cross - Section of Knockshigorna 446
Map of Coast of Torbay 418
Section at Torbay, showing En- croachment of the Sea 449
Natural Arch at Torbay 449
Vertical Section of the Bone-care Hill, at Brixham 456
Position of back and left side of Quarry at Brixham 457
Dike in Quarry at Brisham 458
Dike an I Bone－breoceia an Quarry ut Bralnam
II ral of corras tetrachoceros，from Perolles Ifig
Glaci：al l＇heriomemat at Watchate $17!$
Section from Wolverton to Har： pole，is： $1 N: 3$
Diagram，illu－tratins Ittraction of the Xewn 141
Dingram．illustrating Rulative It－ tractions of sur．Earth，and Morn $11: 3$
Finure of Crlobe with true Centre of Cravity，und strata of Watero and ．．ir 493
Figure of Glob with diaplaced
ric．t：
ric．t： 158 158
C＇entre of Gravity，and lateral I＇rotnterances of＇ifoter and Air 19931）iagran，suggestife of a Reasonwhy the Water and dir of theMons sould not be visible ．．$4!3$
Septarian－like structure of a Me－ terrolite 503
Fun－1l sponges from（halh of 131011swick 503
Nigillaria，showing the position of the rent－scars 5：3：3
Leaf－scmes，Rontlet－sears，natural size 2：3：3
Portion uf Sipillaria 53 \＆
Fi－sures in Portland Strata 506

LIST OF PLATES．

PIITE To ficer Page
1．Brilish Chitunide 2ロ2
II．Sew Brachionodin，deseribed hy Mr．（Chas．Moome $1!3.3$
111．Flint Thulement，from Pedford（front view） こ！
15．Fhat Implement，from Bedford（reverec） $21:$
V．Splioronpongiat tossellata，frosu Niuton Abbot． 3.111
V1．I＇hthyodurnlite，from the＇hloritio Slate of Loxe，（＇ormwall 3115
Vil．Fig．I．Timencephalus lavis，from Voleanic Ish，linowle，South 1），rum；Fig．2．Jirontus tabellifer，from Limestome，Wool－ borobgh，Siouth Devon 312
VIIl．Torreapemling parts of Slab eontaining rliejointed Timeroceplanlus levi－ 314
L：．Den r－Morn，with cuts nosl mark of choppings，from Clacton 352
X．Optloeeratitea，from Devonimn Stmata 815
\V．The Neandertlal Skull（front and side views） 396
MIf．Jione Epear－lIend（front view） 558
XIIT．Bome spar－Head（reverad） 5.58
NIV．Sections of Wyro Forew Coal－fitll 126
IV゙．（7ytia Leachii，from the Chalk of Praguc（apecimens show ing side view） $3!12$
XVI．C＇lytis Lemelin，from the Chalk of Vrague（tuecimen slowing buck view） $3!14$
XVIJ．Cer logeal Map of the neighbourlonod of Biarrita 17 ．
SVIII．Deer＇s ILorns，frum Foolknothar． $165-$
XIX．Arida－pan Jarrandii，（Ms．，）Salter and Crey，from silurinn Rocks of luilley 26fi－

FItis 1 TA．
In Profeoser Ramany＇s＇flaciers in Wruke＇page 531，line 3，hare for has：line 6，sa ondlinad fir sromid aind：litu 13，derintion for eleration；line 31，ideality for idontat！；laat lutt，（in＇ume fir folom．

bRACEIUL:iE゙s ANGULARIS.
(Toulmin simitb.)

BRACEIOEITE - IT! !LATHS. (Tonimin \& miji.)
[Unper Crarace us Formatize.]

Fré

BRACHIOLITES FOLIACEUS.
(Toulmin Smitin.)

Fig. 2.
(Ioulmin Smith.)
[Urper Cretaceous F'ormati-n.]

BRACHIOLITES RACEIOSUS.
(Toulmin Smith.)

[^79]

1. CEPEALITES BENETII.E. (Mantell's sp., I'. Siaith's Figure.)

\therefore UEPHALIHES LONGITUDINALIS. (Toulmain Smith.)

2. CEPHALII'שo BULLATU心. (Toulmin Smith.)
[Upper Crataceous Formation.]

N
0

Figs. i\& 2. CEPHAL[IES CANFANULATU>.
[Tpper Cretacecus Formation.]

Fis．

CEPAALITES CAFITATUS．－Toúlia．

Fib． 2

CEFHALIIES CONSTRICTUE．－TOUMMA，4IN： （Syn．C．Sulrotundus，ILantell．）
［Urpe：Cretacesus Formation．］

[^80]

VENTPICDLITES ILRPRESSUS.
(Toulmin Smatt.)
S. J. Mackie Del.

VHN IRICULIIES DECURRENE．－Y゙ar．＇ledulphcatu． （ Guimin Smith．）


```
        Geolocist
Geol
G
v.4
Phycical &*
A-ppled Scie
Serials
```


PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]:

 Nifh Athatio th hath raste hatween lireat Britan smi Ameriea. 1860.

[^1]: * For an excellent short description of this field by Dr. G. P. Beran, the reader may turn to tol. i. of this work. p. 126, \&c.

[^2]:

[^3]: - Vol, xvi., p. 60/, Ght livmianon: 15.59.
 + 「Y Nammann " Filemente dor Mmeralorie."

[^4]: * The publications relative to pseudomorphism have been so multiplied of late years, that it was necessary to renounce giving a list of them here. They are to be found specially in the various publications of Germany, particularly the "Neues Jahrbuch" of Leonhard and Bronn ; "Jahresbricht" of J. Liebig, Hermann Kopp, and Will; "Zeitschrift der Deutschen Geologischen Gesellschaft ;" " Poggendorf Annaien ;" \&c. Besides, they have been summed up in the classical works of R. Blum, C. F. Naumann, Haidinger, G. Bischof, Dana, Kenngott, \&c.

[^5]: * Chiastolite
 + Par thin rock ane Cinta-" Cinateinslelare," 1". 123.- II. C. S.

[^6]: * Recherches sur les Roches Globulenses: par M. Delesse. (Mémoires de lit Soc. Géol., 2 ser., t. iv., p. 301.)
 † Being an illustrated explanatnry axticle of Mr. Mackie's Geological Diagram, No. VI.

[^7]: * Or the limalit if of Fowils of the Carhmifornus Limestone of Ireland:" \therefore nurnal of the Gerluytal Sociely of Dublin: 1955.

[^8]: > :

[^9]:

[^10]: * Ilamwin comsiders the form sperios as one arbitravily griven, for the sake of conveniener, to a sut of inelivituals closely rest mblinge each other ; and it does not. cticemally difler fiom the term varioty, whiel is eriven to its less distimet and mome thetnating limens: that the leman varict!, agan, in romparison with mere

 sub-zpecies or specio s.

[^11]: * My friend, Mr. Robert Huat, supplied me with these facts about our coal consumption.

[^12]: * Renst hefore the Morting uf the British Association at Oxford, in Jume, 1860 , sum phlibhed hy fermission of the Author.

[^13]: * It is probable that this bed of Froshwater clay, before the buideng of the sua-wall might, without at clear expesure of the wiff, have had the appearance of being prolonged from b-luing on the game lovel, and much like in mineral rhameter. 'The bed of gravel (1,1), which meessarily ents ofl' all eommnnication with the berds hementh, clearly isolating and sequrating the uper Freehwater bels (b), from the luwer one (1).

[^14]: * I am happy to say that the fossils, both of the Forest bed and of the Freshwater beds (b), are now engaging the active attention of a very zealous observer, who will, no cloubt, add materially to our present lists.

[^15]: * Silurian system, part i., p. 328.

[^16]: * See appendix.

[^17]: * Report of Society's Proceredinger, 15:56-7, p. 457.
 + There are two "Rosedales" in this district eelebrated for their ironstunes: one near Staith on the coast, and the other fiftem mites inland.

[^18]: * Proc. Cionl. Soc., Runterly Journal, vol, xii., P. 292, and vol. xiv., p. 98.

[^19]: * Hist. of Whitly ;" by L. Charlton : 1779, p. 35.3.

[^20]: * "Manual of Geology;" "Geology of Yorkshire," part i.; "Mountains and Rivers of Yorkshire;" "Oolites of Yorkshire," in Geol. Quart. Journ., vol. xiv.
 \dagger Edin. New Philos. Jsurn., Jan. 1857, p. 40.

[^21]: * These who really wish to know more abont coal-plants than this littherketelk will grive them, shombl read the article wan coal in the mew edition of Mantell's "Wonders of (ieonacy." B'y T. Rupurt Jumes, Fisi., of the (ient. Snecicty.

[^22]: - alis will be crivato in the ne vt mumber.

[^23]: * It is not to be supposed that this is anything like a complete list of the fossils found in these cuttings, but most of those I have had an opportunity of examining; and the difficulty attending the correct determination of species from casts and shells in which the hinge is not exposed, renders the correct naming of these specimons, by so inexperienced geologist as I am, a matter of great difficulty. I, therefore, with great diffidence give the names as an approximation of the truth.-G. D.

[^24]: - I).te, I Ibelere, ln oxule of iron. There is only one narrow vein of this kind found in this island.

[^25]: - Hextrack from a letter of Mr. Jakes to the " Guernsey Star."

[^26]: * And I have added the Halonia, which I fully believe to be the root of Lepidodendron.

[^27]: *Windward"s "Hecent and Fussil Shells," p. 117

[^28]: * By nt prosent molimitm, T menn that there is mo limit bemern thr lowest aml the hishost kmow forms of lifi, lut beyomb tie hiffest there may be a limit 14, which wo are apporaching.
 of somtl A merica." lomden: IStif.

[^29]:

[^30]: * All the excarated material is to be sent dome the shaft, and if well searched at that time will doublless afford manyr aluable specimens.

[^31]:

[^32]: * Trans. of the Asscciation of American Geologists and Naturalists, 1842, p. 433. Binney, Manch. Geol. Trans. vol. i., p. 172, 1840.

[^33]: * Sexual Selection may be defined as the preference shown by an individual of one sex for an individual of the other from superior beauty of colour, shape, voice, \&c.

[^34]: "One revinwer has ov in aid the "thomigh and complete alssence." See An.

 * It is the purity not the ifopth of the bue that prover the absenea of acrliment ; the depth of colone th pende in a great measure on the quantity of eatb it containa in sulution. The Nomth Athantic between Ireland and Canada is not pure blue.

[^35]: * The conformability uf one stmoum to another is no proof of its close sefrene: ; for stratis nre somelime eonformable in one place, abrl unconformables in monther.
 t 13y explored I mean the agee of ils stanta well marle out, not simply gueased at

[^36]: * "On the Origin of Speeies," p. 295.
 \dagger Edinburgh Review, April, 1860, p. 507.
 \ddagger " Recent and Fcssil Shells," p. 117. See also p. 419
 § "On the Origin of Species," p. 303.

[^37]:

[^38]: * The Belemnites are sometimes collected by the villagers, who consider them, when pounded, an excellent cure for rheumatism.

[^39]:

[^40]: *Sce ?uart. Journ. ficol. Suc., vol. xr., p. 607, and plate 16.

[^41]: * Memoirs of the Geological Survev, vol. 2, part 2.

[^42]: * I did not know that this celebrated work contained a chapter on the question "What is coal ?" till lately, or I should have referred to it at first. The case which gave rise to the discussion was that of "Gillespie v. Rassell." I need hardly say that my own conviction is, that, in a commercial sense, whatever is a bed of fossil fuel is a bed of coal. I believe fully that in Dumfriesshire and the county of Down there are beds of fuel made of fossil Graptolites-sea-animals. They are very thin beds, but they are true anthracite coal for all that.

[^43]: * Ponr Manafild, who wrorked an hard at thear ethers, and who diseovereal

[^44]: * Eren anthracite was regarded in America, fifty years ago, as incombustible refuse, and thrown away. In 1316 , or a little later, it was made a capital offence to burn coal : one man, in Edward 1st's reign, was actually hung for it

[^45]: * Sen his Monngmph of the P'ornminn System in England, p. 9, footnote ; also the Edimburgh Niew Ihilosophionl Juurnal, 1813.

[^46]: -s \&

[^47]: "Some of the old Spanish writers on Mexico give a tolerably full account of the manner in which the obsidian knives, \&c., were made by the Aztecs. It will be seen that it only modifies in one particular the theory we had formed by mere inspection as to the way in which these objects were made, which is given at p. 97 ; that is, they were cracked off by pressure, and not, as we conjectured, by a blow of some hard substance.

 Torquemada (Monurquia Indiana, Seville, 1616), says (free translation) :
 " They had, and still have, workmen who make knives of a certain black stone or flint,

[^48]: "Amiens.-On the verge of the hills, and at a distance of three-fourths of a mile south-east from the railway-station, are situated the very interesting and extensive pits of St. Acheul. According to the measmrements of M. Pinsard, the mean height of the ground here is a huudred and forty-nine feet above the mean tide level at St. Valery, and eighty-nine feet above the Somme valley, towards which it slightly inclines, till, as it approaches the valley, the ground falls by a more rapid and sudden slope, while southward it stretches with a gently undulating and gradually rising surface for many miles. The site of the pits is not, honerer, commanded by any immediate high ground, hut, on

[^49]: * Being the substanco of sis lectures delivered at the Royal Institution from May to June, 1861.

[^50]: * Ibid., 1st and 2nd column of figures. \dagger See "Total" Table 2nd column of figures.

[^51]:

[^52]: * Palæozoic Fussils, p. 135.
 \dagger Siluria, 3rd Ed., p. 298.

[^53]:

[^54]: * Dr. Dawson, Quart. Jour. Geol. Soc., vol. xv., p. 4 SJ.
 \dagger Testimony of the Rocks, p. 241, \&c.

[^55]: * This specimen is figured at p. 22 in vol. iv. of this magazine.

 VOL IV.

[^56]: －Prifeacar Owen atateo that M whan rillosus is fonud in clay nodules of unknown age in Greuiand．

[^57]: - Crimparr the tranalatrín jajera on the Cliemical Composition of Rocka in vol, ii, of the "Gemborst."

[^58]: "The following diagrnms (Nos. 2 and 3) are by Professor I'lantamore, who went from Geneva to the east coast of Spain. Aa the moon enterel on the right,

[^59]: * An excellent illustrated report of Mr. Airy's lecture is given in the London Reriew, No. 64, for September, 1861.

[^60]: - Lee Itegmota of British Isunciation for INots (Calagow Menting). At that time I was unt aware that tho name orifer was developed on a grand seale in Canala, nor do I now kmow whets that order was there first abserved by sir W. Lingan. I then (14.5.5) sumply put forward the facta as exhibited not the north-west coast of sicntlati! ; viz., the exiatence uf what 1 termed a lower or "fundamental gneine," lying far bencath nther gne ismo and eryatalline atraton erontaining remains which I ewen thon suggeatad wero of Lower sifurian ag". Sulsequently, in 1858 , when accom. panied by J'rofe or Lammay, I adopted at hion miggestion, the word "Laurentian," iti comp iount in my fnend, sir William logan, who had then worked ont the order, ansl mappel it on a stapronduna acale. I atated, however, at the mame time, that, if a liatiali ngnonsm was to have been takely, I whuld liave proposed the ward " Lewision," from the large inland of the levis, alinost whally comprosed of this gyelse.

[^61]: - In the last edition of Siluria the distinction was drawn between the lower and upper Lingula-flage, but the fauna of the latter is now much enlarged.

[^62]: - This map is alrealy on sale in Manchenter.
 † "American Journal of Seience," May, 1861.

[^63]: * See Russia in Europe and the Ural Mountains. Vol. I.

[^64]: - In another part of this Number we give the paper of Professor Owen, describing this interesting fossil an I'ksionturus A untralis.
 + It munt, however, be noted that the collection sent to me consists of small apecimens of rock forming an imperfect series.

[^65]: * Lord Francis Egerton, afterwards the Earl of Ellesmere.

[^66]: * The measuremenis refer to the diagrams exhibited at the meeting, which were in size, 2 feet, by 1 foot, 7 in . The woodcuts are, of course, much reduced, and their scale is about $\frac{1}{10}$ of the linear measurement of the diagrams.

 VOL. IV.

[^67]: * Lyell, Rogers, Desor, \&ic.

[^68]: * Rocks of Worcestershire, p. 29.

[^69]: * Theses presentées à la Faculté des Sciences de Paris pour obtenir le grade de Docteur es Sciences Naturelles. Par M. Joseph Delbos, Fréparateur d'Histoire Naturelle à la Faculté des Sciences à Bordeaux. Soutennes le 4 Décembre, 1854. VOL. IV.

[^70]: - Amer sothera, I lave foumd here remains of a crustaceat resembling a crab. - A. I. A.

[^71]: - Viol. xi. Crlarial tria laval, lean whersal by Irofegor Phillipg on the

 glacial phenomena in several localities in the Lake tistrict.

[^72]: - Similar admeasurem nea havo hiren malo in North Wales hy Pinfosoor Ramazy. Porlis, I'uada, and Viluriors.

[^73]: - "Outlines of Astonnmy," 5th Edition, Par. 430.
 + "Outlines," 5th Ellition, F'ar. 43 a.

[^74]: * Vienna Imperial Museum of Natural History, Antiquities, \&c., as well as the Imperial Gallery of Pictures, is under the control of His Majesty's Lord Chamberlain's Office, from whose funds they receive their allowances.
 + Bulletin de la Soc. Géol. de France, 1859, Vol. xvi. p. 476.
 YOL. IV.

[^75]: * The statement made in the "Ye tiges", with respect to the periodieal difference in the results of the calculating process of Babbare's machine is founded on a mistake.-Ed. Geol.
 + I am most anxious to aroid introducing anatomical subjects, which would be foreign to the pages of the Geologist, but I may take this opportunity of stating my behief based upon constant and eareful observation, that the human brain possesses organs-e. g., the " third cerebral lobe," the "posterior cornu," and the "hippocampus minor," which are absent in the brains of the apes. I am aware that several zoologists have lately expresseal a contrary opiuion, int I cannot refroin from stating the result of my inquiries, althourh contrary to the theory of transmatation. Truth should he paramonnt orer any precenceived hypothesis.

[^76]: * Mentioned in a plerious part of the Menoir, and printed in the Society's Journal.

[^77]: "Exhibition of New Geological Survey Maps." By Sir R. I. Murchison, V.I'G.S.
 "On the Old Red Sandstone of South Perthshire." By Professor R. Harkucss, F.G.S.
 "On the Aqucous orimin of Giranite." By Mr. A. Breson.
 "On the Ace of the Dartmonr Granites." J3y W. Jringelly, F. (i.s.
 "On the late: changes in the Physieal Geograplyy of British North America, with Notes on the Auriferous Drifts of the Pacilic Slope." By Dr. Hector, F: (i.S.
 "On the Age and Distribution of the Mesozoic Conl of the Pacific Coast and Saskatehavan J'rairics." By Dr. Hector, F.G.S.
 "On certain Markings in Sandstones." By Mr. W. Patterson.
 "Information respecting the present state of the Imperial Geological InMinute of Vimna." By Director Ilardinger, For. M.G.S.
 "On the Details of the Carbmiferous limestone, as exhibited in the railnay. cutting and tumel ncar Almondsbury, west of Bristol." My Mr. Richaroson, (..E.
 "IReport on Examination of Minerals." By Mr. A. Gages.
 "An Examination of some points on the Doctrine of the Internal Heat of the Clobe." By I'rofessor II. Thomson, F.G.S.

[^78]: * At the Manchester meeting of the British Association, the name of Bluntioham clay wan suggested for it, but as the section there is no longer visible, it has been thouglit betlor to mane it from a locality where it may be seen and worked.

[^79]: [Upper Cietice us formation.]

[^80]: $=$

